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A Review of Neuroimaging Techniques



—  Eight Popular Neuroimaging Techniques +—

« Structural magnetic resonance imaging (sMRI)
% Diffusion weighted MRI (DWI1)

¢ Functional MRI (fMRI)

» Positron emission tomography (PET)

» Computerized tomography (CT)

¢ Electroencephalography (EEG)

% Magnetoencephalography (MEG)

» Functional near-infrared spectroscopy (fNIRS)
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applications.




— CT, PET, MEG, EEG, and fNIRS

https://www.omegapds.com/ct-angiography-of-the-head-or-neck/ https://en.wikipedia.org/



— sMRI, fMRI, and DWI —
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— A Multi-model Approach
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—  Four Common Themes (CT1)-(CT4) +——

Complex Brain Objects Extremely High Dimensionality

Have 15 different sub-cortical structures (left/right separately)

Accumbens

Thalamus \Caudate
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courtesy of P.Afjabar

Heterogeneity within Individual
Subjects and across Centers/Studies

https://dana.org/article/neuroanatomy-the-basics/
Complex Spatiotemporal Structures

“ spatial and temporal resolutions
“ spatio-temporal smoothness
“ spatiotemporal correlation




— Image Models —
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— Image Processing Analysis Methods +—

IPA: Deconvolution IPA: Structural Learning
» Image Reconstruction Process » Image Segmentation Process
» Image Enhancement Process » Image Registration Process

Example: Airway Segmentation from CT
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— IPA: Deconvolution-IRP —

Image Reconstruction Process (IRP)




— IPA: Deconvolution-IEP —

Image Enhancement Process (IEP)
% Denoising

% Super-resolution

“ Bias-field correction

% Harmonization

B




— IPA: Structural Learning-ISP

Image Segmentation Process (ISP)
Quantification of brain development
Localization of pathology

Surgical planning

Image-guided interventions
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— IPA: Structural Learning-IRP —

Image Registration Process (IRP)

« Automated image segmentation

« Construction of brain atlas

« Localization of pathology
 Multimodal fusion

 Population analysis

* Quantification of brain development
 Shape analysis

Posterior-Multimodal
Cingulo-Opercular
Dorsal-Attention
Somatomotor
Language

Default

Visuall

Visual2
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Ventral-multimodal
Orbito-Affective

Fiber atlas Fiber skeleton atlas



— Brain Function-based Structural Connectome Atlas —
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Longitudinal Elastic Shape Data Analysis
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—| Challenges —

There is no publicly available, high-quality neuroimaging
datasets with detailed annotation information that cover a

large spectrum of segmentation tasks in neuroimaging
research
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Large-scale Neuroimaging related Studies



— Large-scale Neuroimaging-related Studies +—

PING - 900 Pediatric Imaging, Neurocognition, and Genetics
BCP - 300 Baby Connectome Project
ADNI - 2000 Alzheimer’s Disease Neuroimaging Initiative
PNC - 1400 Philadelphia Neurodevelopmental Cohort
HCP - 1200 Human Connectome Project
ABCD - 10000 Adolescent Brain Cognitive Development
UKB - 500,000 UK Biobank Project
TCIA — 37,600 The Cancer Imaging Archive
NLST - 19,000 National Lung Screening Trial
OAIl — 4800 Osteoarthritis Initiative
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_y Alzheimer’s Disease Neuroimaging Initiative |

The overall goal of ADNI is to validate potentially useful biomarkers for AD clinical treatment trials. ADNI is
a multisite, prospective clinical study and actively supports the investigation and development of
treatments that may slow or stop the progression of AD

Researchers across 63 sites in the US and Canada have been tracking the progression of AD through
clinical, imaging, genetic and biospecimen biomarkers, starting from normal aging, early mild cognitive
|mpa|rment (EMCI), late mild cognltlve impairment (LMCI) to dementia or AD.

—

s Tau-mediated neuronal injury and dysfunction
s Brain structure

s Memory

e Clinical function

AD Progression

FACE
VELVET
CHURCH
DAISY

/ RED

Welcome Returning Users

Pre-Symptomatic| eMCl | (MCl! Dementia

2004-now


https://adni.loni.usc.edu/study-design

The Human Connectome Project and Beyond

The primary goals of HCP include

« building a "network map" that will shed light on the anatomical and
functional connectivity within the healthy human brain,

« promoting the understanding of inter-individual variability of brain circuits
to behavior,

« facilitating research into brain disorders, such as autism, AD, and
schizophrenia, and

« making all data freely available to the scientific community.

The Heavily Connected Brain
Peter Stern, “Connection, connection, connection...”, Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

The NIH Human Connectome Project » Healthy Adult Connectome
* The Harvard/MGH-UCLA project

* The WU-Minn Project . -
. » Lifespan Connectome Data o -
The EU’s 7t Framework Programme for Research

*  Consortium Of Neuroimagers for the Non-Invasive © Connectomes related to Human Di
Exploration of Brain Connectivity and Tracts




Adolescent Brain Cognitive Development

The ABCD study is the largest prospective longitudinal
study of brain development and child health in the United
States, which has recruited approximately 11,880 children
aged 9-10 years old from 21 research sites and is
following them for 10 years into early adulthood.

Its initial goal was to examine risk and resiliency factors
associated with the development of substance use, and
then expanded far beyond, into identifying the underlying
biospecimens, neural alterations, and environmental
factors, and their contributions to the development of
behavior, brain function, and other mental and physical
outcomes throughout adolescence.

2015-now

ABCD Study

TIMELINE OF EVENTS

REPEAT ... until age 19-2

https://abcdstudy.org/




The UK Biobank Study

UK Biobank has collected and continues to collect
extensive environmental, lifestyle, and genetic data
on half a million participants.

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health

information from half a million UK participants. The database is regularly augmented with additional data and is globally
accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is
a major contributor to the advancement of modern medicine and treatment and has enabled several scientific

discoveries that improve human health.
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Brain, heart and full body MR imaging, plus full
body DEXA scan of the bones and joints and an ultrasound of
the carotid arteries. The goal is to image 100,000 participants,
and to invite participants back for a repeat scan some years
later.

Genotyping, whole exome sequencing & whole
genome sequencing for all participants.
Linkage to a wide range of electronic
health-related records, including death, cancer,
hospital admissions and primary care records.

Data on more than 30 key biochemistry
markers from all participants, taken from samples collected at
recruitment and the first repeat assessment.

Physical activity data over a 7-day period
collected via a wrist-worn activity monitor for 100,000
participants plus a seasonal follow-up on a subset.

Data on a range of exposures and
health outcomes that are difficult to assess via routine health
records, including diet, food preferences, work history, pain,
cognitive function, digestive health and mental health.

A full baseline assessment
is undertaken during the imaging assessment of 100,000
participants.
Blood & urine was collected from all participants,
and saliva for 100,000.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078

— ENIGMA —

The major goals of ENIGMA include

«  pushing forward the field of imaging genetics,

¢ ensuring promising and reproducible findings,

» sharing data, ideas, methods, algorithms and
other information, and

« training new investigators.

The Enhancing Neurolmaging Genetics through
Meta-Analysis (ENIGMA) Consortium is a global
alliance of over 1,400 scientists across 43
countries in the fields of imaging genomics,
neurology, and psychiatry, studying a range of
large-scale human brain studies that integrate
data based on sMRI, DWI, fMRI, genetic data and
many patient populations from over 70 institutions
https://enigma.ini.usc.edu/ worldwide

2009-now
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Population-hased Statistical Analysis Methods



—  Four Common Themes (CT5)-(CT8) +—

Sampling Bias Complex Missing Data Patterns
* undercoverage missing by design
« observer bias, faulty scanning
= voluntary response bias attrition in longitudinal studies
= survivorship bias mis-entry
= recall bias NoN-responses in surveys
= exclusion bias
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— Population-based Statistical Analysis+—
(PSA)

*» Study Design

¢ Statistical Parametric Mapping

*» Object Oriented Data (OOD) Analysis
*» Imputation Methods

*» Data Integration Methods

» Dimension Reduction Methods
» Image Genetics

» Causality Research

» Predictive Analysis

» Knowledge-based Methods




— Study Design —

*» Case control study

¢ Cross-sectional study

*»» Cohort study

“* Experimental study

*» Descriptive Study: case reports, case series, Descriptive surveys.

» The UKB is a large, population-based cohort study, and many cross-sectional analyses
have been conducted based on baseline data from UKB.

» The UKB is well known for its "healthy volunteer” selection bias, and may not be a true
representation of the general population.

» Neuroimaging biomarkers are usually secondary outcome.



— Statistical Parametric Mapping +—

Univariate Statistics

data: single

selicull > More complex models
» Multiple comparisons

Parameter
estimates

General
linear

oce Multiple Comparisons




— Statistical Parametric Mapping +——

» From voxel-wise models to functional models
» Multiscale-adaptive estimation and inference procedures
» Wild-bootstrap methods to correct for multiple comparisons

Image:f( device, acquisition, noises)




— OOD analyses

Parametric, Semiparametric and Nonparametric Models for OOD analyses
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— Intrinsic Regression Models —

Use some feature extraction functions to project random
objects to Euclidean-valued variables.

Ignore the fact that manifold-valued data are in a nonlinear
space and then directly apply classical multivariate regression.

. few parametric models for manifold-valued data .

Dryden, I.L., Koloydenko, A. and Zhou, D. (2008).



— Intrinsic Regression Models —

Geodesic Link Function A

Single-center f(x;) = Exp(p,, (x; = X))

Fletcher (2013) £(x,) = Exp(p, &(x, - %,)v,)
k

Maxwell et al. (2014)



— Intrinsic Regression Models —

Residual

Inner product

Geodesic
Riemannian exponential maps

Y =Exp,(e,)=9,Lé)

Riemannian logarithm maps
e, =Log,(Y)UBO, NI T,M

radius of injectivity



— Intrinsic Regression Models —

Conditional Mean

Riemannian logarithm maps
é(x,q, b) = Logm(x,q,b)(Y) I Tm(x,q,b)

Conditional Moment Model

Ele(x,q, b)| x]= E[Log,,

.4,D)

Inrqry (160X, ¢, D) )

A

Cornea, E., Zhu, H.T., Kim, P. and Ibrahim, J. G. Intrinsic regression model for data in Riemannian symmetric
space. JRSS, Series B, 79, 463-482, 2017.
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— Imaging Genetics of Brain Disorders

Most major brain disorders (like AD) are heritable complex traits/diseases

Together 50%-70% of AD risk

/4 ¥ = 4 3 ¢

75%-90% of ADHD risk % z 5 »f 5 Q. g% @ %
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|G: Reproducibility and Heritability
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— Brain- Heart Imaging Genetics Knowledge Portall—

Brain Imaging Genetics Knowledge Portal (BIG-KP)

Genetics Discoveries in Human Brain by Big Data Integration

’\

Heart Imaing Genetics
Knowledge Portal

Brain Imaging Genetics Knowledge Portal Heart Imaging Genetics Knowledge Portal
(BIG-KP). (Heart-KP)

Aim to build the best knowledge database of neuroimaging genetics




It's just a beg

Publications (2018+)
Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023).

Science § Science

Genetic influences on the shape of brain ventricular and subcortical structures (2022). medRxiv, ??27a/a1

Common variants contribute to intrinsic human brain function networks (2022). Nature Genetics. nature genetlc
Genetic influences on the intrinsic and extrinsic functional organizations of the cerebral cortex (2021). medRxiv, 21261187. LINK
Common genetic variation influencing human white matter microstructure (2021). Science,

Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits (2021). Nature Communications,

842872.1

Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain voliimaeec and rafinac thair canatic rn-architecture with

cognitive and mental health traits (2019). Nature Genetics, 51(11), 1637-164/4. NK nature genetics

Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlaj ~ traits (n=17,706) (2019).

Molecular Psychiatry, in press.

Heritability of regional brain volumes in large-scale neuroimaging and genetic studies (2018). Cerebral Cortex, 29(7),

We make our research results publicly available by building the fellowing respyyegs.

If you are interested in other summary-level data from our analyses or have any questions or comments, feel free to contact Bingxin Zhao (bingxin@purdue.edu)

or Hongtu Zhu (htzhu@email.unc.edu).

We build a GWAS browser using the PheWeb tool to explore GWAS results for massive functional, structural, and diffusion neuroimaging traits. Currently, we

support GWAS results of 2104 traits trained in the UKB British cohort (n~34,000), including

1. 6351 1A )TI p 1eters of brain white matter (diffusion MRI)
2. 376 ANTS regional brain vol ; (structural MRI)
3. 191 ICA-based functional MRI traits (rs-fMRI(ICA))

A4

Geti dovA in human brain by big data integration




—y Alzheimer’s sease Neuroimaging Initiative |
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— Model Setup —

Outcome generating model
i = Y1 xuBi+< Z,B > +¢

Exposure generating model
S

Zizzxil*cl-l_Ei

1=1
B is the main parameter of interest, representing the association between the 2D imaging exposure
Z; and the behavioral outcome Y; , 3; represents the association between the |-th observed
covariate x;;and the behavioral outcome Y;, and €; and E;are random errors that may be correlated.

(13t

The symbol “+” denotes element-wise multiplication.

Ye, Wang, Kong, and Zhu (2022). Mapping the Genetic-Imaging-Clinical Pathway with Applications to
Alzheimer’s Disease. JASA, in press.



True Confounders, Precision
Instrumental and Irrelevant Variables

Outcome generating model

. Yi = Y1 xyBi+ < ZyB > +¢
Exposure generating model
S

Zi =inl*Cl+Ei
=1

True Confounders C={leAI|P; #0andC; # 0},
Precision Variables P={leA|B #0andC(C, =0},
Instrumental Variables J={leA|pB, =0andC, # 0},
Irrelevant Variables S={leAlp =0andC, =0}

Aim (to correctly estimate B): retain all covariates fromM; = CUP = {l € A | ; # 0}, while
excluding covariates fromIuS ={l € A | f; = 0}.



— Marginal Screening —

Fit:
Yi =xuB1 + €
Obtain:
,BlM =n"! ?:1 Xi1Y;

Problem!!! (plugging exposure model into outcome model)

Outcome generating model Y; = ;-1 x; B+ < Z;,B > +¢;

Exposure generating model Z;= );}_; x; * C; + E;

Obtain:
Y; = Yo xu (B +< €C,B >)+ < E;,B > +¢

Miss a portion of confounders when 3; and < €;, B > are of similar magnitude but opposite sign.



— Joint Screening (proposed) —

Marginal screening:
Z; = Yi-1 X1 * C; + Ej

Obtain (Kong, An, Zhang and Zhu, 2020):

Z'M —n-1 ?=1 Xil * Zi € ]Rpxq

C={leA|pB #0and C; # 0},
i ={1<1<s: || 2 1) ?={leafl|,6’ll¢02:dcll=0}, %

_ i J={l€AlB =0andC, # 0},
— . M l l
My ={1<1<s:0 T N, = Von) S={leAlB =0andC, =0}

Select submodel: M = M U M,. (Union)

Alternative choices (both worse): M; (outcome) or My N M, (Outcome).



— Estimation (proposed) —

Minimize:
1 2
~Yy (Y —(Zy,B) — Ly Xubr) + lin Sies 1Bl + A2 1 BIL

where || B [l.= X; 0x(B) .
k Ok (B) C={leA|pB #0andC; # 0},

L1 penalty, exclude instrumental and irrelevant variables. P={U€A|Ip#0andC =0}
Jole Al B =0andC; + 0},
Nuclear penalty, low-rank estimation of B. S =leA|B =0and(; =0}

Estimated effect size of imaging exposure z,

A(z) =(z,B)
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Predictive Analysis —

* GWAS-PRS+TWAS-PRS
B GWAS-PRS

TWAS-PRS

ROI Volumes

HCP

¢ GWAS-PRS+TWAS-PRS
B GWAS-PRS

TWAS-PRS

ROI Volumes

Gene expression-informed
gene-level PRS + GWAS PRS
has higher prediction accuracy

Construct gene-level PRS (polygenic risk
scores) by leveraging gene expression

reference panels
(e.g., GTEx) in TWAS
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— Brain Imaging Genetics Paradigm —

Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders

> molecules, brain cells, structure/function Brain
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g"gi}? ' ncover the profile of brain

Environmental, social and psychological factors abnormalities in each clinical
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—| Challenges —

**» The complexity of those large-scale neuroimaging-related data sets
IS too high for most research teams in both academia and industry.

*» It is very difficulty to appropriately process data across different
domains with high quality, while controlling for potential bias
Introduced during the preprocessing stage.

¢ It remains uncertain as to how to appropriately integrate data
across different domains obtained from different studies and
cohorts with possible different study designs for unbiased data
Integration.

¢ It remains unclear how to appropriately and efficiently analyze
neuroimaging related data sets with multiple Vs (e.g., Volume,
Velocity, Variety and Veracity), while ensuring algorithmic fairness.



— Statistical Learning Methods for NDA  +—
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