Expression Profile of MicroRNAs in Epstein-Barr Virus-Infected AGS Gastric Carcinoma Cells

Aron R. Marquitz, Anuja Mathur, Pauline E. Chugh, Dirk P. Dittmer and Nancy Raab-Traub

Updated information and services can be found at: http://jvi.asm.org/content/88/2/1389

SUPPLEMENTAL MATERIAL

Supplemental material

REFERENCES

This article cites 17 articles, 7 of which can be accessed free at: http://jvi.asm.org/content/88/2/1389#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more»](http://journals.asm.org/site/misc/reprints.xhtml)

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Expression Profile of MicroRNAs in Epstein-Barr Virus-Infected AGS Gastric Carcinoma Cells

Aron R. Marquitz,a Anuja Mathur,a Pauline E. Chugh,a,b Dirk P. Dittmer,a,b Nancy Raab-Traub,a,b
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Latent infection with Epstein-Barr virus (EBV) is responsible for multiple types of malignancies, including 10% of all gastric carcinomas. The microRNA (miRNA) expression in several EBV-infected AGS gastric carcinoma cell lines was determined. Infected cells expressed the viral BamHI A rightward transcript (BART) miRNAs at high levels and had consistently decreased expression of a small fraction of cellular miRNAs with specific downregulation of tumor suppressor miRNAs. These changes likely reflect expression of the viral noncoding RNAs and not latent protein expression.

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus in which latent infection is associated with a number of malignancies, including multiple types of B-cell lymphomas, nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC) (1, 2). EBV expresses a diverse subset of latent proteins with oncogenic potential in lymphomas in immunocompromised patients but a much more restricted set of viral proteins in malignancies in patients with intact immune systems. In addition, EBV expresses multiple noncoding RNAs during all types of latency, including two clusters of microRNAs (miRNAs). The largest set of miRNAs, the BamHI A rightward transcript (BART) miRNAs, are 44 miRNAs processed from the introns of the BARTs that are expressed at high levels in EBV epithelial malignancies (3–5). Infection of the gastric carcinoma cell line, AGS, with EBV has recently been shown to induce a more transformed phenotype, with dramatic changes in the cellular expression profile despite the expression of only one latent viral protein, EBNA1, to any significant level (6). A significant fraction of the changes in cellular expression likely reflect expression of the BART RNAs (6).

To profile the expression pattern of the BART miRNAs in infected AGS cells, five additional clonally infected lines were established by incubation of induced Akata-BX1 cells with uninfected AGS cells and selection for green fluorescent protein (GFP)-positive, G418-resistant clones. The viral protein expression pattern was determined by Western blotting and was nearly identical to that of the original cell line, with expression of only EBNA1 at a significant level (Fig. 1A). A small and somewhat variable amount of LMP1, which has previously been shown to not affect cellular gene expression, was expressed in these cell lines (6). Analysis of EBER expression by using quantitative reverse transcription (RT)-PCR that amplifies a conserved region revealed that all six EBV-infected AGS cell lines (AGS-EBV) expresses both EBER1 and EBER2, with consistently higher levels of EBER2 than are expressed by the Jijoye lymphoid cell line (Fig. 1B). Importantly, each clone had improved colony formation in soft agar, indicating that the transformed phenotype of latent EBV infection in this cell line was highly reproducible (Fig. 1C and D).

To profile the expression level of the viral miRNAs in these cell lines, small-RNA libraries were created using an Illumina TrueSeq small-RNA sample preparation kit and sequenced on a HiSeq 2000 sequencing system. The libraries are specific for miRNAs, as the RNAs are selected for size and the 3′ adapter is specific for RNA containing a 3′ hydroxyl group characteristic of miRNAs. In total, eight libraries were sequenced, two libraries from the parental AGS cell line, two libraries from the original AGS-EBV cell line, and one library each from new clones 1 and 2, as well as a library from the NPC cell line C666 and one from the NPC xenograft C15 for comparison. After processing was performed to remove adapter sequences, reads were aligned to the human (hg19) and viral (NC_007605) genomes using the Bowtie short read aligner. Confirming the size selection, the vast majority of reads were 20 to 24 bases. Reads of 16 to 25 nucleotides in length that overlapped by at least 16 nucleotides with mature miRNA coordinates obtained from miRBASE were counted as miRNA reads in the analysis in order to not exclude miRNAs with differential 5′ and 3′ processing, which is common in EBV miRNAs (Table 1)(7). A small fraction of the reads from the parental cells aligned to the EBV genome, although most were extremely short reads and likely nonspecific. However, very low levels of authentic EBV miRNAs were detected in these samples. It is not clear if this is due to some minor level of contamination during sample preparation or a low level of background EBV infection in the parental cell line. The numbers of total reads and miRNAs sequenced are shown in Table 1.

Each of the EBV-infected cell lines had a large fraction of their total miRNA pool derived from the virus, with 57% of all miRNAs in the C15 NPC tumor encoded by EBV (Fig. 2). The AGS-EBV cell lines have an expression pattern consistent with the pattern of the NPC cells and other epithelial EBV malignancies in which the BART miRNAs are very highly expressed and the BHRF1 miRNAs are rarely expressed (3). Expression of the BHRF1 miRNAs was essentially negligible in the C15 and C666 NPC samples, while a few hundred reads were detected in the AGS-EBV cells (see Data Set S1 in the supplemental material). As these miRNAs have been
shown to increase upon induction of viral replication, the BHRF1 miRNA reads may be due to expression in a small subset of cells with permissive infection. Overall, the pattern of abundance of the individual BART miRNAs was quite consistent across the AGS-EBV clones and the NPC samples, suggesting similar processing in these different cell types. However, this pattern of BART abundance is distinct from that reported in other profiling studies done in NPC, and there is little consistency for one pattern of BART miRNA abundance in the literature (5, 7–9). This may reflect differences in techniques and informatics between studies.

In order to determine whether there were any changes in the abundance of cell-derived miRNAs in response to EBV infection of AGS cells, the aligned human sequences were imported into the Partek genomic suite software, which was used to calculate significant changes in human miRNA levels. miRNA changes with a P value of <0.05 were considered significant, while those that represented changes with a P value of <0.001 were considered highly significant.

TABLE 1 Summary of small-RNA sequencing results

<table>
<thead>
<tr>
<th>Library</th>
<th>No. of reads</th>
<th>Mapped to human</th>
<th>Mapped to EBV</th>
<th>No. of miRNAs</th>
<th>Human EBV</th>
<th>% viral miRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental AGS 1</td>
<td>35,111,900</td>
<td>33,305,259</td>
<td>445,435</td>
<td>22,884,865</td>
<td>7,705</td>
<td>0.03</td>
</tr>
<tr>
<td>Parental AGS 2</td>
<td>19,200,981</td>
<td>18,250,058</td>
<td>1,343,213</td>
<td>14,988,219</td>
<td>5,134</td>
<td>0.03</td>
</tr>
<tr>
<td>AGS-EBV 1</td>
<td>56,873,929</td>
<td>51,935,642</td>
<td>4,317,658</td>
<td>41,696,846</td>
<td>3,913,670</td>
<td>0.03</td>
</tr>
<tr>
<td>AGS-EBV 2</td>
<td>24,244,558</td>
<td>21,212,801</td>
<td>4,529,355</td>
<td>16,841,905</td>
<td>2,484,335</td>
<td>0.03</td>
</tr>
<tr>
<td>Clone 1</td>
<td>30,010,016</td>
<td>24,889,072</td>
<td>5,441,869</td>
<td>18,042,838</td>
<td>4,060,515</td>
<td>0.03</td>
</tr>
<tr>
<td>Clone 2</td>
<td>23,432,180</td>
<td>19,467,911</td>
<td>5,176,603</td>
<td>12,263,106</td>
<td>3,163,597</td>
<td>0.03</td>
</tr>
<tr>
<td>C666</td>
<td>24,241,258</td>
<td>18,475,830</td>
<td>7,185,207</td>
<td>8,748,402</td>
<td>5,693,242</td>
<td>0.03</td>
</tr>
<tr>
<td>C15</td>
<td>37,510,160</td>
<td>29,354,325</td>
<td>11,383,451</td>
<td>3,076,020</td>
<td>4,137,077</td>
<td>0.03</td>
</tr>
</tbody>
</table>
significantly expressed in AGS cells, was overexpressed in unin-
host tumor suppressor miRNAs, EBNA1, the one viral protein
bers are lower in EBV-positive GCs than in EBV-negative GCs (13,
These miRNAs downregulated in response to EBV infection (Table 2).
To confirm these findings and expand the number of samples
tested, Exiqon miRNA PCR arrays were performed. A total of 10
arrays were performed using three unique preparations of paren-
arrays were performed using three unique preparations of paren-
miRNAs in EBV Gastric Carcinoma

FIG 2 EBV miRNA counts from small-RNA libraries. The number of sequencing reads mapped to the mature miRNAs of EBV is indicated per 10 million total miRNAs to normalize for sequencing depth in each library. The value displayed for AGS-EBV is an average of four sequencing libraries, two from the original AGS-EBV cell line and one each from the first two newly made clones. The inset displays the relative contribution of EBV to the total pool of miRNAs from each of the cell lines. Again, the value for the AGS-EBV cells is an average of results for four samples, with the standard error of the mean indicated by error bars.

represented less than 0.05% of the total pool were excluded. A small
subset of the human miRNAs was downregulated upon EBV in-
fecution, with no miRNAs increased by infection. Interestingly, the
downregulated miRNAs included several miRNAs that act as tu-
mor suppressors (see Data Set S1 in the supplemental material). The miRNA expression profile of the two NPC line sequences was
substantially different from that of the AGS cells. It is likely that
the considerable differences in the cellular miRNA profiles be-
tween AGS-EBV and the C15 NPC may reflect the contribution of
viral proteins expressed in the C15 NPC tumor, including abun-
dant LMP1.

To confirm these findings and expand the number of samples
tested, Exiqon miRNA PCR arrays were performed. A total of 10
arrays were performed using three unique preparations of paren-
al AGS RNA, two from the original AGS-EBV cell line, and one
each from the five individual clones of AGS-EBV cells (see Data
Set S2 in the supplemental material). The data from the PCR ar-
rays largely confirmed the sequencing data, with many of the same
miRNAs downregulated in response to EBV infection (Table 2).
The fold changes tended to be larger with the PCR method than
with the sequencing method, which may reflect normalization to
housekeeping genes for the PCR data whereas the sequencing data
are normalized to the total human miRNA pool. This result would
also be consistent with EBV infection’s decreasing the overall
abundance of human miRNAs, perhaps due to competition for
processing with the viral miRNAs or reported effects on Dicer
function (10). Two miRNA families, the let-7 family and the miR-
200 family, both of which are known tumor suppressor families,
were heavily represented in the downregulated miRNAs (11, 12).
These findings confirm previous findings indicating decreased ex-
pression of the miR-200 family of miRNAs in EBV-infected AGS
cells and the observation that the levels of miR-200 family mem-
bers are lower in EBV-positive GCs than in EBV-negative GCs (13,
Both methods of profiling indicated that miR-143, which has
also been shown to act as a tumor suppressor in a number of
different types of cancer, was significantly decreased (15–17).

To evaluate the potential effects of viral protein expression on
host tumor suppressor miRNAs, EBNA1, the one viral protein
significantly expressed in AGS cells, was overexpressed in unin-
fect ed AGS cells and the effects on a subset of the cellular tumor
suppressor miRNAs was assessed using quantitative RT-PCR (Fig.
3A). Expression of EBNA1 at substantially higher levels than that
of EBV-infected cells reduced miR-143 levels but did not affect the
five other miRNAs tested (Fig. 3B). To ensure that the trace levels
of LMP1 expressed in these cells was not responsible for the de-
creased expression of the tumor suppressor miRNAs, a dominant
negative LMP1 was overexpressed to inhibit any residual LMP1

![Diagram](http://jvi.asm.org/DownloadedFromMay28,2014byUniversityofNorthCarolina-ChapelHill)

| Table 2: Host miRNAs downregulated by EBV infection of AGS cells |
|-----------------------------|-----------------------------|
| miRNA | Sequencing | RT-PCR |
| | P value | Fold change | P value | Fold change |
| let-7 family | | | | |
| hsa-let-7a-5p | 0.0397 | -2.226 | 0.0442 | -1.608 |
| hsa-let-7b-5p | 0.0533 | -1.912 | 0.0135 | -2.555 |
| hsa-let-7f-5p | 0.0434 | -1.696 | 0.1935 | -1.681 |
| hsa-mir-98-5p | 0.0471 | -2.219 | 0.0617 | -3.566 |
| miR-200 family | | | | |
| hsa-miR-200a-3p | 0.1446 | -1.624 | 0.0133 | -2.315 |
| hsa-miR-200b-3p | 0.0225 | -1.757 | 0.0352 | -2.498 |
| hsa-miR-200c-3p | 0.0480 | -1.684 | 0.0328 | -1.857 |
| hsa-miR-429 | 0.0717 | -1.838 | 0.0195 | -2.591 |
| Others | | | | |
| hsa-miR-143-3p | 0.1416 | -2.974 | 0.0014 | -6.090 |
| hsa-miR-146b-5p | 0.1337 | -1.954 | 0.0234 | -4.106 |
| hsa-miR-148a-3p | 0.0760 | -1.997 | 0.0087 | -3.135 |
| hsa-miR-181b-5p | 0.1252 | -2.004 | 0.0400 | -2.589 |
| hsa-miR-23a-3p | 0.0080 | -1.840 | 0.0261 | -2.073 |
| hsa-miR-24-3p | 0.1091 | -1.945 | 0.0336 | -1.807 |
| hsa-miR-27a-3p | 0.0149 | -1.345 | 0.0350 | -1.980 |
| hsa-miR-29a-3p | 0.0345 | -1.343 | 0.0226 | -2.318 |
| hsa-miR-92b-3p | 0.1022 | -1.843 | 0.0482 | -2.305 |

a miRNA changes were considered highly confident with a P value of <0.05 by one
method and showed a confirmatory change with a P value of < 0.20 by the other
method. miRNAs that represent <0.05% of the total pool (based on sequencing data)
were excluded.
expression. These changes include both a decrease in host tumor suppressor miRNAs and elevated expression of viral miRNAs with demonstrated oncogenic potential.

ACKNOWLEDGMENTS

We thank Lindsey Hutt-Fletcher for providing the Akata-BX1 cells that were the source of the EBV in this study, Lori Frappier for the EBNA1 expression plasmid, and Jaap Middeldorp for the generous gift of OT1x antibody to detect EBNA1. We also thank the UNC Lineberger Genomics Core and the UNC High Throughput Sequencing Facility for miRNA library preparation and sequencing.

This study was supported by grant CA138811 to N.R.-T., grant DE018304 to D.P.D., and grant CA19014 to D.P.D. and N.R.-T., all from the National Institutes of Health.

REFERENCES

15. Borrhalho FM, Simoes AE, Gomes SE, Lima RT, Carvalho T, Ferreira

FIG 3 Lack of regulation of tumor suppressor miRNAs by EBV latent proteins. (A) Western blot demonstrating the overexpression of EBNA1. Parental AGS cells were stably transfected with the pc3OriPE vector that contains the EBV oriP sequence as well as the EBNA1 open reading frame. Western blots were probed with anti-EBNA1 (OTIx monoclonal antibody) or anti-HSC70 (Santa Cruz; sc-7298) antibody as a loading control. (B) Quantitative RT-PCR for six indicated tumor suppressor miRNAs that are downregulated by EBV infection. PCR was performed using miScript primer assays and the miScript RT-PCR system (Qiagen) from RNA prepared using TRizol. The data were normalized to that for glyceraldehyde–3-phosphate dehydrogenase (GAPDH) and are displayed as the average of the results for three independent RNA preparations. The error bars display the standard errors of the means. (C) Western blot illustrating the overexpression of the LMP1 dominant negative construct. Stable cell lines were made with the pBABE-LMP1DN construct or (pBABE) in AGS EBV cells. Western blots were probed with anti-LMP1 (S12 hybridoma) or anti-GAPDH (Santa Cruz; sc-25778) antibody. An overexposed lane is shown to demonstrate the level of expression of the dominant negative construct over the small amount of wild-type LMP1 in infected cells. (D) Quantitative RT-PCR for tumor suppressor miRNAs in the LMP1DN cell line. PCR was performed as described for panel B.

