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ABSTRACT
Histone posttranslational modifications control the organization and function of chromatin. In
particular, methylation of lysine 36 in histone H3 (H3K36me) has been shown to mediate gene
transcription, DNA repair, cell cycle regulation, and pre-mRNA splicing. Notably, mutations at or
near this residue have been causally linked to the development of several human cancers. These
observations have helped to illuminate the role of histones themselves in disease and to clarify
the mechanisms by which they acquire oncogenic properties. This perspective focuses on recent
advances in discovery and characterization of histone H3 mutations that impact H3K36 methyla-
tion. We also highlight findings that the common cancer-related substitution of H3K36 to
methionine (H3K36M) disturbs functions of not only H3K36me-writing enzymes but also
H3K36me-specific readers. The latter case suggests that the oncogenic effects could also be linked
to the inability of readers to engage H3K36M.
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Introduction

Histone proteins are main components of the
nucleosome, the fundamental building block of
chromatin in eukaryotic cells. In addition to play-
ing a critical role in chromatin structure and
dynamics, histones undergo posttranslational
modifications (PTMs) that provide mechanisms
for mediating diverse cellular processes [1–3].
PTMs or epigenetic marks are deposited, removed
and recognized by writers, erasers and readers,
respectively, which individually or in combination
initiate, halt, or propagate biological signals in the
nucleus [4,5,6] (Figure 1). Disruption of the intri-
cate balance between activities of writers, erasers,
and readers is linked to a host of human diseases,
including cancer and autoimmune, developmental,
and neurodegenerative disorders [7].

One such histone modification that has inter-
sected at the cross-roads between normal and dis-
eased states is methylation of lysine 36 of histone
H3 (H3K36me). This chromatin mark is conserved

from yeast to humans and has been shown to have
a variety of functions that range from the control
of gene transcription and DNA repair, to cell cycle
regulation and nutrient stress response [8]. H3K36
methylated domains are associated with active
transcription, and aberrant regulation of this chro-
matin mark has been linked to several cancers.
Particularly, histone mutations that affect H3K36
methylation were identified as likely drivers of
some types of pediatric cancers [9,10,11,12,13],
(Figure 1(b)). Genetic studies found that about
one fifth of high-grade astrocytomas (HGA) aris-
ing in the cerebral hemispheres of adolescents
contain aberrations affecting K36, including H3
mutations at G34 or loss of H3K36-specific writer,
the methyltransferase SETD2. Two bone cancers,
such as chondroblastoma and giant cell tumors
(GCT) of the bone that affect adolescents and
younger children, carry H3 mutations at K36 and
G34, respectively. Importantly, these mutations are
the sole genetic alterations identified in these
tumors, and the tumor type and pattern suggest
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that the histone mutations themselves likely drive
tumor formation in these neoplasms.
Furthermore, the specificity of the histone gene
affected in relation to patient age and tumor type
or location further points toward a distinctive cell
of origin for these tumors and, subsequently, his-
tones are now referred to as ‘oncohistones’, since it
is clear that these mutations act as classical cancer
drivers.

In this perspective, we highlight the latest
reports underlining the impact of oncohistone
mutations on writing and reading the H3K36me
mark. We summarize the biological significance of
H3K36 methylation for normal cell processes and
discuss recently proposed oncohistone-driven
tumorigenic mechanisms.

H3K36 methylation and chromatin regulation

In all mammals, H3K36 is methylated by a range
of lysine-specific enzymes, including SETD2, the
homolog of yeast Set2, NSD1, NSD2/MMSET/
WHSC1, NSD3, SETMAR, SMYD2, and ASH1L

[14,15–19]. While the NSD1-3 enzymes mediate
the bulk of H3K36me1 and H3K36me2 through-
out the genome, SETD2 specially trimethylates
H3K36 in a co-transcriptional manner through
this enzyme’s ability to interact with the transcrib-
ing RNA polymerase II (RNAPII) [20,21].
Consistent with the co-transcriptional role of
SETD2, H3K36me3 is found almost exclusively in
transcribed regions in yeast and mammals. In con-
trast to SETD2, the NSD enzymes are not co-
transcriptional and are known to methylate large
stretches of intergenic regions across the genome
that serve, at least in part, as domain boundaries
that act to prevent the spread of polycomb-
mediated H3 lysine 27 (H3K27) methylation [22].

Studies into the function of H3K36me reveal a
wide range of activities, which include the sup-
pressing histone exchange and intergenic tran-
scription, promoting DNA repair, cell cycle
progression and maintaining proper pre-mRNA
splicing [8]. These functions, in large part, are
carried out by various reader complexes that
associate with this mark. Initially characterized in
yeast, H3K36 methylation was shown to recruit
and/or activate a number of chromatin-associated
enzymes, including the Rpd3S deacetylase complex
containing the Eaf3 chromodomain, ISW1b ATP-
dependent remodeling complex and the NuA3b
acetyltransferase complex [23–27]. Although the
function of NuA3b is less clear, the Rpd3S and
ISW1b complexes act to maintain a deacetylated
chromatin state within RNAPII transcribed
regions that serves to enforce the suppression of
histone exchange and inappropriate transcription
from occurring within these regions [28–32].
From a cellular perspective, this process has been
linked to life-span control, DNA double-stand
break repair, cell cycle progression, nutrient stress
response and, more recently, pre-mRNA splicing
in budding yeast [33–42].

Like Set2 in yeast, H3K36me3 mediated by
mammalian SETD2 is also known to recruit an
Rpd3S-related HDAC complex that associates via
the Eaf3 homolog MRG15; MRG15 also maintains
reduced acetylation levels and functions in alter-
native mRNA splicing [43,44]. Beyond HDACs,
SETD2 and the other H3K36 methyltransferases
have been shown to recruit a variety of other
chromatin-associated protein complexes that have

Figure 1. Histone lysine PTMs and oncogenic mutations. (a)
Schematic representation of writers, readers and erasers target-
ing lysine residues in histone tails of the nucleosome. (b)
Residues of the H3 tail and mutations that have been linked
to cancer are colored green and red, respectively.
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functions in transcription elongation, heterochro-
matin formation, mRNA splicing, and DNA repair
[8]. For example, ZMYND11 was shown to bind
H3.3K36me3 through its PWWP domain and to
regulate pre-mRNA splicing and transcription
elongation [45,46]. In addition, SETD2-mediated
H3K36me3 regulates the recruitment of the DNA
methyltransferase DNMT3b to transcribed regions
also through a PWWP domain that controls gene
body DNA methylation [47–49], which has
remained somewhat elusive in function but may
contribute to suppression of intergenic transcrip-
tion. Outside of transcriptional control, H3K36
methylation functions in homologous recombina-
tion and mismatch repair through the recruitment
of LEDGF and MHS6, respectively [40,50,51].
Intriguingly, H3K36 methylation also associates
with the Tudor domains of PHF1/PHF19 of the
polycomb repressive complex 2 (PRC2) [52–59],
which appears to function as a boundary element
to isolate or restrict the spread of polycomb
H3K27me domains. With so many biological
activities and readers, H3K36 methylation has
emerged to be a critical mark for genome function.
As discussed below, a critical component for how
H3K36 mutation likely contributes to cancer pro-
gression is the inability of these aforementioned
readers to bind to H3K36 methylation.

Oncogenic H3K36M mutation blocks H3K36
methylation

Ground-breaking discoveries of H3 variant muta-
tions in pediatric cancers represent ‘game chan-
gers’ in our understanding of cancer epigenetics
[9–13]. Several genes encoding H3 were found to
contain lysine-to-methionine (K-to-M) mutations
with a high frequency in certain tumor types.
Specifically, H3K27M is found in 85% of diffuse
intrinsic potine gliomas (DIPG) and in a majority
of mid-line high-grade astrocytomas, whereas
H3K36M is found in 95% of chondroblastomas
and also at lower frequencies in head and neck
squamous cell carcinomas and undifferentiated
sarcomas.

Expression of K-to-M mutant histones in cells
has been shown to lead to a global loss of lysine
methylation on the cognate histone residues in
vivo [60–62]. Multiple lines of biochemical and

structural evidence converge on the idea that
methionine substitution at particular lysines in
H3 transform histones from serving as substrates
into potent orthosteric inhibitors of methyltrans-
ferases [60,62–68]. For example, H3K36M pep-
tides and H3K36M-containing nucleosomes
inhibit catalytic activities of H3K36-specific
methyltransferases in vitro, and expression of
H3K36M results in a global loss of H3K36 methy-
lation in vivo [22,62,69,70].

The oncogenic capacity of the H3K36M mutant
histone has recently been demonstrated in studies
with animal models. Introduction of the H3K36M
mutation into mesenchymal progenitor cells
causes a profound impairment of mesenchymal
differentiation. Furthermore, the H3K36M-expres-
sing mesenchymal progenitor cells form tumors
resembling undifferentiated sarcomas in mice
xenograft studies. In addition to reduced
H3K36me2/3 levels, H3K36M-expressing tumors
exhibit increased H3K27me3 levels [22]. The loss
of H3K36me2/3 and the gain of H3K27me3 are
linked and result from the availability of new
nucleosome substrate for the PRC2 complex,
responsible for H3K27 methylation. It is likely
that PRC2 ‘senses’ the methylation status on
H3K36 through a cis-acting mechanism and fails
to act catalytically on histones containing K36me2/
3 [71,72]. Genome-wide profiling of H3K36M-
expressing cells showed a dramatic loss of
H3K36me2 in intergenic regions, which was now
replaced by H3K27me3. The increase of intergenic
H3K27me3 led to a redistribution of PRC1 and de-
repression of its target genes known to block
mesenchymal differentiation. Paradoxically,
H3K36M cells contain more H3K27me3 but exhi-
bit selective loss of Polycomb-repressed genes. As
we noted earlier, H3K36 methylation is linked to a
transcriptional elongation, RNA splicing, and
DNA damage repair, and misregulation of these
processes may also contribute to H3K36M-
mediated tumorigenesis.

H3K36M entraps the H3K36me3-specific
writer

The atomic-resolution structure of the catalytic
domain (CD) of SETD2 that writes H3K36me3,
bound to H3K36M peptide sheds light on the
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mechanism by which this oncogenic mutation
blocks H3K36 methylation [70,73], (Figure 2).
The structure of the complex was determined in
the presence of S-adenosylhomocystein (SAH), a
reaction product formed after the methyl group is
transferred from the methyl-donor S-adenosyl
methionine (SAM). In the complex, the
C-terminal part of CD, comprising the last loop
of the SET region and a long loop of the post-SET
region, covers bound H3K36M peptide from the
top, completely burying the histone sequence from
G33 to M36 (Figure 2, pre-SET is shown in pink).
Interestingly, the C-terminal part undergoes large
conformational changes upon binding of SAH and
H3K36M. While in the apo-state the last loop of
the SET region intramolecularly inserts arginine in
the active center resulting in a closed conforma-
tion and catalytically inactive protein, binding of
SAH, and presumably SAM, flips arginine away
from the active center relieving autoinhibition
and opening the catalytic site for binding of sub-
strate. However, the arginine-inserting pocket of
the CD apo-state is occupied by M36 in the struc-
ture of the H3K36M-bound state of CD. The
extended side chain of M36 points directly toward
bound SAH and is locked in a narrow channel
lined with hydrophobic residues (colored yellow
in Figure 2) and topped with a large cap formed by
the CD loops. An additional restraint for M36
arises from the formation of a pseudo-β-sheet in

which the G33-K36 sequence of the H3K36M pep-
tide adopts a β-strand conformation and inserts
between two β-strands of CD. The structure of the
H3K36M-CD-SAH complex clearly demonstrates
how the H3K36M tail, securely locked in the sub-
strate binding site of the SETD2 catalytic domain,
sequesters SETD2. In cells, such sequestration can
prevent spreading of H3K36 methylation, account-
ing for the reduction of global H3K36 methylation
levels.

Oncogenic H3G34 mutations may act in cis

In addition to the K-to-M mutations, missense
mutations of glycine 34 (G34R/V/W/L) are
found in 20% patients with pediatric supraten-
torial high-grade astrocytomas and 92% patients
with giant cell tumor of the bone [10,11,12].
Strikingly, these mutations are present exclu-
sively in genes encoding histone H3.3 variant
but not other H3 variants, including H3.1. The
histone H3.3 variant is localized to particular
genomic regions, such as promoters, enhancers,
actively transcribed genes, and pericentric and
telomeric repeats [74]. The direct correlation
between G34 mutations and H3.3 genes is likely
not coincidental and suggests that deposition of
the mutant H3.3 at specific genomic locations
plays a role in oncogenic properties of G34
mutants.

Figure 2. Structural basis for entrapping H3K36M in the SETD2 active site. (a) The crystal structure of the SETD2 catalytic domain
(SET in white and Post-SET in pink) in complex with the H3K36M peptide (orange) and SAH (blue). SETD2 CD is shown in a surface
model with the K36M-binding pocket residues and the G34-binding site residues colored yellow and light green, respectively. (b) A
close view of the ribbon diagram of the H3K36M-CD-SAH complex structure. PDB ID code: 5JJY [70].
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Unlike the CD sequestration by the H3K36M
mutation, the mechanism underlying aberrant nat-
ure of G34R/V/W/L mutations appears to be less
clear. Much like M36, the histone residue G34 in
the H3K36M-bound CD of SETD2 is fully buried
and occupies a hydrophobic pocket formed pri-
marily by aromatic phenylalanine and tyrosine
residues of CD [70,73] (colored green in
Figure 2). Analysis of the structure suggests that
the small size of the G34-binding pocket of CD
would preclude a bulkier residue to occupy this
site. It is conceivable that steric hindrance in cis
that prevents priming of CD to the histone tail
carrying mutations at G34 is the reason for the
reduction in the catalytic activity of SETD2.

Studies have indicated that G34R/V/W/L muta-
tions lead to a local loss of H3K36me3, although
delineation of ‘local’ and ‘global’ loss of H3K36
methylation remains ambiguous [62].
Additionally, if the local loss of K36 methylation
is linked to oncogenic properties of H3.3G34
mutants, it’s unclear as to why mutations that
directly affect K36 methylation (e.g., K36E and
K36R) have not been reported in pediatric HGAs
and GCTs. It is intriguing to speculate that the
H3.3G34 mutant histones found in pediatric
HGAs and GCTs create a unique local chromatin
environment that cannot be readily achieved by
other somatic mutations.

Effects of oncogenic mutations on H3K36me3
readers

While the crystal structure of the SETD2 catalytic
domain bound to H3K36M peptide helps to
explain the effect of oncohistone mutations on
the writer’s function, less information is available
on how these mutations influence binding activ-
ities of H3K36me-specific readers. To determine
the effect of oncohistone mutations, we synthe-
sized histone H3 peptides, H3H36me3, H3K36M
and H3G34WK36me3 (residues 28–40 of H3.3)
and examined their interactions with two estab-
lished readers of the H3K36me3 mark, the Tudor
domain of PHF1 and the PWWP domain of
BRPF1 [52,75,76] by NMR (Figure 3). Large che-
mical shift perturbations (CSPs) in intermediate
exchange regime on the NMR time scale were
observed upon titration of the H3K36me3 peptide

to the 15N-labeled PHF1 Tudor domain, corrobor-
ating previously reported robust binding [52],
(Figure 3(a)). However, no CSPs were detected
upon titration of H3K36M, indicating that the
Tudor domain is incapable of binding to this
oncohistone peptide. Conversely, addition of
H3G34WK36me3 peptide induced CSPs similar
in direction and magnitude to CSPs observed
upon addition of the H3K36me3 peptide, suggest-
ing that the G34W mutation does not affect the
ability of Tudor to recognize H3K36me3. In con-
trast, either mutation affected binding of the
PWWP domain of BRPF1. While the interaction
of the 15N-labeled PWWP domain with H3K36M
was abolished, binding to H3G34WK36me3 was
considerably decreased (Figure 3(b)). Together,
these results reveal that the oncohistone binding
activity of H3K36me3-specific readers is context
dependent. While K36M but not G34W abrogates
binding of the PHF1 Tudor domain, both muta-
tions impede binding of the PWWP domain.

Structural studies reveal that both these readers
recognize H3K36me3 via aromatic cages and that
cation-π interactions between the trimethylammo-
nium group of H3K36me3 and the aromatic side
chains are essential. The inability of Tudor and
PWWP to engage with H3K36M reinforces the
critical role of these interactions. However, G34
in the Tudor-H3K36me3 complex is solvent
exposed and occupies a shallow cavity that can
accommodate a much larger residue such as tryp-
tophan without apparent steric clashes. In con-
trast, priming of H3G34WK36me3 in the binding
groove of PWWP is compromised likely because
of steric hindrance.

Taken together, these findings show that onco-
histone mutants that impact H3K36 methylation
do not lead to continued association of its readers.
In contract to the writer (the SETD2 catalytic
domain), the H3K36me3-specific readers do not
sequester their host proteins. Rather, these readers
are unable to promote down-stream biological
effects because their binding to the oncogenic
H3K36M tail is impaired. It is still unclear which
reader(s) contribute to the onco-histone pheno-
type; however, we speculate that the compromised
histone binding activity could lead to the redistri-
bution of reader-containing proteins, including
ZMYND11, MRG15 and DNMT3b, to new
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genomic locations where they contribute to aber-
rant transcription elongation, histone deacetyla-
tion, and/or DNA methylation. Additionally, the
redistribution of the reader-containing proteins
and complexes may result in a loss of boundaries
that restrict spreading of other marks, such as the
repressive H3K27me3 mark, triggering uncon-
trolled silencing of tumor suppressor genes.
Alternately, the loss of H3K36me3-binding activity

of readers can decrease or eliminate catalytic func-
tions of writers, as has been demonstrated for the
Rpd3S complex in yeast [77]. The reduced catalytic
activities in the genomic regions enriched in onco-
genic H3 mutations could derail transcriptional
and DNA repair programs that contribute to the
cancer phenotype. Future work will be needed to
better define how H3K36M and related onco-his-
tone mutations lead to cancer.

Figure 3. Oncohistone mutations impact binding of the H3K36me3 readers. (a, b) Superimposed 1H,15N HSQC spectra of PHF1 Tudor
(a) and BRPF1 PWWP (b) recorded while H3H36me3, H3K36M and H3G34WK36me3 (residues 28–40 of H3.3) peptides were added
stepwise. The spectra are color coded according to protein:peptide molar ratio. The structures of the H3K36me3-bound PHF1 Tudor
domain and H3K36me3-bound BRPF1 PWWP domain are shown as surface models with the K36M-binding pocket residues and the
G34-binding site residues colored yellow and light green, respectively. PDB ID codes: 4HCZ and 2X4X.
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Concluding remarks

Recent studies have unveiled a novel pathway to
cancer implicating mutations of H3K36 or nearby
residues. While significant insights have been
gained regarding how H3K36 mutation acts to
inhibit the writers and readers of this mark, as
well as influences the epigenome in ways that
favor cancer progression, much remains to be
learned. For example, why certain pediatric or
adult cancers favor H3K36 mutation in a particu-
lar histone H3 variant is still poorly understood,
along with how H3K36me-affecting mutants such
as H3.3G34 impact cancer progression. It is also
unclear whether these mutations act to promote
cancer through dysregulation of the epigenome
(e.g., cross-talk between H3K36me and
H3K27me) over the loss of critical functions
endowed in H3K36 (i.e., DNA repair). The next
few years will undoubtedly be exciting as these
questions become answered. Long-term, these
insights stand to open up new targets for thera-
peutic intervention.

Materials and methods

Peptide synthesis

Peptides were synthesized by UNC peptide synth-
esis core.

DNA cloning, expression and protein purification

The Tudor domain of human PHF1 (aa 14–87) and
the BRPF1 PWWP domain (aa 1064–1214) were
expressed and purified as described [52,78]. Briefly,
the BRPF1 PWWP domain and the PHF1 Tudor
domain were expressed as uniformly 15N-labeled
GST-fusion proteins in BL21(DE3) RIL cells grown
in minimal media supplemented with 15NH4Cl
(Sigma). The bacteria were harvested, and cells
were lysed by sonication. The GST-fusion proteins
were purified using glutathione agarose resin, and
the GST tag was cleaved with either Thrombin
(PWWP) or PreScission (Tudor) protease.

NMR spectroscopy

NMR experiments were performed on a Varian
INOVA 600 MHz spectrometer at the University

of Colorado School of Medicine NMR Core facil-
ity. CSPs experiments were carried out at 298K
using uniformly 15N-labeled PWWP domain of
BRPF1 and Tudor domain of PHF1. 1H,15N het-
eronuclear single quantum coherence (HSQC)
spectra were collected in the presence of increasing
concentrations of either H3H36me3, H3K36M and
H3G34WK36me3 peptides in buffers: PBS buffer
pH 6.8 supplemented with 3 mM DTT for PWWP,
and 25 mM Tris-HCl buffer pH 6.8 supplemented
with 150 mM NaCl and 3 mM DTT for Tudor.
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