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A Review of Neuroimaging Techniques



MORE THAN JOURNEY     didiglobal.comUNC Biostatistics BIG-KP | https://bigkp.org/

Eight Popular Neuroimaging Techniques

• Structural magnetic resonance imaging (sMRI)

❖ Diffusion weighted MRI (DWI)

❖ Functional MRI (fMRI)

• Positron emission tomography (PET)

➢ Computerized tomography (CT)

❖ Electroencephalography (EEG)

❖ Magnetoencephalography (MEG)

➢ Functional near-infrared spectroscopy (fNIRS)

Each image modality has its tracer, data dimension, 
extracted features, and  main clinical and research 
applications. 
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https://www.omegapds.com/ct-angiography-of-the-head-or-neck/

CT, PET, MEG, EEG, and fNIRS

https://en.wikipedia.org/
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sMRI, fMRI, and DWI
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A Multi-model Approach

• Different models at different scales. 
• Ladder of overlapping models. 
• Must be testable against multiple 
phenomena.

The van Essen diagram



Imaging Processing Analysis Methods 



Four Common Themes (CT1)-(CT4)

(CT1) Complex Brain Objects

(CT2) Complex Spatiotemporal Structures 

spatial and temporal resolutions  

spatio-temporal smoothness

spatiotemporal correlation

(CT3) Extremely  High Dimensionality

(CT4) Heterogeneity within Individual 

Subjects and across Centers/Studies

Sub-Cortical Structure Models

courtesy of P. Aljabar

Thalamus

Brainstem

Hippocampus

Amygdala

Caudate

Pallidum

Putamen

Accumbens

• Incorporate prior anatomical information via explicit shape models

• Have 15 different sub-cortical structures (left/right separately)

https://dana.org/article/neuroanatomy-the-basics/



Image Models

Image=f(B(age, gene, race, disease, others), device, acquisition, noises)
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Image Processing Analysis Methods

IPA: Deconvolution
➢ Image Reconstruction Process

➢ Image Enhancement Process 

IPA: Structural Learning
➢ Image Segmentation Process

➢ Image Registration Process 



IPA: Deconvolution-IRP

Image Reconstruction Process (IRP)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

 b

b

 b

   

e   

Y (t,d) = Xb(d) + s (d)e (t,d)

Spatial-temporal Model 

   

Cov(e(t,d),e(t ',d)) = rT (t, t';d)

Temporal process 

Spatial process 

   

Cov(e(t,d),e(t,d')) = rS (d,d';t)



IPA: Deconvolution-IEP

Image Enhancement Process (IEP) 
❖ Denoising  

❖ Super-resolution   

❖ Bias-field correction

❖ Harmonization



IPA: Structural Learning-ISP

Image Segmentation Process (ISP)

❖ Quantification of brain development 

❖ Localization of pathology

❖ Surgical planning

❖ Image-guided interventions

❖ Computer-aided detection and diagnosis

❖ Brain parcellation

Method Dice_ET Dice_WT Dice_TC

Phase1 0.75245 0.89571 0.81561

Phase2 Model1 0.75983 0.90397 0.82489

Phase2 Model2 0.76091 0.90616 0.83622

Phase2 Model3 0.74669 0.90349 0.8278

Phase2 Model4 0.74187 0.90435 0.83211

Phase2 Model5 0.75779 0.90733 0.83824

Phase2 Model6 0.76091 0.90420 0.83713

Phase2 Model7 0.76814 0.90574 0.84704

Phase2 Model8 0.75440 0.90594 0.83826

Phase2 Model9 0.78582 0.90491 0.83689

XGBoost+ 0.80536 0.91044 0.85057



IPA: Structural Learning-IRP

Image Registration Process (IRP)

• Automated image segmentation

• Construction of brain atlas 

• Localization of pathology

• Multimodal fusion

• Population analysis

• Quantification of brain development

• Shape analysis 

…
Fiber atlas Fiber skeleton atlas
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Brain Function-based Structural Connectome Atlas

UNC Biostatistics BIG-S2 Lab | med.unc.edu/bigs2/Xifeng Wang| UNC Biostatistics 

Stage 2:

Creation of Fiber Skeleton

Stage 3:

Sparse Representation

Stage 1:

Whole-brain Structural Connectome



Longitudinal Elastic Shape Data Analysis

Figure 2: A schematic 



Challenges

There is no publicly available, high-quality neuroimaging   

datasets with detailed annotation information that cover a 

large spectrum of segmentation tasks  in neuroimaging 

research



Large-scale Neuroimaging related Studies



Large-scale Neuroimaging-related Studies

PING - 900 Pediatric Imaging, Neurocognition, and Genetics

BCP - 300 Baby Connectome Project 

ADNI - 2000 Alzheimer’s Disease Neuroimaging Initiative

PNC - 1400 Philadelphia Neurodevelopmental Cohort

HCP - 1200 Human Connectome Project

ABCD - 10000 Adolescent Brain Cognitive Development

UKB - 500,000 UK Biobank Project  

TCIA – 37,600 The Cancer Imaging Archive 

NLST - 19,000 National Lung Screening Trial

OAI – 4800 Osteoarthritis Initiative



Alzheimer’s Disease Neuroimaging Initiative 

2004-now

The overall goal of ADNI is to validate potentially useful biomarkers for AD clinical treatment trials. ADNI is

a multisite, prospective clinical study and actively supports the investigation and development of

treatments that may slow or stop the progression of AD https://adni.loni.usc.edu/study-design.

Researchers across 63 sites in the US and Canada have been tracking the progression of AD through

clinical, imaging, genetic and biospecimen biomarkers, starting from normal aging, early mild cognitive

impairment (EMCI), late mild cognitive impairment (LMCI) to dementia or AD.

https://adni.loni.usc.edu/study-design


The Human Connectome Project and Beyond

The NIH Human Connectome Project

The Harvard/MGH-UCLA project

The WU-Minn Project

The EU’s 7th Framework Programme for Research

Consortium Of Neuroimagers for the Non-Invasive 

Exploration of Brain Connectivity and Tracts

The primary goals of HCP  include

• building a ``network map'' that will shed light on the anatomical and 

functional connectivity within the healthy human brain, 

• promoting the understanding of inter-individual variability of brain circuits 

to behavior,  

• facilitating research into brain disorders, such as  autism, AD, and 

schizophrenia, and 

• making all data freely available to the scientific community.  

The Heavily Connected Brain

Peter Stern, “Connection, connection, connection…”, Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

Healthy Adult Connectome

Lifespan Connectome Data

Connectomes related to Human Disease



Adolescent Brain Cognitive Development

2015-now

The ABCD study is the largest prospective longitudinal

study of brain development and child health in the United

States, which has recruited approximately 11,880 children

aged 9-10 years old from 21 research sites and is

following them for 10 years into early adulthood.

Its initial goal was to examine risk and resiliency factors

associated with the development of substance use, and

then expanded far beyond, into identifying the underlying

biospecimens, neural alterations, and environmental

factors, and their contributions to the development of

behavior, brain function, and other mental and physical

outcomes throughout adolescence.

https://abcdstudy.org/



The UK Biobank Study

2006-now

UK Biobank has collected and continues to collect 

extensive environmental, lifestyle, and genetic data 

on half a million participants.

•Imaging: Brain, heart and full body MR imaging, plus full 

body DEXA scan of the bones and joints and an ultrasound of 

the carotid arteries. The goal is to image 100,000 participants, 

and to invite participants back for a repeat scan some years 

later.

•Genetics: Genotyping, whole exome sequencing & whole 

genome sequencing for all participants.

•Health linkages: Linkage to a wide range of electronic 

health-related records, including death, cancer, 

hospital admissions and primary care records.

•Biomarkers: Data on more than 30 key biochemistry 

markers from all participants, taken from samples collected at 

recruitment and the first repeat assessment.

•Activity monitor: Physical activity data over a 7-day period 

collected via a wrist-worn activity monitor for 100,000 

participants plus a seasonal follow-up on a subset.

•Online questionnaires: Data on a range of exposures and 

health outcomes that are difficult to assess via routine health 

records, including diet, food preferences, work history, pain, 

cognitive function, digestive health and mental health.

•Repeat baseline assessments: A full baseline assessment 

is undertaken during the imaging assessment of 100,000 

participants.

•Samples: Blood & urine was collected from all participants, 

and saliva for 100,000.

https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078


http://enigma.ini.usc.edu

The Enhancing NeuroImaging Genetics through

Meta-Analysis (ENIGMA) Consortium is a global

alliance of over 1,400 scientists across 43

countries in the fields of imaging genomics,

neurology, and psychiatry, studying a range of

large-scale human brain studies that integrate

data based on sMRI, DWI, fMRI, genetic data and

many patient populations from over 70 institutions

worldwide

The major goals of ENIGMA include 

• pushing forward the field of imaging genetics, 

❖ ensuring promising and reproducible findings, 

➢ sharing data, ideas, methods, algorithms and 

other information, and 

• training new investigators.

ENIGMA

2009-now

https://enigma.ini.usc.edu/



Population-based Statistical Analysis Methods



Four Common Themes (CT5)-(CT8)

(CT5) Sampling Bias

• undercoverage 

• observer bias, 

▪ voluntary response bias 

▪ survivorship bias 

▪ recall bias 

▪ exclusion bias

(CT7) Complex Data Objects 

(CT6) Complex Missing Data Patterns

❖ missing by design

❖ faulty scanning

❖ attrition in longitudinal studies 

❖ mis-entry 

❖ non-responses in surveys

(CT8) Complicated Causal Pathways in 

Brain-related Disorders



Population-based Statistical Analysis

(PSA)

❖ Study Design

❖ Statistical Parametric Mapping 

❖Object Oriented Data (OOD) Analysis

❖ Imputation Methods

❖ Data Integration Methods

➢ Dimension Reduction Methods 

➢ Image Genetics 

➢ Causality Research 

➢ Predictive Analysis

➢ Knowledge-based Methods 



Study Design

❖ Case control study

❖ Cross-sectional  study

❖ Cohort study

❖ Experimental study

❖ Descriptive Study:  case reports, case series, Descriptive surveys. 

➢ The UKB is a large, population-based cohort study, and many cross-sectional analyses 

have been conducted based on baseline data from UKB. 

➢ The UKB is well known for its ”healthy volunteer” selection bias, and may not be a true 

representation of the general population. 

➢ Neuroimaging biomarkers are usually secondary outcome.   



Statistical Parametric Mapping

General

linear

model

Preprocessed 

data: single 

voxel

Design matrix

SPMs

RFT/

permutation

Parameter

estimates

Univariate Statistics

Multiple Comparisons

➢ More complex models

➢ Multiple comparisons



Statistical Parametric Mapping

➢ From voxel-wise models to functional models 

➢ Multiscale-adaptive estimation and inference procedures

➢ Wild-bootstrap methods to correct for multiple comparisons

t > 0.5 t > 2.5 t > 5.5

Image=f(B(age, gene, race, disease, others), device, acquisition, noises)



OOD analyses

Parametric, Semiparametric and Nonparametric Models for OOD analyses 

 = ),,( fxg
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• Feature Methods:  Use some feature extraction functions to project random 

objects to Euclidean-valued variables. 

• Extrinsic Methods:   Ignore the fact that manifold-valued data are in a nonlinear 

space and then directly apply classical multivariate regression. 

• Intrinsic Methods: few parametric models for manifold-valued data .

Intrinsic Regression Models

Extrinsic Methods

Intrinsic Methods

Dryden, I.L., Koloydenko, A. and Zhou, D. (2008). 



x
g(xi,q) =q0 + xiq1 =q0 + xq1 + (xi - x)q1

Fletcher (2013)

Maxwell et al. (2014)

Geodesic Link Function

q0

f (xi ) = Exp(p1, (xi - x)v1)

f (xi ) = Exp(p1,(xi - x )v1)

f (xi ) = Exp(p1, (xik - xk )vk
k

å )

Single-center

Intrinsic Regression Models



DZ
<<eD,eD >>

Inner product 

);( DD Yt

Geodesic gD(t;eD )
Riemannian exponential maps

Y = ExpD(eD) =gD(1;eD)

M

D
MTD

eD

Y = ExpD(eD )

Residual

MTD

eD = LogD(Y ) ÎB(0,r) ÌTDM

Riemannian logarithm maps

How to define residual?

radius of injectivity

Intrinsic Regression Models



M

m(x,q,b)

Tm (x,q,b )M

e(x,q,b)
= Expm(x,q,b )(e(x,b) )

gm(x,q,b )(t;e(x,q,b) )

Conditional Mean

e(x,q,b) = Logm(x,q,b )(Y ) ÎTm(x,q,b )M

Riemannian logarithm maps

E[e(x,q,b) | x]= E[Logm(x,q,b )(Y ) | x]= 0

x

YConditional Moment Model

Intrinsic Regression Models

Cornea, E., Zhu, H.T., Kim, P. and Ibrahim, J. G. Intrinsic regression model for data in Riemannian symmetric 

space. JRSS, Series B, 79, 463-482, 2017.
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Imaging Genetics of Brain Disorders

BIG-KP | https://bigkp.org/

Most major brain disorders (like AD) are heritable complex traits/diseases

Complex traits/diseases

(many genes, 

environmental factors, 

complex functional 

mechanism)

Many genes contribute to 

the risk of AD

(polygenic genetic architecture)

(small but nonzero contribution)
Genetic signals are non-spare

and weak:

Need large sample size to 

detect weak signals

Together 50%-70% of AD risk

75%-90% of ADHD risk

60%-85% of Schizophrenia risk

~80% of Autism Spectrum Disorder (ASD) risk
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Brain- Heart Imaging Genetics Knowledge Portal 

UNC 

Biostatistics

BIG-KP | https://bigkp.org/

Aim to build the best knowledge database of neuroimaging genetics
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It's just a beginning

UNC Biostatistics BIG-KP | https://bigkp.org/

Hundreds of associated genetic variants for 2100+ neuroimaging traits across three 

modalities: (grey matter volume, white matter microstructure, resting-state functional 

connectivity+rfMRI, task fMRI, shape, heart )  

Genetics discovery in human brain by big data integration



Alzheimer’s Disease Neuroimaging Initiative 

2004-now

For a heterogeneous, clinically defined disorder,  

the endophenotype is ‘closer to the underlying 

biology,’   

▪ Increasing the power of genetic search 

▪ Being informative about disorder risk. 

▪ Providing mechanistic connections linking 

genetic variation to behavioral measures.
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Model Setup

UNC Biostatistics

heartkp.org

Outcome generating model

𝑌𝑖 = σ𝑙=1
𝑠 𝑥𝑖𝑙 β𝑙+< 𝒁𝒊, 𝑩 > + ϵ𝑖

Exposure generating model

𝒁𝒊 =෍
l=1

s

xil ∗ 𝑪𝑙 + 𝑬𝒊

𝑩 is the main parameter of interest, representing the association between the 2D imaging exposure  

Zi and the behavioral outcome 𝑌𝑖 , β𝑙 represents the association between the l−th observed

covariate 𝑥𝑖𝑙and the behavioral outcome 𝑌𝑖, and ϵ𝑖 and Eiare random errors that may be correlated.

The symbol “∗” denotes element-wise multiplication. 

Ye, Wang, Kong, and Zhu (2022). Mapping the Genetic-Imaging-Clinical Pathway with Applications to 

Alzheimer’s Disease. JASA, in press. 
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True Confounders, Precision, 
Instrumental and Irrelevant Variables

UNC Biostatistics

heartkp.org

Outcome generating model

𝑌𝑖 = σ𝑙=1
𝑠 𝑥𝑖𝑙 β𝑙+ < 𝒁𝒊, 𝑩 > + ϵ𝑖

Exposure generating model

𝒁𝒊 =෍

l=1

s

xil ∗ 𝑪𝑙 + 𝑬𝒊

𝒞 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 ≠ 0 ,

𝒫 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 = 0 ,

ℐ = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 ≠ 0 ,

𝒮 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 = 0 .

Aim (to correctly estimate 𝑩): retain all covariates from ℳ1 = 𝒞 ∪ 𝒫 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 , while 

excluding covariates from 𝐼 ∪ 𝑆 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 .

True Confounders

Instrumental Variables

Precision Variables

Irrelevant Variables
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Marginal Screening

UNC Biostatistics

heartkp.org

Fit:

𝑌𝑖 = 𝑥𝑖𝑙β𝑙 + ϵ𝑖
Obtain:

መ𝛽𝑙
𝑀 = 𝑛−1σ𝑖=1

𝑛 𝑥𝑖𝑙𝑌𝑖

Problem!!! (plugging exposure model into outcome model)

Outcome generating model 𝑌𝑖 = σ𝑙=1
𝑠 𝑥𝑖𝑙 β𝑙+< 𝒁𝒊, 𝑩 > + ϵ𝑖

Exposure generating model 𝒁𝒊= σl=1
s xil ∗ 𝑪𝑙 + 𝑬𝒊

Obtain:

𝑌𝑖 = σ𝑙=1
𝑠 𝑥𝑖𝑙 (β𝑙 +< 𝑪𝒍, 𝑩 >)+ < 𝑬𝒊, 𝑩 > + ϵ𝑖

Miss a portion of confounders when β𝑙 and < 𝑪𝒍, 𝑩 > are of similar magnitude but opposite sign. 
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Joint Screening (proposed)

UNC Biostatistics

heartkp.org

Marginal screening:  

𝐙i = σl=1
s xil ∗ 𝐂𝑙 + Ei

Obtain (Kong, An, Zhang and Zhu, 2020):

෡𝑪𝑙
𝑀 = 𝑛−1σ𝑖=1

𝑛 𝑥𝑖𝑙 ∗ 𝒁𝑖 ∈ ℝ𝑝×𝑞

෡ℳ1
∗ = 1 ≤ 𝐼 ≤ 𝑠: ෢𝛽𝑙

𝑀 ≥ 𝛾1,𝑛

෡ℳ2 = 1 ≤ 𝐼 ≤ 𝑠: ∥ ෡𝑪𝑙
𝑀 ∥

𝑜𝑝
≥ 𝛾2,𝑛

Select submodel: ෡ℳ = ෡ℳ1
∗ ∪ ෡ℳ2. (Union)

Alternative choices (both worse): ෡ℳ1
∗ outcome or ෡ℳ1

∗ ∩ ෡ℳ2(Outcome).

𝒞 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 ≠ 0 ,

𝒫 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 = 0 ,

ℐ = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 ≠ 0 ,

𝒮 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 = 0 .
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Estimation (proposed)

UNC Biostatistics

heartkp.org

Minimize:  
1

2
σ𝑖=1
𝑛 𝑌𝑖 − 𝒁𝑖 , B − σ

𝑙∈ ෡ℳ 𝑋𝑖𝑙𝛽𝑙
2
+ 𝜆1,𝑛 σ𝑙∈ ෡ℳ 𝛽𝑙 + 𝜆2,𝑛 ∥ B ∥∗

where ∥ B ∥∗= σ𝑘 𝜎𝑘(B) .

L1 penalty, exclude instrumental and irrelevant variables.

Nuclear penalty, low-rank estimation of B. 

Estimated effect size of imaging exposure 𝑧,

ො𝜇(𝑧) = ⟨𝑧, ෠𝐵⟩

𝒞 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 ≠ 0 ,

𝒫 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 ≠ 0 and 𝑪𝑙 = 0 ,

ℐ = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 ≠ 0 ,

𝒮 = 𝑙 ∈ 𝒜 ∣ 𝛽𝑙 = 0 and 𝑪𝑙 = 0 .
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Predictive Analysis
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Gene expression-informed 
gene-level PRS + GWAS PRS 

has higher prediction accuracy

Construct gene-level PRS (polygenic risk 

scores) by leveraging gene expression 

reference panels 

(e.g., GTEx) in TWAS

BIG-KP | https://bigkp.org/
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Brain Imaging Genetics Paradigm

UNC 
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Neuroimaging: an important component to help understand the 

complex biological pathways of brain disorders 

Genes 
Brain 

disorders

molecules, brain cells, structure/function→

BIG-KP | https://bigkp.org/

Uncover the profile of brain 

abnormalities in each clinical 

outcome to study how disorders 

develop

Changes in neural interactions, 

altered brain structure/function

Biological 

causes

Molecular function and 

cell metabolism

Social and psychological influences

Gene expression at RNA 

and protein levels

Changes in neuron structure

and function



Challenges

❖ The complexity of those large-scale neuroimaging-related data sets 

is too high for most research teams in both academia and industry. 

❖ It is very difficulty  to appropriately process data across different 

domains with high quality, while controlling for potential bias   

introduced during the preprocessing stage. 

❖ It remains uncertain as to how to appropriately integrate data 

across different domains obtained from different studies and 

cohorts with possible  different study designs for unbiased data 

integration. 

❖ It remains unclear how to appropriately and efficiently analyze 

neuroimaging related data sets with  multiple Vs (e.g., Volume, 

Velocity, Variety and Veracity), while ensuring algorithmic fairness. 
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Statistical Learning Methods for NDA

UNC Biostatistics

(Zhu, Li & Zhao, 2023)

BIG-KP | https://bigkp.org/
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