In Vivo Monitoring of Hepatic Glutathione in Anesthetized Rats by 13C NMR

Jeffrey M. Macdonald, Olga Schmidlin, and Thomas L. James

A method for in vivo 13C NMR monitoring of hepatic glutathione (GSH) in intact, anesthetized rats has been developed. Studies were conducted using a triple-tuned, surgically implanted surface coil designed for this animal model. The coil permitted complete decoupling and sufficient resolution in the 13C NMR spectrum to monitor the time course of hepatic 13C-metabolites of intravenously administered 2-13C-glycine, particularly GSH at 44.2 ppm and serine signals at 61.1 and 57.2 ppm, respectively. It further allowed concomitant monitoring of high-energy phosphagens and intracellular pH by 31P NMR. To confirm in vivo NMR peak assignments, we compared high-resolution 2D 1H/(13C) heteronuclear multiple quantum coherence and 1D 13C spectra of hepatic perchloric acid extracts to those of authentic standards. The fractional isotopic enrichment of hepatic 13C-glycine increased exponentially at a rate of 1.68 h$^{-1}$ and reached its plateau level of 81% in 2 h. The 13C fractional isotopic enrichment of GSH increased exponentially at a rate of 0.316 h$^{-1}$ and reached 55% after 4 h of 2-13C-glycine infusion, but without achieving a plateau. To confirm that the resonance at 44.2 ppm resulted from GSH, a rat was given an intravenous dose of 2-octoxiazolidine-4-carboxylic acid (OTC), a cysteine precursor that increases intracellular GSH. As expected, with OTC administration the hepatic 13C-GSH-to-glycine peak area increased more than sevenfold. Magn Reson Med 48:430–439, 2002. © 2002 Wiley-Liss, Inc.

Key words: hepatic glutathione; 2-13C-glycine; in vivo 13C; in vivo 31P NMR; 2-octoxiazolidine-4-carboxylate

Glutathione (GSH) is the central antioxidant in the liver. It protects against electrophilic xenobiotics and oxidative stress by reacting with hydrogen peroxide and organic peroxides (1), and plays a central role in redox signaling (2,3). A low ratio of reduced GSH-to-oxidized glutathione (GSSG) is a critical determinant of cell death by apoptosis or necrosis (4,5). The tripeptide GSH (γ-glutamyl-cysteinyl-glycine) is synthesized by two sequential enzymatic reactions and is degraded by the GSH-dependent transpeptidase, γ-glutamyl-transpeptidase (γ-GT) (1,6). Because of its central role in hepatic metabolism (6,7), monitoring of GSH by in vivo 13C nuclear magnetic resonance (NMR) spectroscopy may provide important information on the functional status of the liver, especially under pathologic conditions such as exposure to hepatotoxins, ischemia, or disease (8–10). Although its hepatic concentration (ca. 8 mM in normal rats (7)) makes GSH amenable to detection by in vivo 13C NMR spectroscopy, to date there have been no reports that it has been successfully monitored in the in vivo liver.

Observation of NMR signals in intact liver is impeded by respiratory motion, magnetic susceptibility effects, and short spin-spin relaxation (T_2) times due to high concentrations of paramagnetic species, all of which lead to low spectral resolution. To overcome some of these problems, we developed a triple-tuned NMR surface coil that can be implanted in the abdominal cavity of anesthetized rats. The coil permits concomitant monitoring of GSH by 13C NMR spectroscopy, and bioenergetics and intracellular pH by 31P NMR spectroscopy. A 13C-labeled GSH constituent, 2-13C-glycine, was infused to enrich the fraction of 13C relative to 12C in GSH. The level of fractional isotopic enrichment was monitored over a period of 4 h, and peak-area ratios (PARs) of sequential in vivo spectra were used to assess the turnover rate of GSH.

MATERIALS AND METHODS

Glycine (99% 2-13C-labeled) was purchased from Isotec, Inc. (Miamisburg, OH), pentobarbital from Anthony Products (Arcadia, CA), and 50% dextrose and saline solutions from Abbott Labs (Chicago, IL). GSH, GSSG, manitol, perchloric acid (PCA), potassium hydroxide, choline, N-dimethylglycine, betaine, sarcosine, γ-glugly, cysgly, L-serine, 3-phosphoglycerate, oxalic acid, L-cysteine, L-glutamic acid, L-glutamine, L-aspartic acid, lactic acid, glucose, cystethionine, guanine, adenosine, creatinine, urea, adenosine-5'-diphosphate, HPLC grade water and acetoni-

© 2002 Wiley-Liss, Inc.
In Vivo Hepatic Glutathione Monitoring in Rat

4.4 mmol/H18528 hepatic levels of 13C-GSH: 1) 2-13C-glycine at a dose of obtained, one of two protocols was followed in monitoring at a rate of 3 mL/hr for 1.5 h. After baseline spectra were determined at the beginning of each experiment using 40% dioxane. 13C spectra were obtained at 50.3 MHz with dephoric acid. The in-plane 90° pulse for 13C was determined from the in-plane in vivo 13C 90° pulse length. The calculation was based on the difference between the 31P and 13C in-plane 90° pulse lengths obtained from standards. 31P spectra were obtained at the infusion was continued for 4 h (N = 5); 2) the same protocol was used, but 1 h after start of the glycine infusion, 15 mmol · kg⁻¹ of OTC was infused intravenously over 0.5 h (N = 1). The time from coil implantation to euthanization was 6 h.

Within 5 min of completing the in vivo experiment, livers were excised and immediately frozen in liquid N₂. The actual dissection lasted less than 10 s. PCA extracts of liver tissue were prepared by a modification of previously described methods (14). Briefly, mortar and pestle under constant liquid N₂ were used to pulverize the livers. PCA 0.6N (6%) was added at a volume-to-weight ratio of 2:1. The mixture was then placed on ice in a centrifuge tube until thawed. The coil mass was pelleted by centrifugation at 15000 rpm for 10 min. The supernatant was titrated to pH 7.4 with KOH, centrifuged (15000 rpm for 10 min) to pellet the perchlorate salts, frozen in liquid N₂, and lyophilized. For analysis by high-resolution NMR, samples were titrated to the appropriate pH with NaOD, treated with Chelex-100 to remove paramagnetic ions, relyophilized, and dissolved in 100% D₂O. For identification of amides by the deuterium isotope shifts (15,16), a mixture of D₂O: H₂O was used to dissolve the liver extracts. Additional PCA extracts, subsequently referred to as “bench-top studies,” were obtained to determine the fractional enrichment (FE) of 13C in glycine and its metabolites (see below). These studies were performed using protocol 1 as described above, except that rats were not placed in the magnet, and the implanted coil was not pulsed. All lyophilized samples were stored at 0°C until NMR spectroscopic analysis.

In vivo spectroscopic experiments were performed using a Nalorac Cryogenics Corporation (Martinez, CA) Quest 4400 NMR imaging spectrometer connected to a 4.7 Tesla horizontal bore (16 cm usable bore) Oxford magnet. The 1H coil was used to optimize the static magnetic field homogeneity by shining on the 1H2O proton resonance, using a 90° flip angle, until a water proton line-width in the range of 50–80 Hz was obtained. The in-plane 180° pulses for 1H, 13C, and 31P were calibrated using a microsphere containing 2M 2-13C-glycine and 5% phosphoric acid. The in-plane 90° pulse for 13C was determined at the beginning of each experiment using 40% dioxane. 13C spectra were obtained at 50.3 MHz with decoupling of protons during acquisition and quadrature phase detection. Even though the 1H coil was well insulated with epoxy, to avoid local heating of the liver, sensitivity gain via the nuclear Overhauser effect with continuous proton irradiation was not attempted (17). Partially relaxed spectra were obtained from 144 transients with a 70° in-plane flip angle, 2K data points, a sweep width of ±4443 Hz, and a repetition time (TR) of 1 s, yielding a total acquisition time of 9.6 min. A 70° in-plane flip angle was chosen because it yielded an optimal signal-to-noise ratio and provided sufficient localization, as demonstrated by the lack of phosphocreatine signal in the in vivo 31P NMR spectra (18). A representative in vivo hepatic 31P NMR spectrum has been presented elsewhere (13,19). The 31P 90° pulse was calculated from the in-plane in vivo 13C 90° pulse length. The calculation was based on the difference between the 31P and 13C in-plane 90° pulse lengths obtained from standards. 31P spectra were obtained at
81 MHz using a one-pulse sequence, with the same parameters as described above except the TR was 1.2 s with 100 transients, yielding a total acquisition time of 8.8 min. Two or three 31P spectra were summed for peak area determination. Three 13C and 31P spectra were obtained sequentially. Prior to Fourier transformation, time domain 13C and 31P data were processed with Gaussian (25–50 Hz) apodization, respectively. The 13C and 31P spectra were plotted and referenced to dioxane and α-NTP at 68.0 and −7.5 ppm, respectively. GSH and glycine were also identified in vivo by determining the C-H coupling constant in a coupled spectrum.

In two additional in vivo experiments, performed according to protocol 1 (see above), saturation factors (SFs) of GSH, glycine, serine C2, serine C3, and dioxane were determined. The same NMR parameters were used as described above. Over a period of 4 h, consecutive sets of saturated (S_i) and relaxed (R_i) in vivo 13C spectra were obtained from 40 transients each, with TRs of 1 and 5 s, respectively, and acquisition times of 2.67 and 13.33 min, respectively (as shown in Scheme 1). The spin-lattice relaxation time (T_1) values of [2-13C-glycyl]glutathione in red blood cells have been reported to range from 0.84 s to 0.92 s (20). Consequently, a TR of 5 s was considered sufficient to achieve full relaxation, as relaxation in the liver should be at least as rapid as in red blood cells. SFs were calculated according to Eq. [1] as the ratio of the relaxed-to-saturated peak areas. For GSH, a single SF was calculated using five saturated and four relaxed spectra obtained between 170 and 237 min of glycine infusion when 13C-glycine enrichment had reached a plateau. For all other compounds, consecutive SF values were calculated and found to be constant with time.

$$R = R_1 + R_2 + R_3 + R_4$$

$$S_A = S_1 + S_2 + S_3 + S_4$$

$$S_B = S_2 + S_3 + S_4 + S_5$$

$$SF = 2R/(S_A + S_B) \quad [1]$$

1D NMR spectra of liver extracts dissolved in D$_2$O were obtained using a GE QE-300 (13C, 31P, 1H) spectrometer operating at a 1H frequency of 300 MHz. 13C and 31P spectra were obtained using a one-pulse sequence with decoupling during acquisition, a 10-s interpulse delay, 16K complex points, and a spectral width of ±10000 Hz (13C) or ±4000 Hz (31P). Prior to Fourier transformation, time domain transients were zero-filled and processed with a negative Lorentzian-to-positive Gaussian transformation for resolution enhancement, which is useful in determining coupling constants. 13C and 31P compounds were identified by comparison of extract chemical shifts and CH coupling constants to those of known standards, literature values, and known glycine biochemical pathways. GSH was further identified by its in vivo 13C coupling constant, the deuterium-isotope shift (15,16), and by addition of known amounts of GSH and GSSG to liver extracts. 13C and 1H spectra were referenced to 3-(trimethylsilyl)propionic-2,2,3,3-d$_4$ acid at −2 and 0 ppm, respectively. 31P spectra were referenced to the α-nucleotide triphosphate (NTP) peak at −7.5 ppm, and the intracellular pH was determined using the chemical shift of inorganic phosphate relative to α-NTP (21).

13C-labeled glycine metabolites in liver extracts were also identified by 2D 1H/13C heteronuclear multiple quantum coherence (HMQC) spectroscopy using a Varian (Palo Alto, CA) UNITY Plus 500 MHz NMR spectrometer. The HMQC spectra were obtained with a 5-mm Nalorac triple resonance probe, and using a spectral width of 65189.9 Hz and 2048 complex data points, yielding an acquisition time of 0.314 s. The HMQC pulse sequence entailed 13C GARP1 decoupling during acquisition, interpulse delay of 0.38 s, scalar evolution delay of 71 ms, and 1 s presaturation pulse. The t1 dimension had a spectral width of 12500 Hz and 640 increments and was collected in phase-sensitive mode. 2D spectra were zero-filled to 4096 in t1, and apodization consisted of a shifted sine-ball function.

FE of 13C in glycine and GSH was determined in PCA extracts from 1H one-pulse spectra, by comparing the 13C-coupled (i.e., from 13C satellite peaks) and 12C-uncoupled peak areas (22). FE of glycine was determined at 1 and 2 h in liver extracts from bench-top studies ($N = 3$ each) and at 4 h in extracts from both in vivo ($N = 5$) and bench-top studies ($N = 3$). FE of GSH was determined in liver extracts from bench-top studies ($N = 3$ each at 1, 2, and 4 h) as described by Gamsicik (23) with slight modification. Briefly, 100 mg of lyophilized liver extract was dissolved in 50 mM HCl-TRIS, and 50 mM sodium borohydride was added to reduce GSSG to GSH. After 1 h of incubation at 37°C, 100 mM of monobromobimane was added, and the extracts were left overnight at 20°C to react in darkness. The resulting GS-bimane (GSBi) was purified from extracts with octadecyl solid phase cartridges as described by Gamsicik (23). To remove hydrophobic macromolecules, GSBi extracts were further purified by a second extraction with octadecyl solid phase cartridges by loading samples with 99% H$_2$O with 1% acetic acid (pH 2.9) and eluting with 100% H$_2$O (pH 7.0). 1H NMR spectra of GSBi extracts were obtained between pH 3.75 and 4.5 to maximize the chemical shift separation between the [α-glycyl]GSH and [α-glutamyl]GSH resonances. With a Varian UNITY Plus 500 MHz NMR spectrometer, a one-pulse sequence was used with a 45° flip angle, 10-s interpulse delay, 16K complex points, and a spectral width of ±3012 Hz. The [α-glycyl]GSH FE was calculated as the 13C-coupled satellite peak area divided by the 13C-coupled satellite peak area plus 12C-uncoupled peak area.

Peak areas were fit using the “MacFID” software package (Tecmag, Inc., Houston, TX), and GSH FE was determined from peak area integration using “VNMR” software, v. 6.01 (Varian, Inc.). Within each in vivo spectrum, the GSH and glycine peak areas were referenced to the dioxane peak area. For kinetic analysis, the in vivo PARs of gly-
cine-to-dioxane and GSH-to-dioxane were used to construct FE vs. time plots. The glycine-to-dioxane PAR at 4 h, in each of the five in vivo experiments, was set equal to the FE of glycine determined in the hepatic extract of the respective experiment. The GSH-to-dioxane PARs at 4 h were set to the average FE of GSH, 55%, determined from the three bench-top studies at 4 h. For all remaining time-points of the in vivo studies, the PARs were converted proportionally to estimated values of FE by using the following equation: \(\text{FE}_{tn} = \frac{(\text{FE}_{t4} \times \text{PAR}_{tn})}{\text{PAR}_{t4}} \), where \(\text{FE}_{tn} \) and \(\text{FE}_{t4} \) are the FEs at time \(n \) and at 4 h, respectively, and \(\text{PAR}_{tn} \) and \(\text{PAR}_{t4} \) are the PARs at time \(n \) and at 4 h, respectively.

Differences between mean glycine FE levels in hepatic extracts from in vivo (\(N = 5 \)) and bench-top studies (4 h time-point; \(N = 3 \)) were compared with an unpaired \(t \)-test using StatView 5 statistical software (SAS Institute, Inc., Cary, NC) and were considered to be significant if \(P < 0.05 \). Turnover rate constants (\(k \)) of glycine and GSH were calculated from the time course of in vivo FE values (vide supra) by least-squares fitting of an exponential function using the “Regression” software package, v. M1.23 (Blackwell Scientific Publications, UK). Saturation factors were fit with the same software using the equation \(y = ax + b \), and were considered linear if \(r^2 > 0.95 \). Results are reported as mean \(\pm \) standard error of the mean.

RESULTS

The major findings outlined below demonstrate that we can continuously monitor in vivo hepatic glutathione levels via \(^{13} \)C NMR using a newly developed triple-tuned, implanted surface coil in anesthetized rats. The rat liver retains viability in spite of the presence of the implanted coil. Observation of glutathione, as well as administered glycine, enables turnover rates for these metabolites to be estimated.

Viability of In Situ Liver in the Presence of the Implanted Surface Coil

As assessed by in vivo \(^{31} \)P NMR, hepatic NTP did not change significantly. The percent of \(\beta \)-NTP peak area to total phosphate signal was 18.1\% \(\pm \) 1.7\% at baseline, and 17.7\% \(\pm \) 2.6\% after 3.5 h of \(^{2} \)C-glycine infusion. In all rats, hepatic pH remained stable at values of 7.30 \(\pm \) 0.04 throughout the course of the experiment. These results indicate that glycine infusion and continuous anesthesia and mechanical ventilation did not significantly alter bioenergetics over the course of 4 h. However, since the bioenergetic status of the liver was not determined in both the absence and the presence of the implanted NMR coil, it is not clear whether implantation of the coil itself may have altered that status.

Detection and Identification of \(^{13} \)C Metabolites

In baseline in vivo spectra (Fig. 2a, bottom spectrum) no distinct signal from naturally abundant \(^{13} \)C was detectable. Continuous i.v. infusion of \(^{2} \)C-glycine resulted in \(^{13} \)C NMR signals in the liver from labeled glycine (42.4 ppm) within 10 min of the start of the infusion (Fig. 2a, second spectrum from bottom). The resonance resulting from labeled glycine was the most prominent resonance other than that from dioxane, the external standard (68 ppm, not shown in the figures). The resonance at 44.2 ppm, which appeared within 20 min (Fig. 2a, third spectrum from bottom), was identified as GSH. A pair of resonances, also appearing within 20 min after the start of the \(^{2} \)C-glycine infusion, were identified as serine C2 and C3 centered at 57.2 ppm and 61.1 ppm, respectively. The series of \(^{1} \)H\((^{13} \)C)-HMOC spectrum in panel d was obtained from the same hepatic extract as shown in panel c, and was used to identify the \(^{13} \)C-labeled compounds. a and b: In vivo spectra are composed of 144 acquisitions obtained in 9.6 min. c: The hepatic extract spectrum is composed of 5000 acquisitions with a TR of 11 s. Abbreviations: SerC2, C2 serine; SerC3, C3 serine; GSH, glutathione; Gly, glycine.

In addition to utilizing \(^{13} \)C and \(^{1} \)H chemical shifts (Fig. 2c and d) (24), we identified GSH by its coupling constant both in vivo and in hepatic extracts, and by its deuterium isotope-induced \(^{13} \)C shift in hepatic extracts (Fig. 3b, inset). The coupling constant and isotope shift were 139.2 Hz and 0.11 ppm, respectively, and identical to those of a sample of authentic GSH. These parameter values are typical for methylene protons coupled to an adjacent exchangeable amide proton. When exogenous GSH was added to liver extracts, it was completely oxidized to GSSG if extracts were dissolved in either \(\text{H}_2\text{O} \) or \(\text{D}_2\text{O} \) and were kept at 25°C for \(\geq 48 \) h.
To further confirm that the in vivo 13C resonance at 44.2 ppm is hepatic GSH, and to explore the feasibility of experimentally enhancing the GSH signal intensity, 15 mmol·kg$^{-1}$·h$^{-1}$ of OTC was infused i.v. for 30 min during the administration of 2^{-13}C-glycine. OTC is metabolized to cysteine by oxoprolinase, a cytosolic enzyme that constitutively forms glutamate from its cyclic form oxoproline (1). With the administration of OTC, the PAR of GSH-to-glycine increased by a factor of 1.8 in vivo (Fig. 3a) and by a factor of 7.6 in extracts (Fig. 3b). In contrast, OTC decreased the level of 2, 3-13C-serine. In extract spectra (Figs. 3c and d, and 3b), isopomers of serine C3 (SerC3, 61.1 ppm) and serine C2 (SerC2, 57.2 ppm) can be identified. The serine isopomers comprise 2-13C-serine (singlet), 3-13C-serine (singlet), and 2, 3-13C-serine (two doublets, $J_{23} = 36.6$ Hz). OTC administration increased the 13C enrichment of anaerobic end-products such as lactate (69.3 ppm, not shown) and alanine (51.3 ppm). These effects are consistent with a systemic decrease in oxidative metabolism possibly due to cardiovascular or neurological toxic effects of OTC (25) and cysteine (26), respectively. The largest naturally abundant compound in the 13C NMR spectrum of the hepatic extract in Fig. 3b represents taurine (48 ppm and 36 ppm), the catabolite of OTC (27).

Visibility of NMR Signals In Vivo

To estimate the NMR visibility of signals from 2^{-13}C-glycine and its metabolites in vivo, we compared their PARs from in vivo spectra (Fig. 2b) with those from extract spectra (Fig. 2c) after correcting signal intensities for saturation effects (Table 1). This comparison provides an estimate of the in vivo visibility of metabolites relative to each other. To determine absolute visibility of these metabolites in vivo, further studies will be necessary using methods such as those described by Shungu et al. (28). The PARs of GSH-to-glycine, SerC2-to-glycine, SerC3-to-glycine, GSH-to-SerC2, and GSH-to-SerC3 were all smaller in extract spectra as compared to in vivo spectra. The degree by which the various PARs are decreased in extract spectra, expressed as “% difference” in Table 1, implies that the peak areas of the three major 13C-labeled compounds are enhanced in the extract spectra, relative to in vivo spectra, in the following order: glycine > serine > GSH, with the relative amount of glycine being 75% larger and that of GSH being 50% smaller than that of serine in extract spectra. One possible explanation for these observations is that there are pools of glycine and perhaps serine that are not NMR-visible in vivo. Alternatively, some GSH and perhaps serine may have been lost during the extraction procedure. One other complicating factor is possible contributions from the blood volume in the liver. These are considered in the Discussion section.

Kinetics of NMR-Detectable Metabolites

The 13C FE of glycine, as determined in hepatic extracts from one-pulse 1H spectra, increased rapidly after the start of 2^{-13}C-glycine infusion and reached 70% ± 2%, 72% ± 3%, and 81% ± 1% after 1, 2, and 4 h, respectively. FE of GSH, as determined in hepatic extracts from the satellite resonances of the GSBi derivative of GSH (Fig. 4), increased at a slower rate and reached 17% ± 2%, 31% ± 1%, and 55% ± 1% after 1, 2, and 4 h, respectively. FE values of both GSH and glycine determined experimentally in hepatic extracts did not differ significantly from their FE values derived from in vivo spectra (Fig. 5a and b). The data suggest that FE of GSH did not achieve equilibrium with glycine during the 4-h observation period.

To assess turnover rates of GSH and glycine during 2^{-13}C-glycine infusion, we fitted estimated FE values (see Methods section) of each of the five in vivo experiments to a monoexponential function, $y = A(1 - e^{-kt})$ (29). For GSH,
the preexponential coefficient A was set equal to the experimentally determined FE value of glycine in the respective hepatic extract assuming that at steady-state, FE values of GSH and glycine will be identical. The average GSH turnover rate, k, was 0.316 ± 0.008 (r² = 0.94 ± 0.004) corresponding to an average $t_{1/2}$ of 2.2 h. This suggests that the FE value of GSH attains its plateau approximately 11 h after the start of the 2-13C-glycine infusion. Figure 5a shows the time course of [13C]-GSH levels, expressed as % FE, in the five in vivo experiments. The time course of glycine FE levels obtained from the same experiments is shown in Fig. 5b. The glycine data were fitted using the same function as for GSH, but in this case both “A” and “k” were determined by the curve-fitting routine. The average turnover rate, k, was 1.685 ± 0.679 (r² = 0.96 ± 0.03) corresponding to a $t_{1/2}$ of 25 min; the average A was 81.2 ± 1.01%.

Both the serine C2 and C3 resonances increased proportionately over time and reached a plateau by 120 min (data not shown). Values of the SF (Eq. [1], Scheme 1) for SerC2 and SerC3 did not change significantly during 2-13C-glycine infusion, being 1.19 ± 0.02 and 1.02 ± 0.02, respectively. The difference between SF for SerC2 and SerC3 reflects faster spin-lattice relaxation of the α-carbon due to the additional covalently attached proton as compared to the β-carbon (30). The PAR of the SerC2-to-SerC3 resonances was 0.80 ± 0.03 in extracts after 1 h of 2-13C-glycine infusion and did not change with time (data not shown). Comparison of the SerC2 and SerC3 resonances in Fig. 2c shows that the center line singlet intensity of the 2-13C-serine isotopomer is twice that of the 3-13C-serine isotopomer.

DISCUSSION

Detection of Hepatic Glutathione and Other Metabolites In Situ

Using in vivo 13C NMR spectroscopy we monitored hepatic levels of GSH and other metabolites of infused 2-13C-glycine in healthy anesthetized rats. The proximity of the glycine and GSH resonances in 13C spectra made it necessary to obtain good sensitivity from the radiofrequency coil, complete decoupling, and narrow linewidths. This was accomplished by use of a specially developed triple-tuned coil in conjunction with a rigid assembly. This technique further allowed us to monitor hepatic bioenergetics and intracellular pH concomitantly via 31P NMR.

Infusion of 13C-glycine gave rise to major 13C resonances in vivo at 42.4, 44.2, 57.2, and 61.1 ppm, which we iden-
The chemical shift of [2-13C-glycyl]GSH is in an area that is relatively free of endogenous 13C NMR resonances.

NMR Visibility of Hepatic Metabolite Signals

Since we did not determine absolute metabolite concentrations in the current study, no definitive statements can be made regarding NMR visibility of metabolites. However, comparisons of the PARs of 2-13C-glycine and its metabolites in extract and in vivo spectra (Table 1) suggest that the various compounds apparently differ considerably with respect to the visibility of their in vivo NMR spectral signals. Specifically, the signal of glycine, relative to those of GSH and serine, appears reduced in vivo compared to extract spectra. This may be explained by either an apparent decrease of glycine signal in vivo or by disproportionate losses of GSH and serine during tissue extraction, or by both. An apparent decrease in glycine signal visibility in vivo may occur via blood flow effects. The liver receives about one third of cardiac output, and blood occupies 25–30% of the liver volume (38). Normally, plasma concentrations of glycine, GSH, and serine are in the micromolar range (39). Infusion of 4.4 mM·kg⁻¹·h glycine will increase the plasma concentration of glycine into the millimolar range (40), but presumably it will not substantially alter plasma levels of GSH or serine. A contribution to the glycine NMR signal from blood in the liver will occur for the extracts, as the livers were not desanguinated after excision. In vivo glycine signal visibility may be reduced when, during signal acquisition, part of the RF-pulse-labeled intravascular hepatic glycine is carried by the circulating blood beyond the boundary of signal detection. The effect this has on the signal ratios of in vivo and extract spectra depends on the concentration of analyte in the blood, the RF pulse width and length of signal acquisition, and blood flow rate in the sensitive area of the NMR coil (41).

Not explained by “blood flow effects,” however, are the differences between in situ and extract ratios of GSH and serine signals. The PARs imply that either some GSH was lost during PCA extraction, or a pool of serine is not visible in the intact liver. Binding of a substantial fraction of serine to macromolecular structures could decrease its in vivo NMR signal intensity. However, there has been nothing reported to suggest that occurs.

Some portion of GSH may have been lost during excision of the liver or during the extraction procedure, but care was taken to avoid this. Upon completion of in vivo studies, livers were flash frozen in liquid nitrogen without prior desanguination to avoid loss of intracellular GSH due to ischemia-induced formation of GSSG and its subsequent efflux from the liver (6), and to minimize hydrolysis of high-energy phosphagens (18). Degradation of GSH induced by γ-GT upon thawing of tissue prior to PCA extraction appears to be negligible since no 13C-labeled cys-gly was detected in extracts. Furthermore, PCA is known to inactivate γ-GT (42). In vitro formation of protein-mixed disulfides (PSSG), which would be lost in the pellet, is reported to be insignificant in PCA extracts of
desanguinated liver (43), but occurs extensively in blood due to a free radical reaction of oxygen with iron from heme (44). Oxidation of GSH to GSSG was shown to require heme-bound iron, which is released from hemoglobin within seconds after addition of PCA (44). When, as in the current study, blood-containing tissue is pulverized under liquid nitrogen, hemoglobin-derived heme is mixed thoroughly with tissue and thus will react not only with plasma-derived GSH but also with (previously) intracellular GSH to form GSSG and subsequently PSSG. Such formation of PSSG from intracellular GSH, and its subsequent loss in the pellet, may explain the reduced GSH-to-serine PAR in extracts.

In intact tissue the proportion of GSH present as PSSG depends on the GSH-to-GSSG ratio; under physiological conditions wherein the GSH-to-GSSG ratio exceeds 100, it amounts to less than 1% of the total intracellular GSH pool (36,45). The presence of significant amounts of PSSG in vivo (reaction 4 in Fig. 6) would have resulted in a broadening at the base of the GSH resonance (46). As no GSSG was detected in freshly prepared hepatic extracts, it can be reasonably assumed that the amount of PSSG during acquisition of in vivo spectra was negligible.

Although GSH synthesis occurs only in the cytosol, mitochondria contain 15–20% of the intracellular GSH pool (4.47). Cytosolic-mitochondrial GSH exchange (reaction 5 in Fig. 6) occurs through both a high- and a low-affinity mitochondrial GSH transporter (48.49). Under physiologic conditions, i.e., when the cytoplasmic GSH is not depleted, the exchange of GSH is rapid (48). Hence, we assume that in the current study the mitochondrial [2-13Cglycyl]GSH pool was in equilibrium with the cytosolic pool. However, whether that mitochondrial pool is visible by in vivo 13C NMR remains to be determined. In previous 13C NMR studies of cultured cells (50), perfused liver (34,51), excised lens (46), and intact brain (33,52) no data have been reported on the visibility of 13C-labeled GSH in cellular organelles.

Kinetics of NMR-Detectable Metabolites

The analysis of hepatic GSH kinetics in the current study is based on the fact that glycine is not a rate-limiting substrate in GSH synthesis. GSH synthetase operates near Vmax for glycine and well below the Km for γ-glut-cys when concentrations are in the physiologic range (36,53). Therefore, it is unlikely that increases in glycine levels over the course of the experiment affect the rate of GSH synthetase. The fact that GSH synthetase is not rate-limiting was a major reason for monitoring 13C-glycine rather than one of the other two amino acid candidates, cysteine and glutamate. (Compare reaction 3 with reaction 2 in Fig. 6). Our kinetic analysis is further based on the assumptions that 1) hepatic glycine is in rapid equilibrium with blood glycine, 2) glycine has a high extraction ratio, and 3) it is distributed homogeneously (“well stirred”) across the liver. Under these circumstances, blood and highly perfused organs such as the liver may be treated kinetically as a common homogenous unit generally referred to as the “central compartment.” Kinetic homogeneity does not necessarily mean that the drug (in this case glycine) concentrations in all tissues of the central compartment at any given time are the same. However, it does assume that any change that occurs in the plasma level is quantitatively reflected in the central compartment tissue level (29). Experimental studies (37) suggest that indeed plasma glycine is in rapid distribution equilibrium with hepatic glycine. Kinetically, the relationship between glycine and GSH is analogous to that of an intravenously infused drug (glycine) with a relatively short half-life and its metabolite (GSH) with a relatively long half-life. According to commonly accepted pharmacokinetic rules (54), in such a situation the initial non-steady state of drug concentration (glycine isotopic enrichment) may be neglected when assessing the kinetics of the metabolite (13C-GSH isotope). As the half-life of glycine is much shorter (37,39) than that of GSH (by about a factor of 6) (37), the initial non-steady state of glycine isotopic enrichment supposedly has very little effect on GSH isotope enrichment. Therefore, a monoexponential fit should provide a reasonable estimate of GSH kinetics (54). The results of our kinetic analysis of GSH turnover rates are corroborated by their similarity to previously reported GSH kinetic data (36,55,56).

Analysis of hepatic extracts demonstrated that fractional isotope enrichment of 13C had reached 81% in glycine and 55% in GSH after 4 h of 2-13C-glycine infusion. FE values obtained in extracts after 1 and 2 h of 2-13C-glycine infusion suggest that FE of glycine, but not of GSH, had reached a steady state. This is supported by kinetic analysis of the in vivo data, which suggests that glycine FE reaches steady state after 2 h, but that about 11 h of 2-13C-glycine infusion would be required for GSH FE to reach steady state. As reported previously, in rats infused with [U-13C]glycine, plasma and hepatic concentrations of glycine had reached steady state within 2 h, the first time-point obtained (39). The fact that FE values of glycine did not reach 100% suggests that the intracellular glycine pool is in exchange with another compartment, most likely unlabeled proteins (Fig. 6). Under experimental conditions similar to ours, in rats infused with [U-13C]glycine, 36% of their total protein pool was replaced per day (39). Intestinal contents could provide an additional source of unlabeled glycine.

Turnover rates of GSH and glycine were estimated from the peak areas of in vivo 13C spectra obtained serially over a period of 4 h and after conversion of in vivo PARs to FE values. The conversion was based on FE values determined experimentally using high-resolution NMR analysis of hepatic extracts obtained at the end of each in vivo experiment. FE values at 1 and 2 h derived from in vivo PARs did not differ significantly from those determined experimentally in hepatic extracts at 1 and 2 h, respectively, suggesting that the FE values estimated from in vivo PARs were accurate.

The average GSH turnover rate in the current study was 0.32 h⁻¹ (t₁/₂ of 2.2 h), which is consistent with the turn-over rate reported previously in healthy Sprague-Dawley rats. In the reported studies, the turnover rate calculated from the fractional decrease of GSH after intravenous injection of radioabeled amino acid precursors ranged from 0.2 h⁻¹ (t₁/₂ = 3.6 h) to 0.4 h⁻¹ (t₁/₂ = 1.6 h) in the fed and fasted state, respectively (55), and from 0.1 h⁻¹ (t₁/₂ = 5.8 h) to 0.5 h⁻¹ (t₁/₂ = 1.3 h) in 24- and 6-week-old rats (56), respectively. The rate of GSH synthesis depends on
γ-glutamylcysteiny1 synthetase (GCS) levels, allosteric regulation of GCS, and the bioavailability of cysteine (reaction 2, Fig. 6) (36). Together with cell efflux, redox cycling of GSH, and conjugation of electrophilic agents (Fig. 6) (1,57), the rate of GSH synthesis determines the intracellular steady-state concentration of GSH. These processes are affected by age, sex, nutritional status, signaling pathways elicited by surgery-induced catecholamines, and by xenobiotic challenge (6,57). In the current study, a relatively fast turnover rate would be expected as the rats were young and presumably were exposed to high levels of catecholamines due to surgical implantation of the NMR coil (57). The average turnover rate of glycine in the current study was 1.7 h\(^{-1}\) (t\(_{1/2}\) = 25 min), and is similar to previously reported values in rabbits (1.8 to 6.0 h\(^{-1}\) (t\(_{1/2}\) = 7 to 23 min) (58)) obtained following an intravenous bolus of \(^{15}\)N-glycine.

\(^{13}\)C-Glycine is incorporated into GSH either through de novo GSH synthesis or through exchange via GSH synthetase (reaction 3, Fig. 6) (59). This exchange is inhibited by both glucose and ATP (59). Since in the current study ATP levels were not depleted as determined by \(^{31}\)P NMR, and because glucose was infused throughout the experiment, the increasing \(^{13}\)C-labeling of GSH probably represents mainly de novo synthesis. GSH synthesis varies across the liver. It is largest in the pericentral region of the acinus (60) and is nearly two orders of magnitude smaller on a per cell basis in nonparenchymal cells (61). Therefore, the majority of in vivo GSH signal probably arises from parenchymal cells in the pericentral region.

CONCLUSIONS

A novel in vivo \(^{13}\)C/\(^{31}\)P NMR animal model in conjunction with hepatic extracts has been applied for the first time to monitor GSH signal in the liver of intact animals. \(^{13}\)C-labeled glycine was used to enrich \(^{13}\)C in GSH because glycine, unlike cysteine or glutamate, does not affect GSH homoeostasis (36), is not systemically toxic, and is an order of magnitude less costly than both cysteine and glutamate. No changes in hepatic bioenergetics or intracellular pH magnitude less costly than both cysteine and glutamate. Since in the current study ATP levels were not depleted as determined by \(^{31}\)P NMR, and because glucose was infused throughout the experiment, the increasing \(^{13}\)C-labeling of GSH probably represents mainly de novo synthesis. GSH synthesis varies across the liver. It is largest in the pericentral region of the acinus (60) and is nearly two orders of magnitude smaller on a per cell basis in nonparenchymal cells (61). Therefore, the majority of in vivo GSH signal probably arises from parenchymal cells in the pericentral region.

ACKNOWLEDGMENTS

We are grateful to the University of California Toxic Substances Research and Teaching Program for support of this project, and the UCSF Research Evaluation Allocation Committee for support of the \(^{1}\)H feasibility studies, J.M.M. received support in the final phase of this project from an NIH IRTA fellowship, an NIH NRSA fellowship (F32 DK09713), an NIH grant (R01 DK52851; Lola M. Reid, P.I.), and from the Johns Hopkins Center for Alternatives to Animal Testing. We are very grateful to Dr. Michael Gamcsik for consultation in the determination of GSH FE. We thank Drs. Lee-Hong Chang and Eugene DeRose for technical advice. J.M.M. was awarded the UCSF Eino Nelson Prize for distinguished thesis research in pharmaceutical chemistry for the study described herein.

REFERENCES

10. Colvin OM, Friedman HS, Gamcsik MP, Fenselau C, Hilton J. Role of gamma-glutamyltransferase (reaction 3, Fig. 6) (59). This exchange is inhibited by both glucose and ATP (59). Since in the current study ATP levels were not depleted as determined by \(^{31}\)P NMR, and because glucose was infused throughout the experiment, the increasing \(^{13}\)C-labeling of GSH probably represents mainly de novo synthesis. GSH synthesis varies across the liver. It is largest in the pericentral region of the acinus (60) and is nearly two orders of magnitude smaller on a per cell basis in nonparenchymal cells (61). Therefore, the majority of in vivo GSH signal probably arises from parenchymal cells in the pericentral region.

25. Vita JA, Frei B, Holbrook M, Gokce N, Leaf C, Keaney Jr JF. L-2-

