Review Article

Defining Value-Based Care in Cardiac and Vascular Anesthesiology: The Past, Present, and Future of Perioperative Cardiovascular Care

Lavinia M. Kolarczyk, MD*, Harendra Arora, MD*, Michael W. Manning, MD, PhD†, David A. Zvara, MD*, Robert S. Isaak, DO*,1

*Department of Anesthesiology, University of North Carolina School of Medicine, Chapel Hill, NC
†Department of Anesthesiology, Duke University School of Medicine, Durham, NC

Health care reimbursement models are transitioning from volume-based to value-based models. Value-based models focus on patient outcomes both during the hospital admission and postdischarge. These models place emphasis on cost, quality of care, and coordination of multidisciplinary services. Perioperative physicians are challenged to evaluate traditional practices to ensure coordinated, cost-effective, and evidence-based care. With the Centers for Medicare and Medicaid Services planned introduction of bundled payments for coronary artery bypass graft surgery, cardiovascular anesthesiologists are financially responsible for postdischarge outcomes. In order to meet these patient outcomes, multidisciplinary care pathways must be designed, implemented, and sustained, a process that is challenging at best. This review (1) provides a historical perspective of health care reimbursement; (2) defines value as it pertains to quality, service, and cost; (3) reviews the history of value-based care for cardiac surgery; (4) describes the drive toward optimization for vascular surgery patients; and (5) discusses how programs like Enhanced Recovery After Surgery assist with the delivery of value-based care.

© 2018 Elsevier Inc. All rights reserved.

Key Words: value-based care; quality improvement; patient outcomes; Enhanced Recovery After Surgery; cardiac surgery; vascular surgery

Health Care Economics 101: The Past, Present, and Future of Reimbursement

IN 2015, THE United States spent $3.2 trillion on health care expenditures, or 17.8% of its gross domestic product. It is projected that health care spending will rise to $4.6 trillion by 2020, nearly 20% of the gross domestic product. As a percentage of the total national health expenditure, Medicare, Medicaid, and private health insurances contributed 20%, 17%, and 33%, respectively, in 2015.1 The US government provides health care coverage for 58 million people through Medicare and another 72 million through the Medicaid programs, making the government the single largest provider of health care in the United States.2 As a result of the rising health care expenditures, approximately 50% of government health care entitlement programs are now being funded with sources other than payroll taxes and premiums.3 Some blame the traditional “fee-for-service” payment model for the escalating and excessive health care costs in the United States. To attempt to control health care costs and improve the quality of patient care, payment models are transitioning from the traditional volume-driven fee-for-service reimbursement to value-based payment systems.
The Past: Historical Perspective on Payment Models

Before the Great Depression, hospitals relied primarily on direct payment from patients. In an attempt to control declining revenues during the Great Depression, the American Hospital Association developed the Blue Cross concept in 1929 (Fig 1). Blue Cross plans primarily guaranteed payment for in-hospital costs, creating an economic disparity in access to noncovered out-of-hospital services, especially to low-income patients. In 1939, Blue Shield was developed by employers in the lumber and mining camps of the Pacific Northwest to provide out-of-hospital medical care through monthly fees to medical service bureaus. After World War II, the commercial health insurance industry rapidly expanded. This led to an increasing demand for health insurance as a standard benefit of employment. Despite the growth in the insurance sector, an increasing coverage gap emerged between those who had insurance and those who did not. To bridge this gap, Congress enacted the Medicare and Medicaid Act in 1965. Medicare and Medicaid, one of the largest public health reform initiatives in US history, provided a safety net for retirees and the underserved. The legislation extended health coverage to almost all Americans ages 65 and older and provided health care services to low-income children and the disabled. This expanded coverage linked with a fee-for-service reimbursement scheme and soon led to cost overruns and a precipitous run-up in health care costs. In the 1980s and 1990s, innovative managed care models attempted to deliver service while containing rising health care costs. In the managed care model, providers receive a capitated or a “lump sum” payment per beneficiary for the health care services rendered. The capitation of payments placed the health care providers in the role of micro-health care insurers and incentivized them to restrict expensive, but sometimes necessary, health care services.

The Present: Transition from Fee-for-Service to Value-Based Payment Models

Although several factors are believed to be contributing to the rising health care costs, the fee-for-service model and exorbitant administrative costs have been targeted as major areas of reform. Administrative costs are estimated to be as high as 20% to 25% of the national health expenditures. In addition, it is estimated that 3% to 10% of total health care spending is attributable to fraudulent billing by public and private programs. To address these issues, the National Commission on Physician Payment Reform was convened in 2012. On March 4, 2013, the commission issued a report detailing a series of recommendations aimed at controlling health care spending and improving the quality of care (Table 1). The key recommendations eliminate fee-for-service payment systems for medical services and replace them with payment systems based on value through mechanisms such as bundled payment, capitation, and increased financial risk sharing.

The Future: Alternative Payment Models

Alternative payment models such as accountable care organizations (ACOs), bundle payment models, and patient-centered medical homes reimburse providers for the value of care delivered. An ACO is an integrated network of health care practitioners accountable for the quality, cost, and overall care delivered to the enrolled beneficiaries. In the ACO model the financial risk is largely shared between the physicians and their respective organizations, incentivizing optimal use of high-value services while cutting unnecessary waste. Unlike in managed care payment models, payment in the ACO model health care organizations is dependent on meeting predefined quality metrics. Although a majority of core quality measures are focused around the primary care setting, major subspecialties have measures that are specialty-specific. Failure to meet these standards results in financial penalty. Thus far, there have been only modest reductions in Medicare spending among the organizations that entered the pioneer ACO program, with no significant changes in the quality of health care. Currently, there are minimal data to show that value-based payment systems lead to superior outcomes compared with fee-for-service payment models. Also, it is unclear
Table 1
Recommendations of the National Commission on Physician Payment Reform

1. Payers to largely eliminate stand-alone fee-for-service payment to medical practices
2. Test new models of care over a 5-year period, with the goal of broad adoption by the end of the decade
3. Recalculate fee-for-service payments to improve quality and cost-effectiveness; penalize misuse or overuse of care
4. Annual updates for evaluation and management codes, especially the ones currently undervalued; freeze updates for procedural diagnosis codes for 3 years, except for those that are currently undervalued
5. Eliminate higher payment for facility-based services that can be performed in a lower-cost setting
6. Incorporate quality metrics into the negotiated reimbursement rates for fee-for-service contracts
7. Encourage smaller practices to form virtual relationships and share resources to achieve higher quality care
8. Fixed payments for care of patients with chronic conditions and in-hospital procedures to reduce cost and improve quality
9. Fixed payment models to include measures that assess high-quality care, assess adequacy of risk-adjustment indicators, and promote strong physician commitment to patients
10. Eliminate the Sustainable Growth Rate
11. Repeal of the Sustainable Growth Rate to be paid for with cost savings from the Medicare program as a whole
12. The Relative Value Scale Update Committee to make decision-making open, evidence-based processes to update relative values

whether capitation of payments in the value-based system will force providers to restrict necessary care from their patients.

Bundled payment, a form of the episodic payment model, represents a novel payment model in which a fixed amount is paid by the insurer for all acute and post-acute care associated with a hospitalization or an event, inclusive of the professional fees. This is somewhat similar to the existing diagnosis-related group model, used predominantly for inpatient care, for which hospitals receive a single payment for specific health care events but is exclusive of professional fees. The Comprehensive Care for Joint Replacement for hip and knee replacement surgery was the first bundled care payment model rolled out by the Centers for Medicare and Medicaid Services (CMS) in January 2016. Under the Comprehensive Care for Joint Replacement model, hospitals are responsible for the entire episode of care beginning with the admission immediately after the procedure and ending 90 days after discharge. Depending on the quality and cost of performance, the hospital either repays a portion of the cost to Medicare or earns a financial reward based on the actual cost of the episode. The hospitals therefore have a financial incentive to provide high-quality, value-based care for their patients from the initial surgery to 90 days after they are discharged.

To maximize participation in the aforementioned alternative payment models, Congress enacted the Medicare Access and Children’s Health Insurance Plan Reauthorization Act (MACRA) in 2015.11 MACRA, a replacement of the long-standing Sustainable Growth Rate formula, integrates existing Medicare components such as Meaningful Use, Physician Quality Reporting System, and the Value Modifier Program into a single program, the Quality Payment Program.12 Under MACRA, Medicare allows physicians a choice between 2 payment tracks—the Merit-Based Incentive Payment System (MIPS) or an Advanced Alternative Payment Model (APM). Under MIPS, physicians continue to get reimbursed primarily via fee-for-service, but there are in-built bonuses or penalties based on the following 4 components: quality of care, resource use, meaningful use of electronic health records, and clinical practice improvement. Each of the 4 components are scored, creating a composite final score, which will be used to determine reimbursement rates starting in 2019. The bonuses and penalty payment amounts increase incrementally over time, from a maximum of 4% in 2019 to 9% in 2022. The second payment track includes physicians with significant participation in certain APMs. Providers participating in qualified APMs must measure both cost and quality to receive an annual 5% bonus from 2019 to 2025. In order to be exempt from MIPS, clinicians must be deemed as Qualified Participants of an Advanced APM by meeting the minimum threshold for either the percentage of patients or payments. APMs require providers to shoulder “more than nominal financial risk” and meet certain quality metrics. Beyond 2026, APM reimbursements will increase at 0.75% per year, whereas MIPS reimbursement will increase only 0.25% per year, thus favoring APM participation over MIPS. It is important to note that changes to payment models are not just restricted to Medicare and Medicaid. Commercial payers also are pursuing pay-for-performance and bundled or episode-based contracts with physicians.

Defining Value

With the changing landscape of reimbursement to MIPS and APMs, it is imperative for hospitals to initiate and sustain quality improvement efforts, evaluate performance outcomes, and use evidence-based practices to improve the quality of care and decrease complications. It is a time in which all perioperative clinicians must define and demonstrate the value they bring to the patient in order to claim reimbursement for clinical services. However, defining value is much harder than it first appears. The simplest definition of value often is described as:

\[
\text{Value} = \frac{\text{Quality}}{\text{Cost}}
\]

This equation captures the essence of value and can be applied broadly in any circumstance in so much as the definitions of quality and cost are broadly encompassing. Maybe a better definition that captures both monetary and nonmonetary components of value is shown as:

\[
\text{Value} = \frac{\text{Satisfaction of needs (benefits, monetary, and nonmonetary)}}{\text{Use of resources (money, people, time, energy, and materials)}}
\]

In this definition, value can rise and fall depending on the dominance of one or more variable. For example, if a service of commodity is free, then the monetary or nonmonetary needs might be negligible, and there still is value. Another way of
phrasing this in health care might be:

\[\text{Value} = \frac{(\text{Clinical Outcomes} + \text{Patient Experience})}{\text{Total Cost per Capita}} \]

In 2007, the Institute of Medicine prepared a statement outlining the 6 requirements for effective health care (Table 2).13 Combining the value definition just described with the Institute of Medicine’s requirements for quality health care, one can construct the following new value equation for health care:

\[\text{Value} = \frac{\{\text{Safe} \times \text{Effective} \times \text{Patient Centered}\}}{\{\text{Untimely} \times \text{Inefficient} \times \text{Cost}\}} \times \text{Equitable} \]

Using this equation, value is now defined as something that is safe, effective, patient-centered, timely, and efficient. Applying the equity multiplier explicitly introduces population health as an integral component. If rendered care is not equitable, or accessible to all, then this care fails to provide value for the population.

The Voice of the Customer (the Patient) in the Value Equation

In April 2015, the CMS administered one of the first comprehensive patient experience surveys, called the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS). The HCAHPS evaluates the in-hospital experience of medical, surgical, and obstetric patients. Patients provide feedback of their experiences, specifically focusing on physician care and communication, in addition to hospital cleanliness and noise levels. Since 2015, the CMS has ranked hospitals based on their HCAHPS scores. Although well-intentioned, there remains a disconnect between the HCAHPS score and other surgical outcomes.14–16 Specifically, HCAHPS scores do not report on, nor predict, patient outcomes.

In an attempt to correct this, a collaborative effort between the American Society of Anesthesiologists and the American College of Surgeons produced the Consumer Assessment of Healthcare Providers and Systems Surgical Care Survey (S-CAHPS). This intended analog to HCAHPS for the preoperative experience carried the support of both organizations as the patient experience metric for the value-based payment modifier for surgical procedures. This tool also provides information for the public report on the Physician Compare website (www.medicare.gov/physiciancompare/).

Although there are numerous validated instruments to assess patient satisfaction with anesthesia care,17,18 there is increasing emphasis placed on S-CAHPS due in large part because it is administered by the Agency for Healthcare Research and Quality and endorsed by the National Quality Forum. The current version of S-CAHPS contains 47 questions, of which only 8 pertain to anesthesiology.19 Of the 8 anesthesiology questions, 3 are actionable and centered solely on the pre-anesthesia visit; the remaining questions completely overlook the intraoperative and/or postoperative care provided by anesthesiologists. Unfortunately, this survey fails to recognize the majority of an anesthesiologist’s perioperative contribution.

How Do Anesthesiologists Fit into the Value Equation?

Anesthesiology services historically were viewed as consultant-based episodes of care. With the trend toward value-based, bundled care initiatives through both Medicare and private insurance companies, anesthesiologists must now demonstrate the value they bring to perioperative experience. Value in anesthesiology is no longer just delivery of a safe anesthetic; it currently is being redefined to include application of evidence-based practice, improvement in global patient outcomes, and sustainment of quality improvement. This push for value is not only rooted in reimbursement; it is now a requirement by the American Board of Anesthesiology in the Maintenance of Certification in Anesthesiology program20 and by the Accreditation Council for Graduate Medical Education in anesthesiology residency training programs.21 Major national organizations have developed programs to assist anesthesiologists with the transition to value-based care and to encourage multidisciplinary collaboration. Examples include the American Society of Anesthesiologists Perioperative Surgical Home Model, the Anesthesia Patient Safety Foundation’s initiatives on medication safety and long-term patient outcomes, and the Anesthesia Quality Institute’s National Anesthesia Clinical Outcomes Registry (NACOR). The NACOR program serves as a qualified clinical data registry (QCDR) for anesthesiology practices participating in MACRA.

Evolution of Quality Improvement in Cardiac Surgery

The Past: “Fast Track” Quality Improvement Efforts in Cardiac Surgery

The term “fast track” cardiac surgery was coined in the 1990s in response to efforts to decrease intensive care unit (ICU) length of stay by promoting early extubation in uncomplicated cardiac surgical patients.22,23 Since that time, shortening ICU stay remained a focus, as rising health care costs and hospital resource utilization became a priority across many health care organizations.24,25 As such, value in cardiac surgery over the past 25-plus years was defined unintentionally as improving outcome metrics related to the prevention of postoperative ventilator dependency and pulmonary complications. During this time, research on various intraoperative anesthetic techniques and postoperative sedation strategies geared toward promoting early extubation emerged.26–29 Numerous studies demonstrated shortened postoperative time-to-extubation and shorter ICU lengths of stay, with

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 Institute of Medicine Requirements for Effective Health Care</td>
</tr>
<tr>
<td>1. No needless deaths</td>
</tr>
<tr>
<td>2. No needless pain or suffering</td>
</tr>
<tr>
<td>3. No helplessness in those served or serving</td>
</tr>
<tr>
<td>4. No unwanted waiting</td>
</tr>
<tr>
<td>5. No waste</td>
</tr>
<tr>
<td>6. No one left out</td>
</tr>
</tbody>
</table>
subsequent reductions in cost. A systematic review and meta-analysis of 10 fast-track trials in cardiac surgery (n = 1,800 patients) demonstrated shortened postoperative mechanical ventilation times and ICU length of stay with no increase in morbidity and mortality. The long-term effectiveness of fast-track pathways for cardiac surgery were evaluated subsequently in a recent Cochrane review. This review of 25 fast track for cardiac surgery trials (n = 4,118 patients) demonstrated (1) no difference in 1-year mortality compared with conventional care, (2) no differences in the risk of post-operative complications associated with early extubation (eg, reintubation), and (3) no change in total hospital length of stay.

Reasons why fast-track pathways fail to improve long-term outcomes after cardiac surgery include both patient-specific and surgery-specific risk factors. A recent single-center, prospective study on the predictors of failure in a fast-track pathway for cardiac surgery (n = 451 patients) identified reduced renal function, age, hypertension, cardiopulmonary bypass time, first lactate or base deficit after surgery, and cross-clamp time as being predictive of failure. Another recent single-center study retrospectively reviewed 1,741 consecutive patients managed with a fast-track cardiac pathway and found female sex, age, prolonged surgical time, and prolonged cross-clamp time as being independent risk factors for fast-track pathway failure. These studies on methods to “fast-track” cardiac surgery illustrate that the factors affecting postoperative ventilator dependency and early extubation are numerous and complex and have varying degrees of modifiability. Surgical techniques aimed to negate the risks associated with cardiopulmonary bypass and cross-clamp time include use of minimally invasive surgical techniques (when clinically applicable and available). Examples include minimally invasive coronary artery bypass grafting, minimally invasive mitral valve repair, and transcatheater aortic valve replacement. Other potentially modifiable factors include anesthesia-specific elements such as postoperative sedation and total intraoperative opioid dose. Design of an evidence-based, standardized extubation protocol represents an opportunity for anesthesiologists to participate in multidisciplinary quality improvement. Early extubation after coronary artery bypass grafting represents a key 2017 NACOR non-MIPS QCDR measure (Table 3).

The Present: Acute Kidney Injury as an Example of Ongoing Quality Improvement Efforts in Cardiac Surgery

Over the past several years, renal failure after cardiac surgery has emerged as focus area for improving quality after cardiac surgery. Acute kidney injury (AKI) after cardiac surgery occurs in approximately 30% of patients, the etiology of which is believed to be multifactorial. A recent systematic review and meta-analysis of 46 studies evaluating AKI after cardiac surgery (n = 242,388 patients) found that cardiopulmonary bypass–associated AKI led to a 2-fold increase in early mortality. Risk factors for the development of AKI after cardiac surgery included preexisting renal insufficiency, preoperative anemia, female sex, reduced left ventricular ejection fraction, diabetes, peripheral vascular disease, emergency surgery, and prolonged bypass times. Multiple interventions to prevent AKI have been studied, including perioperative erythropoietin and sodium bicarbonate. A 2016 systemic review and meta-analysis of 6 studies including 473 patients on the role of erythropoietin for prevention of AKI in cardiac surgical patients found that erythropoietin did not prevent AKI. A recent randomized control trial of 75 patients with pre-existing reduced renal function presenting for coronary artery bypass grafting evaluated the potential protective effect of a single high dose of erythropoietin versus placebo on the development of AKI. In this small study, single high-dose erythropoietin did not have a renal protective effect. A 2014 systemic review and meta-analysis of 5 studies including 1,079 patients found no benefit of sodium bicarbonate in the prevention of AKI in cardiac surgical patients. However, a recent single-center, prospective, observational study found that sodium bicarbonate might be helpful in low-risk patients with normal preoperative renal function in the prevention of AKI after cardiac surgery. In addition, another prospective single-center, cohort study of 262 patients undergoing cardiac surgery found that perioperative hemodynamic instability and fluid overload were independently associated with increased mortality and need for renal replacement therapy. These studies in AKI after cardiac surgery illustrate the multifactorial nature of a single outcomes metric.

The Future: Quality Improvement Efforts in Cardiac and Vascular Surgery

What has been learned from the fast-track era and what is being learned from the emerging literature in renal injury outcomes could be applied to a “comprehensive” clinical care pathway for cardiac surgery. Even though more research is needed to better understand the underlying mechanisms of AKI, many risk factors for poor outcomes are similar and inter-related and may be influenced by improved preoperative optimization and application of standardized, evidence-based management throughout the perioperative experience.

Enhanced Recovery After Surgery: An Example Program to Deliver Comprehensive Value-Based Care

Enhanced Recovery After Surgery (ERAS) standardizes perioperative care through the implementation of evidence-based, best-practice recommendations to improve the quality of care, which in turn decreases cost. ERAS pathways repeatedly have demonstrated a wide variety of improvements in patient outcomes, including decreased hospital length of stay, decreased surgical site infection, decreased readmissions, and decreased urinary tract infections across a spectrum of surgical disciplines. These improvements in patient outcomes ultimately translate into improved patient satisfaction and decreased hospital expenditure. As a result, ERAS pathways represent real world examples of value in health care. ERAS pathways serve as a vehicle to deliver value-based care in the perioperative setting and unify the quality initiatives set
Table 3
NACOR and MIPS Measures Specific to Cardiovascular Anesthesiology

<table>
<thead>
<tr>
<th>Quality Measurement</th>
<th>Measure Description</th>
<th>Clinical Guidelines, Evidence-Based Recommendations, or Programs to Help Anesthesiologists Achieve the Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACOR Non-MIPS measures approved for QCDR reporting in 2017</td>
<td>Percentage of patients ages 18 years and older who undergo cardiac surgery using cardiopulmonary bypass for whom selected blood conservation strategies were used</td>
<td>Clinical Guideline: Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation guidelines</td>
</tr>
<tr>
<td>Adherence to blood conservation guidelines for cardic surgeries using cardiopulmonary bypass composite</td>
<td>Percentage of patients, ages 18 years and older, who undergo general anesthesia care that includes an endotracheal tube who had a median exhaled tidal volume ≤ 10 mL/kg of predicted-body-weight during positive pressure ventilation.</td>
<td>Evidence-based recommendation: Lung protective ventilation for abdominal surgery improves, but insufficient evidence for the role of protective lung ventilation in cardiac surgical patients. There are 2 ongoing clinical trials currently evaluating lung protective ventilation in cardiac surgery.</td>
</tr>
<tr>
<td>Application of lung-protective ventilation during general anesthesia</td>
<td>Percentage of patients, ages 18 years and older undergoing isolated CABG surgery (without pre-existing renal failure) who develop postoperative renal failure or require dialysis</td>
<td>Evidence-based recommendation: Avoidance of fluid overload and maintenance of hemodynamic stability may prevent acute kidney injury. No evidence for erythropoietin in the prevention of acute kidney injury. Weak and limited evidence for sodium bicarbonate.</td>
</tr>
<tr>
<td>Coronary artery bypass graft (CABG): Postoperative renal failure - INVERSE MEASURE</td>
<td>Percentage of patients ages 18 years and older undergoing isolated CABG surgery who require postoperative intubation > 24 h</td>
<td>Evidence-based recommendation: Assist with development of evidence-based extubation protocols.</td>
</tr>
<tr>
<td>CABG: Prolonged intubation - INVERSE MEASURE</td>
<td>Percentage of patients ages 18 years and older undergoing isolated CABG surgery who require postoperative intubation > 24 h</td>
<td>Evidence-based recommendation: Many risk factors are patient dependent (ie, advanced age, peripheral vascular disease) or surgical dependent (prolonged cardiopulmonary bypass time). However, effect of mean arterial pressure while on cardiopulmonary bypass on development of neurologic injury currently being investigated.</td>
</tr>
<tr>
<td>CABG: Stroke - INVERSE MEASURE</td>
<td>Percentage of patients aged 18 years and older undergoing isolated CABG surgery who have a postoperative stroke that did not resolve within 24 h</td>
<td></td>
</tr>
<tr>
<td>NACOR Non-MIPS measures pending CMS approval for QCDR reporting in 2017</td>
<td>Percentage of patients, regardless of age, who undergo a procedure under anesthesia and who experience a cardiac arrest under the care of a qualified anesthesiology provider before anesthesia end time</td>
<td>Program: Participation in a multidisciplinary outcomes reporting program such as the Society of Cardiovascular Anesthesiologists/Society of Thoracic Surgeons database collaboration. This will assist teams with tracking their individual perioperative cardiac arrest rates and identify areas for quality improvement.</td>
</tr>
<tr>
<td>Perioperative cardiac arrest - INVERSE MEASURE</td>
<td>Percentage of patients, regardless of age, who undergo a procedure under anesthesia and who experience mortality under the care of an anesthesia provider before anesthesia end time.</td>
<td>Program: Participation in a multidisciplinary outcomes reporting program such as the Society of Cardiovascular Anesthesiologists/Society of Thoracic Surgeons database collaboration. This will assist teams with tracking their individual mortality rates and identify areas for quality improvement.</td>
</tr>
<tr>
<td>Perioperative mortality rate - INVERSE MEASURE</td>
<td>The percentage of patients, ages 18 years and older, who undergo elective inpatient surgery, have a blood glucose level > 200 mg/dL, and receive insulin before anesthesia end time.</td>
<td>Program: Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting includes comments on glycemic control.</td>
</tr>
<tr>
<td>Treatment of hyperglycemia with insulin</td>
<td>Percentage of patients, regardless of age, who undergo a procedure under anesthesia and who experience a cardiac arrest under the care of a qualified anesthesiology provider before anesthesia end time</td>
<td>Program: Participation in a multidisciplinary outcomes reporting program such as the Society of Cardiovascular Anesthesiologists/Society of Thoracic Surgeons database collaboration. This will assist teams with tracking their individual perioperative cardiac arrest rates and identify areas for quality improvement.</td>
</tr>
<tr>
<td>MIPS measures reportable via the ASA QR and QCDR</td>
<td>Percentage of patients, ages 18 years and older, who undergo elective inpatient surgery, have a blood glucose level > 200 mg/dL, and receive insulin before anesthesia end time.</td>
<td>Program: Participation in a multidisciplinary outcomes reporting program such as the Society of Cardiovascular Anesthesiologists/Society of Thoracic Surgeons database collaboration. This will assist teams with tracking their individual mortality rates and identify areas for quality improvement.</td>
</tr>
<tr>
<td>Perioperative cardiac arrest - INVERSE MEASURE</td>
<td>Percentage of patients, regardless of age, who undergo a procedure under anesthesia and who experience mortality under the care of an anesthesia provider before anesthesia end time.</td>
<td>Program: The Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting includes comments on glycemic control.</td>
</tr>
<tr>
<td>Perioperative mortality rate - INVERSE MEASURE</td>
<td>The percentage of patients, ages 18 years and older, who undergo elective inpatient surgery, have a blood glucose level > 200 mg/dL, and receive insulin before anesthesia end time.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ASA, American Society of Anesthesiologists; MIPS, Merit-Based Incentive Payment System; NACOR, National Anesthesia Clinical Outcomes Registry; QCDR, qualified clinical data registry; QR, qualified registry.
forth by individual medical specialties (eg, surgery and anesthesiology) and multiple disciplines (eg, nursing, pharmacy, nutrition, and physical therapy). ERAS pathways are not intended to replace rigorous randomized control trials; these pathways are intended to serve as a platform/method to incorporate the evidence from these robust trials. ERAS pathways for cardiac and vascular surgery currently are in their infancy.

An ERAS pathway for cardiac surgery should include interventions throughout the preoperative and intraoperative phases of care to help improve postoperative outcomes such as early extubation, prevention of AKI, and prevention of central venous line infections. These outcomes metrics are consistent with the 2017 NACOR QCDR measures (see Table 3). Examples of preoperative interventions in an ERAS pathway for cardiac surgery may include physical exercise programs, smoking cessation programs, and formal evaluation and optimization of perioperative nutritional status.64 Intraoperative interventions may include the use of multimodal analgesia, with an emphasis on minimizing long-acting opioids; application of protective lung ventilation; and avoidance of excessive crystalloid administration. Postoperative interventions may include a formal ventilator weaning protocol, early post-extubation pulmonary toileting, and an early ambulation program. Postoperative pain control ideally would include multimodal analgesics with the adequacy of pain control determined which of these specific interventions will be most impactful on early extubation and patient satisfaction after cardiac surgery is unclear, it can be assumed that the cumulative effect of these interventions may promote and sustain the effect of early extubation (and other recovery metrics) in a larger, more meaningful way.

Vascular Surgery: An Evolution from Morbidity and Mortality to Prevention and Optimization

Historically, the value metrics in vascular surgery have focused on decreasing length of stay, improving 30-day survival, and decreasing perioperative myocardial infarction.65–67 The metrics of success in vascular surgery center on immediate surgical outcome rather than on long-term patient recovery. The value focus for vascular surgery is transitioning to the sustainability of health, long-term effects of medical therapy and surgical intervention, and return to an acceptable level of physical function.

The Standardized Endpoints for Perioperative Medicine working group was established to develop consistent outcomes definitions and standardization of outcomes reporting across all future trials, which currently limits the value of research in this area. The Standardized Endpoints for Perioperative Medicine working group has proposed patient comfort and patient-centered outcomes beyond hospital length of stay and long-term survival/disease-free survival, including postoperative nausea/vomiting, perioperative pain measurement, quality of recovery scales, sleep quality/disturbance, perioperative anxiety/stress, return of bowel function/ileus, patient satisfaction, health-related quality of life, disability-free survival, return to work/normal functioning, and days alive and out of the hospital.68 Application of standardized, patient-centered outcomes metrics will enable hospitals, anesthesiologists, and surgeons to develop local programs to improve the quality of care and participate in national outcomes registries and may assist with the transition to new value-based reimbursement models.

Preoperative Evaluation: Tests and Timing

In order to meet these patient-centered value metrics, greater emphasis on preoperative planning and optimization is paramount, including application of evidence-based recommendations for preoperative testing for noncardiac surgery.69 Unnecessary preoperative testing ultimately leads to an increase in health care expense without any added value. The expense related to obtaining low-value unnecessary testing has been shown to cost Medicare approximately $310 per beneficiary, whereas application of evidence-based recommendations for preoperative testing reduces the cost to approximately $71 per beneficiary.70

The optimal timing for preoperative evaluation depends on the invasiveness of the planned procedure, patient comorbidities, and local institution culture.71 As such, there is no consensus on the optimal timing of the preoperative evaluation for vascular surgery patients. Silvay et al suggests that preoperative assessments for vascular surgical patients should occur 6 to 7 days before surgery.72 However, specific factors that may influence timing of the preoperative evaluation include the current patient condition,73 planned surgical procedure, urgency of the surgery, and extent of achievable optimization before surgery. For patients who are medically complicated and whose planned vascular surgery is elective and extensive, the evaluation should dictate the timing of surgery.

Preoperative Screening: Functional Capacity and Frailty

The traditional preoperative evaluation for vascular surgery serves to (1) assess for the presence of active or unstable cardiac disease and (2) determine the functional capacity as measured in metabolic equivalents. In addition to being a prognostic predictor of outcomes,69,74–76 Metabolic equivalents determination provides an objective assessment of cardiopulmonary fitness. Preoperative functional capacity before vascular surgery is a powerful prognostic tool for presurgical assessment. In a recent study of 1,048 patients undergoing open thoracoabdominal aneurysm repair, functional status was the strongest independent predictor of perioperative death.77 Other factors, including increasing age, body mass index, and renal function, also contributed to perioperative death, with body mass index being the only modifiable secondary predictor.
Most recently, the concept of frailty was introduced as a moniker for the decreased physiologic reserve of elderly patients. Frailty reflects a decrease in both mental and physical functional ability across all organ systems. It is associated with increased morbidity and mortality beyond the traditional risk factors of age, American Society of Anesthesiologists class, and other pre-existing conditions. Patients who were evaluated as being frail were found to have a higher incidence of mortality when undergoing either endovascular repair of an abdominal aortic aneurysm (0.67% vs 2.5%) or lower extremity bypass (0.34% vs 2.4%). In addition, patients who were frailer experienced increased length of stay and number of complications.

Preoperative frailty, as defined using the modified frailty index, derived from the Canadian Study of Health and Aging frailty index, was used to evaluate the discharge location (home vs nonhome) in patients undergoing elective vascular surgery. Nonhome discharge (discharge to skilled nursing facility, rehabilitation hospital, or long-term care facility) is of critical consideration to patients. In approximately 20% of patients who were discharged to locations other than home, twice as many (32% vs 15.7%) were deemed to be frail. The risk of nonhome discharge was greatest in open abdominal aortic aneurysm repairs, suprainguinal bypass, and infrainguinal bypass. Regardless of procedure type, it was found that frailty increased the risk of nonhome discharge by 2-fold, demonstrating the critical effect that frailty (eg, lack of physiologic reserve) plays on outcomes.

The anesthesiologist’s role in the comprehensive preoperative evaluation would be to assess for frailty and optimize and facilitate dialogue with the patient and surgical team regarding expectations for both short- and long-term recovery. The anesthesiologist serves as a perioperative physician in this capacity, who uses the preoperative phase of care to risk stratify patients, optimize current health of the patient, and develop plans for immediate and postoperative care. This comprehensive preoperative evaluation would serve to set patient and surgeon expectations regarding the recovery process.

Preoperative Optimization: A Focus on “Prehabilitation” and Nutrition

Optimization of the vascular surgical patient includes interventions aimed at improving physiologic reserve and perioperative nutrition. Two noteworthy studies in patients with abdominal aortic aneurysms aimed at improving baseline function through the use of targeted prehabilitation by using moderate intensity cycling for 6 to 12 weeks. Both studies, although limited in patient numbers, demonstrated (1) feasibility of applying a prehabilitation program to patients without worsening their aneurysms or increasing risk and (2) significant improvement in baseline physiologic reserves. Certainly, more studies are needed to evaluate the effect of prehabilitation on outcomes in these patients. In addition to physiologic reserve, additional evidence regarding preoperative nutritional deficiency has demonstrated this characteristic to be a prognostic indicator for negative outcomes in the perioperative period. Improvement in preoperative nutrition has beneficial effects across the perioperative spectrum. It was recognized more than 50 years ago that weight loss before surgery worsened outcomes, and newer evidence suggests that improved nutritional support (both preoperatively and postoperatively) decreases morbidity and mortality. Combining these optimization variables in a marginal gains approach, or “pre-habilitation package,” appears to have significant potential.

Optimization not only serves to add value to the patient, but it also increases value to the hospital by potentially reducing hospital length of stay, readmissions, and health care expenditure. Published risk factors for readmission after vascular surgery include surgery- and medical-specific variables. Surgery-specific risk factors for readmission include redo surgery during the index admission, wound infection, and loss of graft patency. Medical-specific variables for readmission include preoperative comorbidities, older age, and discharge to a rehabilitation facility or skilled nursing facility. Even though the risk for readmission after vascular surgery often is multifactorial, there are modifiable variables, such as close postoperative follow-up by telephone, that can reduce this risk.

Conclusion

With the transition to value-based reimbursement models and the increasing emphasis on quality improvement from national subspecialty organizations, licensing boards, and major health care organizations, it is imperative that cardiothoracic and vascular anesthesiologists demonstrate the value that they bring to the patient care experience. This need to demonstrate value is in the setting of evolving outcomes metrics for cardiac and vascular surgery—metrics that are moving away from overall morbidity and mortality metrics to global patient-centered outcome metrics, such as long-term functional recovery and prevention of common postoperative complications. As a result, cardiovascular anesthesiologists must step outside traditional intraoperative roles and be involved with multidisciplinary decisions regarding preoperative and postoperative care. ERAS pathways are comprehensive patient care pathways that include evidence-based, best practice recommendations for preoperative optimization, prevention of postoperative complications, and promotion of early functional recovery. ERAS pathways serve as a vehicle to deliver value, and cardiovascular anesthesiologists are poised to be driving this vehicle. Participation in the design, implementation, and sustainability of an ERAS program is one example of how a cardiovascular anesthesiologist can demonstrate the value that he or she brings to the perioperative experience.

References

56 Porter ME. A strategy for health care reform

