Statistical Learning Methods for Neuroimaging Data Analysis
NESS 2022 Symposium Lecture 2
Image Analysis Methods

Hongtu Zhu, Ph.D and Professor
Departments of Biostatistics, Statistics, Genetics, and Computer Science,
Biomedical Research Imaging Center,
University of North Carolina at Chapel Hill
Reading Materials

Part 1. Overview: Image Analysis
Individual Image Analysis

Reconstruction

Segmentation

Multimode analysis
DTI
FLAIR

Registration
Marc
Medical Image Analysis

Image Analysis

Biomarker segmentation & visualization

Detection

Diagnosis

Surgery Planning

Prognosis

Data Knowledge

sMRI

fMRI

DTI

Tumor image

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Image Processing

Raw Images

- Image Reconstruction
- Image Segmentation
- Image Registration
- Image Smoothing

Multiple Comparisons

Statistical Modelling
Image Processing

\[f \]

\[\hat{F} = T[f] \]
ill-posed inverse problems

\[\hat{F} = T[f] \]

\[d(F, \hat{F}) \to 0? \]
Population Image Analysis

Group Analysis

Image Genetics

Prediction

High risk

Low risk
Population Image Analysis

- Causal and mediation inference
- Experiment design
- Data integration
- Dimensional reduction methods
- Imaging genetics
- Imputation methods
- Knowledge-based system
- Object oriented data analysis
- Predictive models
- Statistical parametric mapping
Ecological Layout

Large-scale Database

Integration

Prediction

Deconvolution

Learning

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Part 2. Individual Image Analysis
DICOM is a standard for handling, storing, printing, and transmitting information in medical imaging.

- It includes a file format definition and a network communications protocol.
- The communication protocol is an application protocol that uses TCP/IP (Transmission Control Protocol/Internet Protocol) to communicate between systems.
- DICOM files can be exchanged between two entities that are capable of receiving image and patient data in DICOM format.
- DICOM enables the integration of scanners, servers, workstations, printers, and network hardware from multiple manufacturers into a picture archiving and communication system (PACS).
- The different devices come with DICOM conformance statements which clearly state the DICOM classes they support.
Analyze 7.5 is a 3-D biomedical image visualization and analysis product developed by the Biomedical Imaging Resource of the Mayo Clinic.

- An Analyze 7.5 data set is made of two files, a header file and an image file.
- The files have the same name with different file extensions.
- The header file has the file extension .hdr and the image file has the file extension .img.

```matlab
info = analyze75info(filename,'ByteOrder', endian)
```

reads the Analyze 7.5 header file using the byte ordering specified by endian, where `endian` can have either of the following values:

- 'ieee-le' Byte ordering is Little Endian;
- 'ieee-be' Byte ordering is Big Endian.

- Read image data from image file of Analyze 7.5 data set

  ```matlab
  X = analyze75read(filename)
  X = analyze75read(info)
  ```
NIfTI-1 is adapted from the widely used ANALYZE™ 7.5 file format. NIfTI-1 uses the "empty space" in the ANALYZE 7.5 header to add several new features.

These new features include:
- Affine coordinate definitions relating voxel index \((i,j,k)\) to spatial location \((x,y,z)\);
- Codes to indicate spatio-temporal slice ordering for FMRI;
- "Complete" set of 8-128 bit data types;
- Standardized way to store vector-valued datasets over 1-4 dimensional domains;
- Codes to indicate data "meaning";
- A standardized way to add "extension" data to the header;
- Dual file (.hdr & .img) or single file (.nii) storage.
RAS versus LAS

The default ANALYZE orientation is LAS (radiological orientation)
+X is Left
+Y is Anterior
+Z is Superior

for LAS (radiological convention) image, right cerebral hemisphere is at LEFT and left cerebral hemisphere is at RIGHT

The neurological convention is RAS (only the direction of X is swapped)
+X is Right
+Y is Anterior
+Z is Superior

for RAS (neurological convention) image, left cerebral hemisphere is at LEFT and right cerebral hemisphere is at RIGHT;

UseANALYZE.pdf

Input File Format ANALYZE

Output File Format NifTI
Image Inpainting

is an artistic synonym for **image interpolation**. Given some values at some points, determine continuous range of values.

From Discrete Images to Continuous Images

- **Uses:**
 - Synthesis
 - Morph between two images
 - Interpolate a curve between points
 - Continuous range of values between vertices.
 - Blowing up an image.
Image Interpolation

The objective is to find a function

\[\mathcal{I}(x) = \text{inter}(T, \quad , xc) \]

\(T(\) = T(\) \) is the interpolation model

\[\Omega = [\omega^1, \omega^2] \times \cdots \times [\omega^{2d-1}, \omega^{2d}] \]

\(xc = [x_j = (x_j^1, \cdots, x_j^d)]_{j=1}^{n} \) is a collection of \(n \) points.

\[\mathcal{I}(x_j) = \text{DataT}(x_j) \quad \text{for} \quad j = 1, \cdots, n \]

\[= [1, 2] \times [3, 4] \]

\(x_j = (x_j^1, x_j^2) \) cell-centered grids

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Different Standard Interpolation Methods

- **Nearest-neighbor (proximal) interpolation** is to select the value of the nearest point, and does not consider the values of other neighboring points at all, yielding a piecewise-constant interpolant.
- **Bilinear interpolation** determines the grey level value from the weighted average of the four closest pixels to the specified input coordinates.
- **Bicubic interpolation** determines the grey level value from the weighted average of the 16 closest pixels to the specified input coordinates.

\[
\begin{align*}
Q_1 &= (x_1, f(x_1)), \ldots, Q_n = (x_n, f(x_n)) \\
g(x) &= \sum_{k=1}^{n} w_k U(|x - x_k|) \\
g(x_i) &= f(x_i)
\end{align*}
\]
Image Inpainting

$Q_1 = (x_1, f(x_1))$

$Q_2 = (x_2, f(x_2))$

$P = (x, g(x))$

$g(x) = f(x_1)(x - x_1)/(x_2 - x_1) + f(x_2)(x_2 - x)/(x_2 - x_1)$
Image Inpainting

1D

\(Q_0 = (x_1, f(x_1)) \quad \dot{f}(x_1) \)

\(Q_1 = (x_2, f(x_2)) \quad \dot{f}(x_2) \)

Let \(P = (x, g(x)) \) and \(t = (x - x_1)/(x_2 - x_1) \),

\[g(x) = h_{00}(t)f(x_1) + h_{10}(t)\dot{f}(x_1)(x_2 - x_1) + h_{01}(t)f(x_2) + h_{11}(t)\dot{f}(x_2)(x_2 - x_1) \]

\(h_{00}(t) = 2t^3 - 3t^2 + 1 \quad (1 + 2t)(1 - t)^2 \)

\(h_{10}(t) = t^3 - 2t^2 + t \quad t(1 - t)^2 \)

\(h_{01}(t) = -2t^3 + 3t^2 \quad t^2(3 - 2t) \)

\(h_{11}(t) = t^3 - t^2 \quad t^2(t - 1) \)

Bernstein

\(B_0(t) + B_1(t) \)

\(B_1(t)/3 \)

\(B_3(t) + B_2(t) \)

\(-B_2(t)/3 \)

Finite difference

\[\dot{f}(x_1) \approx \frac{f(x_2) - f(x_0)}{2(x_2 - x_1)} + \frac{f(x_1) - f(x_0)}{2(x_1 - x_0)} \]

Catmull-Rom spline

\[\dot{f}(x_1) \approx \frac{f(x_2)}{x_2} - \frac{f(x_0)}{x_0} \]
Example 1.3. Different Interpolation

```
B = imsize(A, 0.1, 'nearest');
```
Image Interpolation

Spline interpolation for 1D Data

\[
(x) = \text{spline}(x) = \sum_{l=1}^{m} c_l b^l(x)
\]

\[
\mathcal{S}(x_j) = \text{DataT}(x_j) = \sum_{l=1}^{m} c_l b^l(x_j) \quad \text{for } j = 1, \cdots, n
\]

\[
\text{DataT} = [b^1(x_c), \cdots, b^m(x_c)](c_1, \cdots, c_m)^T = B_m \tilde{c}
\]
Image Interpolation

Spline interpolation for d-D Data

\[\mathcal{I}(x) = \mathcal{I}_{\text{spline}}(x) = \sum_{l_1=1}^{m_1} \cdots \sum_{l_d=1}^{m_d} c_{l_1,\ldots,l_d} b_{l_1}(x^1) \cdots b_{l_d}(x^d) \]

\[\mathcal{I}(x_j) = \text{DataT}(x_j) = \sum_{l_1=1}^{m_1} \cdots \sum_{l_d=1}^{m_d} c_{l_1,\ldots,l_d} b_{l_1}(x^1_j) \cdots b_{l_d}(x^d_j) \quad \text{for} \ j = 1, \ldots, n \]

\[\text{DataT} = B_{m} \tilde{c} = B_{m^d} \otimes \cdots \otimes B_{m^1} \tilde{c} \]

\[\partial_{x^q} \mathcal{I}(x) = \mathcal{I}_{\text{spline}}(x) = \sum_{l_1=1}^{m_1} \cdots \sum_{l_d=1}^{m_d} c_{l_1,\ldots,l_d} b_{l_1}(x^1) \cdots \partial_{x^q}[b_{l_q}(x^q)] \cdots b_{l_d}(x^d) \]
The objective is to find a function

\[\text{Data}_T(x_j) = \mathcal{I}(x_j) + \varepsilon(x_j) \quad \text{for} \quad j = 1, \ldots, n \]

\[\mathcal{I}(x) = \text{inter}(T, , xc) \]

\[(\square) = \arg\min \{ ||\text{Data}_T(\text{xc})||^2 + () \} \]

\[= 0 \text{ yields the interpolation problem.} \]

\[\rightarrow \infty \text{ yields a very smooth solution.} \]

Example on spline

\[(x) = \text{spline} (x) = \sum_{l=1}^{m} c_l b^l(x) \]

\[\rho(\mathcal{I}) = \int \{ d^2 \mathcal{I}(x) \}^2 dx = \tilde{c}^T M\tilde{c} \]
\[(B^T B + \lambda W)\tilde{c} = B^T \text{DataT}\]

Spline: \(W = M \)

Tychonoff regularization: \(W = I \)

Tychonoff-Phillips regularization: \(W = D^T D \)

- E3_MS_splineInterpolation2D
- E3_US_getMultilevel
- E3_splineInterpolation2D
Image Representation

= 0

= 1000

= 10

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
A multilevel approach is to use a finite number of interpolants ℓ based on data $(x_{c\ell}, T_{\ell})$, where the discrete parameter ℓ ranges from a coarse to a fine level.

Example Let $m = 2^L, L \in N$ and $\text{dataT} \in R^m$. A multilevel representation of the data is $\{T_{\ell} : \ell = 0, \cdots, L\}$, where $T^L = \text{dataT}$ and for all $\ell = L : 1 : 1$, we have

$$T_{\ell-1} = (T_{\ell} (1 : 2 : m - 1) + T_{\ell} (2 : 2 : m)) / 2$$
Imaging Denoising/Filter

- An image may be “dirty” (with dots, speckles, stains)
- Noise removal:
 - To remove speckles/dots on an image
 - Dots can be modeled as impulses (salt-and-pepper or speckle) or continuously varying (Gaussian noise)
 - Can be removed by taking mean or median values of neighboring pixels (e.g. 3x3 window)
 - Equivalent to low-pass filtering
- Problem with low-pass filtering
 - May blur edges
 - More advanced techniques: adaptive, edge preserving

Thanks Yao Wang
A 2D point spreading function (PSF) $K(x, y)$ is a smooth function satisfying
(preserve low frequency)
• $\int_{\mathbb{R}^2} K(x, y) \, dx \, dy = 1$ or $\hat{K}(0, 0) = 1$
(suppress high frequency)
• $\hat{K}(w_1, w_2)$ decays sufficiently fast as $|\omega| \to \infty$

2D Fourier transform
\[
\hat{K}(w_1, w_2) = \int_{\mathbb{R}^2} K(x, y) e^{-i(w_1 x + w_2 y)} \, dx \, dy
\]

Lowpass condition

Figure 1.5 (a) Point spread function (PSF). (b) Corresponding modulation transfer function (MTF). The MTF is the amplitude of the optical transfer function (OTF), which is the Fourier transform (FT) of the PSF.
• A *radially* symmetric PSF K is *isotropic*

$$K(x,y) = k(x^2 + y^2)$$

PSF is *orientation selective or polarized*, if

$$K(x,y) = k((x,y)A(x,y)^T)$$

• A nonnegative PSF $K(x,y) \geq 0$ is a PDF.

• Convolution is given by

$$\tilde{f}(x,y) = K \ast f(x,y) = \int_{\Omega} K(x-p,y-q) f(p,q) dp dq.$$
Weighted Averaging Filter

• Instead of averaging all the pixel values in the window, give the closer-by pixels higher weighting, and far-away pixels lower weighting.

\[\tilde{f}(x,y) = K \ast f(x,y) = \int_{\Omega} K(x-p,y-q)f(p,q)dpdq. \]

• This type of operation for arbitrary weighting matrices is generally called “2-D convolution or filtering”. When all the weights are positive, it corresponds to weighted average.

• Weighted average filter retains low frequency and suppresses high frequency = low-pass filter
Weighted Averaging Filter
Median Filter

- **Problem with Averaging Filter**
 - Blur edges and details in an image
 - Not effective for impulse noise (Salt-and-pepper)

- **Median filter:**
 - Taking the median value instead of the average or weighted average of pixels in the window
 - Median: sort all the pixels in an increasing order, take the middle one
 - The window shape does not need to be a square
 - Special shapes can preserve line structures

- **Order-statistics filter**
 - Instead of taking the mean, rank all pixel values in the window, take the n-th order value.
 - E.g. max or min

Matlab command: medfilt2(A,[3 3])
Median Filter

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
Highpass Filters

- Spatial operation: taking difference between current and averaging (weighted averaging) of nearby pixels
 - Can be interpreted as weighted averaging = linear convolution
 - Can be used for edge detection
- Example filters

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{bmatrix};
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix};
\begin{bmatrix}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{bmatrix};
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix};
\]

- All coefficients sum to 0!
Highpass Filters

\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix}
\]

Original image

Isotropic edge detection
Image Segmentation:
Subdivision of image data
Into “meaningful” entities
(objects, regions, boundaries).

= partitioning into disjoint object sets
(based on region properties)

There are other objects worthwhile
segmenting (e.g., graphs to analyze
social networks), but I won’t talk
about this today.

Slide: G. Gerig
Image Segmentation bridges between low-level vision/image processing and high-level vision. Its goal is to cluster a given image into a collection of ‘objects’, and then other high-level tasks such as object detection, recognition, and tracking can be performed.

Definition: \(I : \Omega \rightarrow M \quad \Omega \subseteq R^2 \text{ or } R^3 \)

\(\{ \Omega_i : i = 1, \ldots, N \} \) such that

(i) \(\Omega_i \cap \Omega_j = \emptyset \) for \(i \neq j \);

(ii) \(\Omega = \Omega_1 \cup \Omega_2 \cup \cdots \cup \Omega_N \cup \Gamma \) with \(\Gamma = \bigcup_{i=1}^{N} \partial \Omega_i \)
Examples

Example: Airway Segmentation from CT

Example: Automatic Segmentation of the Brain

structural MRI of the brain Subcortical structures
Statistical Image Segmentation

Observed Image/features

\[Y = \{ y(w) : w \in W \} \]

Likelihood Function

\[p(Y \mid X) \]

Bayesian Rule

\[p(X \mid Y) = \frac{p(Y \mid X)p(X)}{p(Y)} \]

Inference

\[\hat{X} = \{ \hat{x}(w) : w \in W \} \Rightarrow \bigcup_{i=1}^{N} i \]

Classification Image

\[X = \{ x(w) : w \in W \} \]

Prior (local smooth)

\[p(X) \]
Example: Gaussian Mixture Normal

\[p(Y \mid X) = \sum_{k=1}^{K} p_k \cdot N(y(d); \mu_k, \sigma_k^2) \]

\[p(X) = \prod_{d} \prod_{D} \prod_{k=1}^{K} 1(\text{x(d)}=k) \]

Initial CT chest slice

Ground truth (hand-drawn lungs)
Deformable models are curves or surfaces, for segmentation in the image domain, or hyper-surfaces, for the segmentation of higher dimensional images.

\[
\Gamma = \bigcup_{i=1}^{N} \partial \Omega_i, \\
\quad p(Y \mid X;) p(X;) \quad \rightarrow \quad \hat{\Gamma} = \bigcup_{i=1}^{N} \partial \hat{\Omega}_i
\]

Parametric Active Contours (Kass et al 1987)

\[
C(s) = [x(s), y(s)]
\]

\[
E = \int_{0}^{1} \frac{1}{2} (\alpha |C'(s)|^2 + \beta |C''(s)|^2) ds + \int_{0}^{1} E_{ext}(C(s)) ds
\]

\[
E_{ext}(x, y) = -|\nabla (G_{\sigma} \ast I(x, y))|^2
\]
Neural Network

\[
\sigma \left(\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \right) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}
\]
Design a method to promote automatic segmentation algorithms on the 6-months infant brain MRI into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) by utilizing T1- and T2-weighted brain MRI scans. The 6-month infant brain, which is also named by the isointense-phase infant brain, has the major difficulty to segment for its overlapping of GM and WM and the lowest tissue contrast.

Example: U-net based Segmentation

![Brain MRI images showing development from 2 weeks to 12 months](image)

![3D GlassesNet architecture](image)

Table 2: The average Dice's coefficient over 13 testing samples

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>WM (p=1.9e-6)</th>
<th>GM (p=3.5e-7)</th>
<th>CSF (p=1.3e-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BigS2 (GlassesNet)</td>
<td>0.909</td>
<td>0.928</td>
<td>0.961</td>
</tr>
<tr>
<td>2</td>
<td>MSL SKKU</td>
<td>0.904</td>
<td>0.923</td>
<td>0.958</td>
</tr>
<tr>
<td>3</td>
<td>LIVIA</td>
<td>0.897</td>
<td>0.919</td>
<td>0.957</td>
</tr>
<tr>
<td>4+</td>
<td>Bern IPMI</td>
<td>0.896</td>
<td>0.916</td>
<td>0.954</td>
</tr>
<tr>
<td>5+</td>
<td>BigS2 (LFA-CNN)</td>
<td>0.867</td>
<td>0.892</td>
<td>0.948</td>
</tr>
</tbody>
</table>

Dice's coefficient $= \frac{2|X \cap Y|}{|X| + |Y|}$
Image registration is the process of transforming different sets of data into **one coordinate system**. Data may be multiple photographs, data from different sensors, from different times, or from different viewpoints.
Recall Contrast Enhancements

\[\tilde{f}(i, j) = T[f(i, j)] \]

\[\tilde{f}(\tilde{x}) = T[f(\tilde{x})], \quad \text{for all } \tilde{x} \in \Omega \]

when \(T[\tilde{y}] \) is a monotonic function of \(\tilde{y} \).

Deformation

\[\tilde{f}(\tilde{x}) = f(T(\tilde{x})), \quad \text{for all } x \in \Omega \]

when \(\tilde{x}' = T(\tilde{x}) \) is a one-to-one transformation of \(\tilde{x} \).
Image Registration

Given two images $\mathcal{I}, \mathcal{R} : \subset \mathbb{R}^d \rightarrow \mathbb{R}$, find a transformation $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that

$$\hat{T} = \arg\min_T D(\mathcal{I}[T], \mathcal{R}) + S[T]$$

$\mathcal{I}, \mathcal{R} : \subset \mathbb{R}^d \rightarrow \mathbb{R}$ denote template and reference images

$[T](x) = (T(x))$

$D(\quad, \quad)$ denotes a prefixed distance measure

$S[T]$ is a regularizer of T
Parameterized Transformations

Examples of $\tilde{x}' = T(\tilde{x})$

- **Scaling**: $\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$
- **Translation**: $\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$
- **Shear**: $\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & u_x & 0 \\ u_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$
- **Rotation**: $\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

Linear (Affine) Transformation

General affine $\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & t_x \\ a_{21} & a_{22} & a_{23} & t_y \\ a_{31} & a_{32} & a_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$.

Nonlinear Transformation
Parameterized Transformations

- Interpolated data, m=[192 128]
- Translation
- Interpolated data, m=[192 128]
- Scale

- Interpolated data, m=[192 128]
- Translation x1
- Interpolated data, m=[192 128]
- Non-linear

- Interpolated data, m=[192 128]
- Rotation
- Interpolated data, m=[192 128]
- Spline
The basic idea of landmark-based registration is to determine the transformation such that for a finite number of features, any feature of the template image is mapped onto the corresponding feature of the reference image.

Given two images $\mathcal{I}, \mathcal{R} : \subset R^d \to R$, find a transformation $T : R^d \to R^d$ such that

$$\hat{T} = \text{argmin}_T D(\mathcal{I}[T], \mathcal{R}) + S[T]$$

$t_j = (t_j^1, \cdots, t_j^d)^T \in \Omega$ template image;

$r_j = (r_j^1, \cdots, r_j^d)^T \in \Omega$ reference image

$T(r_j) \approx t_j$ for $j = 1, \cdots, m$.
Landmark-based Registration

\[D^{LM}(\{T\}, \cdot) = \sum_{j=1}^{m} \|T(r_j) - t_j\|_f^2 \]

Regression: \(T(r) = \sum_{j=1}^{m} j(r) \) and \(S[T] = 0 \) e.g.,

\{ \(j(.) \) \} can be set as the basis functions of affine transformation

RKHS: \(T(r) = \langle f, (r) \rangle_H \) and \(S[T] = \|f\|_H^2 \) e.g.,

\{ \((.) \) \} denotes a feature map
Landmark-based Registration

BigTutorialLandmarks
Part 4. Challenges
Major Challenges

- Annotation datasets
- Complex objects
- Complex spatial and/or temporal structures
- Extremely high dimensionality

- Complicated causal pathways
- Complex missing patterns
- Heterogeneity across subjects, studies, and populations
- High dimensional variables across different domains
- Sampling bias
Data Challenges

- Over 15M labeled high resolution images
- Roughly 80K categories
- Collected from web and labeled by Amazon Mechanical Turk

Lack of a large number of annotated data with high-quality
Heterogeneity Challenges

Heterogeneity at the subject, group, and study levels

Subject

Group

Study

Davatzikos (2018) Neuroimage
Integration Challenges

Source: 滴滴AI Labs, 滴滴战略部

Healthcare
- Genetics
- Imaging
- Clinical

Shallow Information
- Speech Recognition
- NLP
- Computer Vision
- Prediction and Decision
- IOT

A hypothetical model of AD pathogenesis by Jack Jr et al. (2010).

Directed acyclic graph (DAG) of hippocampal exposure on dementia behavior.