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Abstract: Many cancers and neuro-related diseases display significant phenotypic and genetic heterogeneity
across subjects and subpopulations. Characterizing such heterogeneity could transform our understanding
of the etiology of these conditions and inspire new approaches to urgently needed prevention, diagnosis,
treatment, and prognosis. However, most existing statistical methods face major challenges in delineating
such heterogeneity at both the group and individual levels. The aim of this article is to propose a
novel statistical disease-mapping (SDM) framework to address some of these challenges. We develop an
efficient estimation method to estimate unknown parameters in SDM and delineate individual and group
disease maps. Statistical inference procedures such as hypothesis-testing problems are also investigated for
parameters of interest. Both simulation studies and real data analysis on the ADNI hippocampal surface
dataset show that our SDM not only effectively detects diseased regions in each patient but also provides
a group disease-mapping analysis of Alzheimer subgroups. The Canadian Journal of Statistics 49: 10–34;
2021 © 2021 Statistical Society of Canada
Résumé: De nombreux cancers et maladies neurologiques présentent une hétérogénéité phénotypique et
génotypique substantielle entre les sujets et les sous-populations. Réussir à caractériser cette hétérogénéité
pourrait transformer notre compréhension de l’étiologie de ces états et inspirer de nouvelles approches
requises sans délai pour la prévention, le diagnostic, le traitement et le pronostic. La plupart des méthodes
statistiques existantes peinent à décrire une telle hétérogénéité, autant au niveau des groupes que des
individus. Les auteurs proposent un nouveau cadre de cartographie statistique de la maladie (CSM) afin de
relever ce défi. Ils développent une méthode efficace d’estimation pour les paramètres inconnus de la CSM
et tracent des cartes de maladie pour les individus et les groupes. Les procédures d’inférence statistique, tels
que les tests d’hypothèses, sont également étudiées pour les paramètres d’intérêt. Des études de simulation
et une analyse de données réelles de l’initiative d’imagerie médicale pour la maladie d’Alzheimer relatives
à la surface hippocampique permettent aux auteurs de montrer que la CSM détecte non seulement les
régions malades pour chaque patient, mais offre également une analyse cartographique des sous-groupes
d’Alzheimer. La revue canadienne de statistique 49: 10–34; 2021 © 2021 Société statistique du Canada
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1. INTRODUCTION

With the rapid growth of modern technology, many large-scale biomedical studies, including the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Weiner et al., 2015) and the UK
Biobank data project (Allen et al., 2014), have been conducted to collect massive datasets with
large volumes of complex information from increasingly large cohorts. Despite the numerous
successes of biomedical studies, it has been difficult to unravel the etiology of cancers and
neuro-related disorders largely due to large disease heterogeneity at the genomic, imaging, and
clinical scales. Specifically, imaging heterogeneity often presents at both the global and local
scales. At the global scale, diseased regions can significantly vary across subjects and/or time
in terms of their number, size, and location (Davnall et al., 2012; Brooks & Grigsby, 2013;
Huang et al., 2015; Bashir et al., 2016; Spagnolo et al., 2017). At the local scale, various
local imaging features can have large intra- and inter-spatial heterogeneity. Understanding such
imaging heterogeneity may be critical for the development of urgently needed approaches to the
prevention, diagnosis, treatment, and prognosis of those diseases, as well as precision medicine
broadly.

In the presence of imaging heterogeneity, the analysis of a large number of imaging
measures in those large-scale studies presents major methodological challenges for many
existing statistical methods (Schnack, 2019; Varol et al., 2017). For instance, standard group
analysis methods, including the voxel-based morphometry in the Statistical Parametric Mapping
(SPM) framework (Penny et al., 2011), require certain signal homogeneity across subjects and/or
time. Therefore, they are not suitable for capturing individual diseased regions specific to a small
number of subjects. In contrast, some individual analysis methods for detecting subject-specific
abnormalities often compare an individual subject’s data to a known reference distribution,
typically derived from a cohort of healthy controls (Shaker et al., 2017). Thus, those methods
can be inefficient for borrowing common information shared among a large number of diseased
subjects.

The aim of this article is to propose a novel statistical disease-mapping (SDM) framework
with several formal functional data analysis tools to address the above technical challenges
in delineating disease heterogeneity at both group and individual scales. Our SDM consists
of two components: (i) diseased region detection at the individual level and (ii) disease map
construction at the group level. In the first component, a hidden Markov random field model
(HMRFM) is integrated with a multivariate varying coefficient model (MVCM), where MVCM
can investigate the relationship between multivariate imaging responses and covariates of interest
(e.g., age, gender) and where HMRFM is adopted to detect subject-specific diseased regions.
Based on the individual diseased regions detected from the first component, a spatial zero-inflated
Poisson model (SZIPM) is introduced in the second component as a disease regression model
to establish the disease map at the group level. The path diagram of SDM is presented
in Figure 1.

Compared to the existing statistical methods for abnormal pattern detection in the literature
(Van Leemput et al., 2001; Matteoli, Diani & Corsini, 2010; Penny et al., 2011; Ramteke &
Monali, 2012; Goldstein & Uchida, 2016; Shaker et al., 2017), four major distinctive contributions
of this article in terms of both methodology and application are as follows:

• This article proposes a special image-on-scalar regression model that integrates HMRFM
with MVCM and preserves the key features from functional data analysis tools and Markov
random field models. Specifically, our SDM can not only build up the relationship between
functional phenotypes and a set of covariates of interest (Zhu et al., 2011; Zhu, Li &
Kong, 2012; Huang et al., 2017) but also detect individual diseased regions (Geman &
Geman, 1984; Huang et al., 2015). In addition, compared to voxel-wise analysis, our SDM
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12 LIU AND ZHU Vol. 49, No. 1

FIGURE 1: Path diagram of statistical disease mapping (SDM).

can effectively capture the spatial smoothness and correlation within the imaging signals and
model the heterogeneity among multiple imaging features.

• Besides the subject-specific diseased region detection, our SDM can also build the disease
map at the group level. Specifically, an SZIPM is introduced to extract shared diseased
region patterns from the detected individual diseased regions within specific subgroups. The
SZIPM can simultaneously handle the “nondiseased-region” (e.g., image boundary) via a
generalized zero-inflated model and “potential-diseased-region” via a Poisson regression
model. Different from the voxel-based morphometry, the group-level disease mapping in
our SDM is not sensitive to the imaging heterogeneity using the detected individual diseased
regions instead of population-level hypothesis-testing tools.

• All unknown parameters in SDM are estimated by integrating the local polynomial kernel
(LPK) smoothing technique (Fan & Gijbels, 1996), a pseudo-likelihood method (Qian &
Titterington, 1991), and the Expectation Maximization (EM) algorithm (Dempster, Laird
& Rubin, 1977). Besides the estimation procedure, the statistical inference procedure is
also considered in SDM. Specifically, both local and global hypothesis-testing problems are
investigated, and the resampling method (i.e., wild bootstrap) is adopted to construct the
empirical null distribution of test statistics. Furthermore, both simulation studies and real
data analysis reveal that SDM can efficiently delineate imaging heterogeneity at both global
and local scales.

• Our SDM has several potential applications in neuroimaging data analysis, for example, the
abnormal brain region detection for different brain-related diseases, including Alzheimer’s
disease (Ota et al., 2004), schizophrenia (Chen et al., 2020), traumatic brain injury (Shaker
et al., 2017), autism (Salmond et al., 2003), and others. Furthermore, the Python package

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 13

for our SDM is freely available online (https://github.com/BIG-S2). In particular, our SDM
package can handle three types of functional phenotypes, including curves, surfaces, and
volumes.

2. METHODS

2.1. Data Structure
Suppose that we observe imaging data at a common template and clinical variables from n
unrelated subjects. Let  = {s1,… , sm} be the set of m points from a compact set in R

d, which
could be grids on a curve (d = 2), vertices on a surface (d = 3), and voxels within a volume
(d = 3). The local features at sk for the ith subject are often represented as a J-dimensional vector,
denoted as yi(sk) = (yi,1(sk),… , yi,J(sk))T , for i= 1, … , n. Let xi be a p× 1 vector of predictors
(e.g., age, gender) and zi be the diagnosis status. For the diagnosis status in the ADNI study, 0
denotes normal control, 1 denotes mild cognitive impairment (MCI), and 2 denotes Alzheimer’s
disease (AD). For each subject, it is assumed that  can be decomposed into the union of normal
region i0 and diseased region i1, that is,

 = i0 ∪i1 and i0 ∩i1 = ∅,

where both i0 and i1 are random for each patient. In fact, due to the imaging heterogeneity,
the size, shape, and location of diseased regions are all stochastic terms and can vary across
patients. In order to capture the heterogeneity and randomness of diseased regions, a few further
assumptions are made on i0 and i1: (i) Normal controls are expected to be perfectly healthy
and to not have any diseased region, that is, i1 = ∅; (ii) i1 may vary across diseased patients
(both MCI and AD); and (iii) the expected local feature in the diseased region is lower than
that in the normal region, that is, E[yi(sk)|sk ∈ i1] < E[yi(sk)|sk ∈ i0]. These assumptions
are implicitly used in existing methods (Huang et al., 2015). The first assumption makes the
normal controls a reference for detecting individual diseased regions, the second assumption
plays a critical role in establishing spatial correspondence of diseased regions at different
locations across patients, and the third assumption is an identifiability constraint that can deal
with the label-switching issue in diseased region detection. Moreover, the third assumption is
also reasonable for the ADNI hippocampal surface data in this article. Specifically, atrophy of
the hippocampus associated with cognitive impairment in AD can be measured by the imaging
responses, including radial distance and multivariate TBM statistics (Wang et al., 2011).

2.2. SDM: Statistical Disease Mapping
There are two components of statistical methods included in our SDM: (i) an image-on-scalar
regression model integrating MVCM and HMRFM and (ii) a disease regression model, that
is, SZIPM. In the first component, the individual diseased regions are modelled as discrete
latent variables though HMRFM, and given those latent variables, the relationship between
imaging signals and covariates of interest is investigated via the functional data analysis tools
in MVCM. In the second component, the group-level disease map can be extracted from the
individual diseased regions detected in the first component through the proposed SZIPM, where
the probability that each pixel belongs to the diseased region is modelled for a certain patient
group of interest. Next, the two components of our SDM will be discussed in detail.

2.2.1. Component 1: MVCM
The MVCM characterizes the spatial smoothness and correlation of local feature maps given
latent disease maps. We introduce an unobserved random effect bi(sk) ∈ L = {0, 1} to label
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14 LIU AND ZHU Vol. 49, No. 1

i0 and i1 at each voxel sk for the ith subject. Thus, bis are label configurations of two
nonoverlapping regions {i0,i1}. Given bi, MVCM can be written as

yi(sk) = B(sk)xi + B̄xibi(sk) + 𝜼i(sk) + 𝝐i(sk), (1)

where B(sk) is a J × p matrix representing main effects at voxel sk in normal regions i0,
whereas B̄ is a J × p matrix of coefficients to characterize possible additional effects in the
diseased region i1. According to the definition of bi(sk), B̄xibi(sk) equals zero across all
voxels in normal regions. For patients, voxels in different diseased regions may have different
local feature variations. Moreover, 𝜼i(sk) = (𝜂i1(sk),… , 𝜂iJ(sk))T characterizes both subject- and
location-specific spatial variability, and 𝝐i(sk) = (𝜖i1(sk),… , 𝜖iJ(sk))T are measurement errors.
It is also assumed that 𝜼i(sk) and 𝝐i(sk) are mutually independent and identical copies of
SP(0,𝚺𝜂) and SP(0,𝚺𝜖), respectively, where SP(𝝁,𝚺) denotes a stochastic process vector with
mean function 𝝁(s) and covariance function 𝚺(s, s′). Moreover, 𝚺𝜖(s, s′) takes the form of
𝛀𝜖(s)1(s = s′), where 𝛀𝜖(s) is a symmetric matrix of functions of s, and 1(⋅) is the indicator
function.

2.2.2. Component 1: HMRFM
The HMRFM characterizes the random effects bi = (bi(s1),… , bi(sm))T as follows. First, it is
assumed that bi, {𝜼i(sk)}m

k=1 and {𝝐i(sk)}m
k=1 are mutually independent. Moreover, {bi}n

i=1 are
assumed to be independent across subjects, and each bi for patients follows a Potts model
(Besag, 1986), whose Gibbs form is given by

p(bi|𝜏) = exp{−U(bi)𝜏 − log C(𝜏)}, (2)

where U(bi) =
∑

l
∑

sk∼sl
(1 − 𝛿(bi(sk) − bi(sl))) and where 𝜏 is introduced to encourage spatial

smoothness in homogeneous regions. Here, 𝛿(⋅) is the Dirac Delta function where 𝛿(a) = 1
when a= 0 and 𝛿(a) = 0 otherwise. Moreover, C(𝜏) is the partition function such that p(bi|𝜏)
is a probability function. The notation “

∑
sk∼sl

” means that sk is a neighbour of sl, and each
neighbouring pair enters the summation only once. Throughout this article, we only consider
the closest 2d neighbours of each voxel, and the closest 2d neighbours are determined according
to their Euclidian distances from the voxel of interest. For the purpose of illustration, the path
diagram of HMRFM is presented in Figure 2.

2.2.3. Component 2: SZIPM
According to the detected diseased region {b̂i(s)}n

i=1, a disease regression model is further
introduced to characterize the group disease map according to the conditional distribution of
qk =

∑n
i=1 b̂i(sk)𝜁i given {sk}m

k=1, where 𝜁i is a binary dummy variable indicating the subgroup of
interest, and n∗ =

∑n
i=1 𝜁i is the sample size of some subgroup of interest, for example, n* is the

sample size of MCI patients in the ADNI study if 𝜁i = 1{zi = 1}. In particular, as some voxels
are unlikely to be affected by AD, an SZIPM is considered here: For 1≤ k≤m,

Pr{qk = 𝑗} =

{
𝜋k + (1 − 𝜋k)e−𝜆k , 𝑗 = 0,
(1 − 𝜋k)e−𝜆k𝜆

𝑗

k∕𝑗!, 𝑗 > 0.
(3)

Based on model (3), qk is assumed to be from the point mass distribution based at zero with
probability 𝜋k and Poisson distribution Poisson(𝜆k) with probability 1 − 𝜋k. Here, 𝜆k and 𝜋k are
modelled by smooth functions at sk as follows:

log(𝜆k) = 𝜉𝜆(sk), log(𝜋k∕(1 − 𝜋k)) = 𝜉𝜋(sk), 1 ≤ k ≤ m, (4)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 15

FIGURE 2: Path diagram of HMRFM.

where 𝜉𝜆(⋅) and 𝜉𝜋(⋅) are introduced here to model both the spatial smoothness and spatial
correlation within the disease map.

Given the estimates 𝜉𝜆(s) and 𝜉𝜋(s), the conditional probability that the voxel sk belongs to
the diseased region is calculated as

Pr{sk belongs to the diseased region} = e𝜉𝜆(sk)

n∗(1 + e𝜉𝜋 (sk))
. (5)

This estimated disease map (5) is the map indicating the probability that a voxel belongs to the
diseased region at the global level. In particular, if we focus on a group with specified gender
information, age range, and diagnostic status (e.g., male AD patients with age above 65 years),
we can derive the progressive changes in statistical disease mapping across age, which is of great
importance in the early detection of AD.

2.3. Estimation Procedure
Our next task is to estimate the random effects {bi}i=1 and all unknown parameters consisting
of 𝜏,B(s), B̄, covariance functions 𝚺𝜂(s, s′),𝛀𝜖(s), and unknown functions 𝜉𝜆(s) and 𝜉𝜋(s).
Specifically, the whole estimation procedure is divided into three steps, including (i) Step 1 on
B(s) and Ω𝜖(s), denoted as 𝜽; (ii) Step 2 on B̄, 𝜏, and {bi}i=1; and (iii) Step 3 on parameter
estimation in the second component. In Step 1, the maximum likelihood estimate (MLE) of 𝜽 can
be calculated by using a weighted least-squares (WLS) method (Zhang & Chen, 2007). In Step
2, the WLS estimate of B̄ is derived, whereas 𝜏 can be estimated by using a pseudo-likelihood
method (Geman & Graffigne, 1986) as the MLE of 𝜏 is generally difficult to compute due to the
normalizing part of the probability function in (2). In addition, the random effects {bi}n

i=1 can be
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16 LIU AND ZHU Vol. 49, No. 1

estimated via the maximum a posteriori on Markov random field (MRF-MAP) method (Huang
et al., 2015). In Step 3, the EM algorithm is adopted to iteratively update the estimates of unknown
functions in (3) and conditional probabilities in (5). Specifically, the local weighted likelihood
approach (Fan, Farmen & Gijbels, 1998) and Newton–Raphson methods are employed to derive
the estimates of functions 𝜉𝜆(s) and 𝜉𝜋(s). The details of each key step in the algorithm will be
discussed in the following subsections. In addition, the estimation procedure will be summarized
in Algorithms 1 and 2 in the Appendix.

2.3.1. Step 1: WLS method on normal control group
We first consider normal controls as, according to our assumption, only normal regions exist
in these observed images. Without loss of generality, we assume that the first n0 subjects are
normal controls. In this case, MVCM (1) for normal controls is reduced to

yi(sk) = B(sk)xi + 𝜼i(sk) + 𝝐i(sk), i = 1,… , n0. (6)

The WLS method based on a local linear kernel smoothing technique can be carried out
similar to the procedures in Zhu, Li & Kong (2012). Specifically, let K(⋅) be the kernel
function and H be a bandwidth matrix, which is often a simple diagonal form. We also denote
KH(s) = |H|−1K(H−1s),𝝍(sk − s) = (1, (sk − s)TH−1)T and X0 = (x1,… , xn0). For each j and
fixed H, the WLS estimator of B(s) can be derived as

B̂(s) =

{
(X0XT

0 )
−1X0

m∑
k=1

ak(H, s)Y(sk)

}T

, (7)

where Y(s) = (y1(s),… , yn0
(s))T and

ak(H, s) = (1, 01×d)
[ m∑

k=1

KH(sk − s)𝝍H(sk − s)⊗2
]−1

KH(sk − s)𝝍H(sk − s).

Based on the estimate in (7), for fixed H, the WLS estimate of 𝜼i(s) is derived as

�̂�i(s) =
m∑

k=1

ak(H, s)(Y(sk) − B̂(s)xi), i = 1,… , n0. (8)

Then, their empirical covariance of �̂�i(s) can be used to estimate 𝚺𝜂 . Similarly, the covariance
matrix 𝛀𝜖(s) can be estimated based on the residuals.

To select the optimal bandwidth in B̂(s) and {�̂�i(s)}
n0
i=1, we use the generalized cross-validation

(GCV) score method (Zhang & Chen, 2007). In practice, we standardize all covariates to have
a mean of zero and standard deviation of one and all imaging measurements to have a
comparable scale. Then, we can choose a common bandwidth for all covariates and imaging
phenotypes.

2.3.2. Step 2: Iterative updates of parameter estimation related to patient group

Given the estimates B̂(s) and �̂�𝜖(s), we calculate ̂̄B, �̂�i(s), and {bi(s)}n
i=1 for all patients iteratively.

Specifically, given the estimates of B̄ and {b(r)i (s)}n
i=1 at iteration r, the WLS estimate of 𝜼i(s)

for each patient, denoted as �̃�(r+1)
i (s), is given by

m∑
k=1

ak(H, s){yi(sk) − B̂(sk)xi − ̂̄B
(r)

xib̃
(r)
i }. (9)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 17

Subsequently, given the estimate of 𝜼i(s) at iteration r + 1, the update of WLS estimate ̃̄B
(r+1)

is solved by using

̃̄B
(r+1)

= arg min
B̄

n∑
i=1

m∑
k=1

�̃�
(r+1)T
i,l �̂�−1

𝜖 (sk)�̃�
(r+1)
i,l , (10)

where �̃�(r+1)
i,l = yi(sk) − B̂(sk)xi − �̃�

(r+1)
i (sk) − B̄xib̃

(r+1)
i (sk).

In order to update the estimate of {bi(s)}n
i=1, the MRF-MAP estimation, an efficient method for

many practical applications (e.g., image segmentation (Zhang, Brady & Smith, 2001)), is adopted
here. First, given the current estimate �̃�(r) and 𝜏(r) at iteration r, the conditional probability density
function of yi(sk) given xi and bi(sk) is derived as yi(sk)|xi, bi(sk), �̃�

(r) ∼  (𝝁(r)
i (sk), �̃�

(r)(sk)),

where𝝁(r)
i (sk) = B̂(sk)xi + ̃̄B

(r)
xibi(sk) and �̃�(r)(sk) = �̃�(r)

𝜂 (sk, sk) + �̂�𝜖(sk). According to the MAP

criterion, the estimate b̃(r+1)
i is defined as

b̃(r+1)
i = arg max

bi

{ m∏
k=1

𝑓 (yi(sk)|zi, bi(sk), �̃�
(r))p(bi|𝜏(r))}. (11)

To obtain the optimal solution to (11), we adopt the iterated conditional modes (ICM)
algorithm (Besag, 1986), which uses a greedy iterative strategy for minimization. Convergence
is achieved after only a few iterations.

Finally, in Step 2, we update the estimate of 𝜏 given the estimate b̃(r)i . As 𝜏 in model
(2) is not the primary parameter of interest, we use an approximate but computation-
ally efficient method based on a pseudo-likelihood function. A key advantage of using the
pseudo-likelihood function is its computational simplicity; it does not involve the intractable
partition function. The pseudo-likelihood at the iteration r is a simple product of the conditional
likelihood

PL(b̃(r)) =
∏

{i∶zi≠0}

∏
sk∈S−𝜕S

PL(b̃(r)i (sk)|b̃(r)i ), (12)

where 𝜕 denotes the set of points at the boundaries of  , and PL(b̃(r)i (sk)|b̃(r)i )
is given by

exp
{
𝜏
∑

s𝑗∈Nk
𝛿(b̃(r)i (sk) − b̃(r)i (s𝑗))

}
exp

{
𝜏
∑

s𝑗∈Nk
𝛿(b̃(r)i (s𝑗))

}
+ exp

{
𝜏
∑

s𝑗∈Nk
𝛿(1 − b̃(r)i (s𝑗))

} .

The maximum pseudo-likelihood estimate 𝜏(r+1) can be obtained by solving

𝜕 ln PL(b̃(r), 𝜏)
𝜕𝜏

= 0. (13)

2.3.3. Step 3: EM algorithm for parameter estimation in SZIPM
Before we conduct the EM algorithm, a set of latent variables {𝜈k}m

k=1 are defined as
below

DOI: 10.1002/cjs.11595 The Canadian Journal of Statistics / La revue canadienne de statistique
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18 LIU AND ZHU Vol. 49, No. 1

𝜈k =

{
0, qk comes from the point mass distribution at 0,
1, qk comes from Poisson distribution Poisson(𝜆k).

(14)

Then, the complete weighted log-likelihood function is defined as

log L(𝜉𝜋(s), 𝜉𝜆(s)|{qk}m
k=1, {𝜈k}m

k=1) = log L(𝜉𝜋(s)|{qk}m
k=1, {𝜈k}m

k=1)

+ log L(𝜉𝜆(s)|{qk}m
k=1, {𝜈k}m

k=1), (15)

where

log L(𝜉𝜋(s)|{qk}m
k=1, {𝜈k}m

k=1) =
m∑

k=1

𝜈k(𝜉𝜋(s) − log(1 + e𝜉𝜋 (s)))KH(sk − s),

log L(𝜉𝜆(s)|{qk}m
k=1, {𝜈k}m

k=1) =
m∑

k=1

(1 − 𝜈k)(qk𝜉𝜆(s) − e𝜉𝜆(s))KH(sk − s).

Given the updates, 𝜉(r)𝜆 (sk) and 𝜉
(r)
𝜋 (sk), at iteration r, in the expectation step (E-step), the

conditional expectation of 𝜈k is derived as

E(𝜈k|qk, 𝜉
(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk)) =

{
1∕[1 + exp{−𝜉(r)𝜋 (sk) − e𝜉

(r)
𝜆
(sk)}], qk = 0,

0, qk > 0.
(16)

Then, we substitute E(𝜈k|qk, 𝜉
(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk)) from the E-step to 𝜈k in the complete weighted

log-likelihood function (16). At iteration r + 1, the update of 𝜉𝜆(s) in the maximization step
(M-step) is carried out by using the Newton–Raphson method. Specifically, 𝜉(r)𝜆 (s)(t+1) is given
by

𝜉
(r)
𝜆 (s)(t) +

∑m
k=1(1 − E(𝜈k|qk, 𝜉

(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk)))(qk − e𝜉

(r)
𝜆
(s)(t) )KH(sk − s)∑m

k=1(1 − E(𝜈k|qk, 𝜉
(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk)))e

𝜉
(r)
𝜆
(s)(t)KH(sk − s)

.

Similarly, we update 𝜉
(r)
𝜋 (s)(t+1) as follows:

𝜉
(r)
𝜋 (s)(t) −

∑m
k=1 E(𝜈k|qk, 𝜉

(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk))(1 + e𝜉

(r)
𝜋 (s)(t) )KH(sk − s)∑m

k=1 E(𝜈k|qk, 𝜉
(r)
𝜆 (sk), 𝜉

(r)
𝜋 (sk))𝜉

(r)
𝜋 (s)(t)KH(sk − s)

.

The 𝜉(r)𝜆 (s)(t+1) and 𝜉(r)𝜋 (s)(t+1) are replaced by 𝜉(r+1)
𝜆 (s) and 𝜉(r+1)

𝜋 (s) after the Newton–Raphson
method obtains convergence. The E-step and M-step are repeated until the difference
between log L(𝜉(r+1)

𝜋 (s), 𝜉(r+1)
𝜆 (s)) and log L(𝜉(r)𝜋 (s), 𝜉(r)𝜆 (s)) is smaller than a desired value,

such as 10−4.

2.4. Inference Procedure
After all the parameters are estimated, we carry out formal statistical inference on B(s) and B̄
in MVCM. In real applications, we are interested in testing (i) whether covariates of interest
locally (or globally) are associated with any region for normal controls and (ii) whether there is

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 19

any additional disease effect in specific regions. In each voxel, the hypothesis-testing problem
(i) can be written in the following general form:

H0(s) ∶ Cvec(BT (s)) = 0 vs. H1(s) ∶ Cvec(BT (s)) ≠ 0, (17)

where C is a J × Jp matrix with rank J, and vec(⋅) is the vectorization operator. A sequence of
Wald tests can be used here. The test statistic TB(s) for (20) can be written as

(Cvec(B̂T (s)))T [C(�̂�𝜂(s, s)⊗ (X0XT
0 )

−1)CT ]−1Cvec(B̂T (s)), (18)

where �̂�𝜂(s, s) can be obtained by the empirical covariance of {�̂�i(s)}
n0
i=1. The corresponding

P-values can be derived based on the asymptotic properties of the test statistics under H0. In
particular, under the null hypothesis, when the sample size is large enough, TB(s) approximately
follows a 𝜒2 distribution with J degrees of freedom. The false discovery rate (FDR) adjustment
method (Yekutieli & Benjamini, 1999) is also employed here to calculate the adjusted P-values
corrected for the multiple comparison problems (20).

To investigate the global effect of covariates of interest, a global test statistic TB is derived
from the local test statistics in (21):

TB = ∫S
TB(s)ds. (19)

The asymptotic distribution of TB under H0 is quite complicated, and it is difficult to directly
approximate the percentiles of TB under the null hypothesis (Zhu, Li & Kong, 2012). Instead,
the wild bootstrap method is considered here to obtain critical values of TB. The method consists
of the following four steps:

• Fit model (6) under H0 for all voxels on X0 and {Y(sk)}m
k=1, yielding B̂(sk), �̂�i(sk), �̂�i(sk), and

the global test statistic TB;
• Generate random variables 𝜏(l)i and 𝜏

(l)
i (sk) independently from the standard normal distribu-

tion N(0, 1) for k= 1, … , m, and then construct

y(l)i (sk) = B̂(sk)xi + 𝜏
(l)
i �̂�i(sk) + 𝜏

(l)
i (sk)�̂�i(sk), i = 1,… , n0;

• Based on X0 and {Y(l)(sk)}m
k=1, recalculate the global test statistic T (l)

B ;

• Repeat the previous two steps L times to obtain {T (1)
B ,… ,T (L)

B }, which yields the empirical
P-value as p =

∑L
l=1 1(T (l)

B > TB)∕L.

In this article, 1,000 bootstrap replications are generated, which have been shown to be
generally sufficient for type-I error control (Zhu, Li & Kong, 2012).

The hypothesis-testing problem (ii) can be written in the following general form:

H0 ∶ C̄vec(B̄) = 0 vs. H1 ∶ C̄vec(B̄) ≠ 0, (20)

where C̄ is a J × Jp matrix with rank J. A Wald test statistic can be written as

TB̄ = (C̄vec( ̂̄B))T [C̄Var[vec( ̂̄B)]C̄T ]−1C̄vec( ̂̄B), (21)

DOI: 10.1002/cjs.11595 The Canadian Journal of Statistics / La revue canadienne de statistique
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20 LIU AND ZHU Vol. 49, No. 1

which approximately follows a 𝜒2 distribution with J degrees of freedom under the null
hypothesis when the sample size is large enough. Here, the variance term Var[vec( ̂̄B)] in TB̄ can
be obtained via the wild bootstrap method as described in Huang et al. (2015), which proceeds
as follows:

1. Fit the model with the original data and retain the fitted mean values ŷi(sk) = B̂(sk)xi +
̂̄Bxib̂i(sk), individual values �̂�i(sk), and residuals �̂�i(sk) for i= 1, … , n and k= 1, … , m;

2. Generate random variables 𝜏
(l)
i and 𝜏

(l)
i (sk) independently from the standard normal

distribution N(0, 1) for k= 1, … , m and then construct yi(sk)(l) = ŷi(sk) + 𝜏
(l)
i �̂�i(sk) +

𝜏
(l)
i (sk)�̂�i(sk), i = 1,… , n;

3. Refit the model using the synthetic response variables yi(sk)(l) and retain the estimates ̂̄B
(l)

;

4. Repeat Steps 2 and 3 independently L times to derive ̂̄B
(1)
,… , ̂̄B

(L)
;

5. The bootstrap covariance matrix of vec( ̂̄B) is estimated by

1
L − 1

L∑
l=1

(
vec( ̂̄B

(l)
− ̂̄B

a
)
)(

vec( ̂̄B
(l)
− ̂̄B

a
)
)T

, ̂̄B
a
= L−1

L∑
l=1

̂̄B
(l)
.

It has been shown that 100 bootstrap replications (L= 100 in this article) are generally
sufficient for standard error estimation (Efron & Tibshirani, 1994).

3. RESULTS

In this section, we will examine the finite-sample performance of SDM for diseased region
detection through both simulation studies and real data analysis. Specifically, the ADNI
hippocampal surface data (Huang et al., 2017) are considered, where the data description and
processing procedures are described as below.

3.1. ADNI Data Description
Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging,
National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administra-
tion, private pharmaceutical companies, and nonprofit organizations as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of MCI and
early ADAD. Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians in developing new treatments and monitoring their
effectiveness, as well as lessening the time and cost of clinical trials. The principal investigator
of this initiative is Michael W. Weiner, MD, at the VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and subjects have been recruited from
over 50 sites across the United States and Canada. The goal was to recruit 800 subjects, but
the initial study (ADNI-1) has been followed by ADNI-GO and ADNI-2. To date, these three
protocols have recruited over 1,500 adults, aged 55–90, to participate in the research, consisting
of cognitively normal older individuals, people with early or late MCI, and people with early
AD. The follow-up duration of each group is specified in the protocols for ADNI-1, ADNI-2,

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 21

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be
followed in ADNI-2. For up-to-date information, see www.adni-info.org.

3.2. Data Processing
In this data analysis, we included 798 MRI scans from healthy controls and individuals
with AD or MCI (186 AD, 388 MCI, and 224 healthy controls) from ADNI-1. The scans
(from 336 men and 462 women, aged 75.42± 6.83 years), which were performed on a
variety of 1.5 Tesla MRI scanners with protocols individualized for each scanner, include
standard T1-weighted images obtained using volumetric three-dimensional sagittal MPRAGE
or equivalent protocols with varying resolutions. The typical protocol includes: repetition
time = 2,400 ms, inversion time = 1,000 ms, flip angle = 8o, and field of view = 24 cm,
with a 256× 256× 170 acquisition matrix in the x−, y−, and z−dimensions, which yields
a voxel size of 1.25× 1.26× 1.2 mm3. We processed the MRI data by using standard
steps, including anterior commissure and posterior commissure correction, skull-stripping,
cerebellum removing, intensity inhomogeneity correction, segmentation, and registration.
Subsequently, we carried out automatic regional labeling by labeling the template and by
transferring the labels following the deformable registration of subject images. After labeling
93 regions of interests (ROIs), we were able to compute volumes for each ROI for each
subject.

We adopted a hippocampal subregional analysis package based on surface fluid registration
(Shi et al., 2013) that uses isothermal coordinates and fluid registration to generate one-to-one
hippocampal surface registration for computing the surface statistics. Then, we computed the
various surface statistics on the registered surface, such as multivariate statistics, which retain
the full tensor information of the deformation Jacobian matrix, together with the radial distance,
which retains information on the deformation along the surface normal direction. More details
can be found in Wang et al. (2011).

3.3. Simulation Studies
We generated the data from the following model:

yi(s) = B0(s) + B1(s)xi1 + B2(s)xi2

+ (B̄0(s) + B̄1(s)xi1 + B̄2(s)xi2)bi(s) + 𝜼i(s) + 𝝐i(s), (22)

where the image responses include both (i) the determinant of the deformation Jacobian matrix
and (ii) the radial distance at each vertex from the left hippocampal surface, while the predictors
include gender (xi1) and normalized age (xi2). In order to mimic the hippocampal surface data,
the true values of parameters in (26) were learned from the real data itself. Specifically, we
first fitted the MVCM below to the left hippocampal surface data of all the normal controls in
ADNI-1,

yi(s) = B0(s) + B1(s)xi1 + B2(s)xi2 + 𝜼i(s) + 𝝐i(s). (23)

Then, we used the obtained parameter estimators of coefficient functions (B𝑗(s), 𝑗 = 0, 1, 2)
and covariance functions (𝚺𝜂(s, s′)) and 𝚺𝜖(s, s′))) as their true values in (26). Next, the
covariates xi1 and xi2 in (26) were generated according to their data types, that is, xi1 was
generated from a Bernoulli distribution with parameter p= 0.5, while xi2 was generated from a
uniform distribution U(0, 1). For the stochastic terms in (26), the individual function 𝜼i(s) and
measurement error function 𝝐i(s) were generated from the Gaussian process with mean function
0 and covariance function 𝚺𝜂(s, s′) and 𝚺𝜖(s, s′), respectively. Moreover, for the additional
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22 LIU AND ZHU Vol. 49, No. 1

FIGURE 3: Predefined diseased regions, initial detection result (K-means clustering), and final detection
result (SDM) for three randomly selected subjects.

effects in diseased regions in (26), the elements in matrix B̄ were generated from a uniform
distribution U(− 0.5,− 0.1). For the simulated patterns in diseased regions, to mimic the AD
disease region pattern on hippocampal surfaces, the predetermined diseased regions located
in the subregions are more likely to be affected by AD (e.g., CA1 subregion, see Frisoni
et al. (2008)). Specifically, the diseased patients were divided into three subgroups in terms of
their diseased region patterns: For each patient in subgroup 1, one diseased region with a square
shape was designated in the CA1 subregion, and the corresponding side length was generated
from U(3, 6); for each patient in subgroup 2, one diseased region with a circle shape was
designated in the tail subregion, and the corresponding diameter was generated from U(3, 6);
for each patient in subgroup 3, two diseased regions with a circle shape were designated in the
head subregion, and the corresponding diameters were independently generated from U(3, 6).
For all the three groups, the number of vertices within each diseased region is approximately
between 250 and 900. Thus, the number, location, shape, and size of diseased regions varied
across different subgroups. In column 1 of Figure 3, the predefined diseased regions for subjects
randomly selected from three different subgroups were presented. For the patients within the
same subgroup, the center of each diseased region was randomly shifted with a unit vertex
size at each direction. Finally, we generated 60 diseased patients and 60 normal controls, and
the corresponding signal-to-noise ratio (SNR) is 12.235. Compared to the SNR for the left
hippocampal surface data, (13.541), it means that our simulated data are close to the real data in
terms of SNR.

We applied SDM to detect the diseased regions in each subject, where the K-means clustering
method was adopted to obtain the initial detection results. Specifically, for each subject, the
observed features were resized into an m× J matrix. Then, the classical K-means was applied
to this matrix with the number of clusters prespecified as 2. The K-means clustering results
for the three selected subjects were shown in column 2 from Figure 3. The final detection

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 23

results for the subjects selected are presented in column 3 of Figure 3. For all the selected
subjects, the diseased regions can be successfully detected with few misclassifications in the
results.

Apart from the K-means method, we also include two other approaches for comparison: (i)
vertex-wise DSM that adopts linear regression model instead of MVCM and (ii) hidden Markov
model (HMM). For the first approach, all the coefficients in the first components of SDM were
estimated at each vertex, while the HMRFM was still used to model the individual diseased
regions. For the second approach, a linear regression model was considered at each voxel for all
normal subjects as follows:

yi(sk) = B(sk)xi + 𝝐i(sk), k = 1,… ,m, (24)

where errors 𝝐i(sk)s’ were assumed to be independent across subjects and voxels with mean 0
and finite homogeneous variance. After fitting model (28), voxel-wised residual terms for each
diseased patient were calculated via

�̃�i(sk) = yi(sk) − B̃(sk)xi, i = n0 + 1,… , n. (25)

Furthermore, for diseased patients, residual terms were modelled by using a Gaussian HMM as
follows:

�̃�i(sk) ∼ N(𝝁bi(sk), 𝜎2I), (26)

where bi follow the Potts model in (2) with parameter 𝜏. Here, 𝝁, 𝜏, and bi were estimated,
respectively, via the EM algorithm, the pseudo-likelihood method, and the MAP estimate
method described in Section 2. To compare the average detection performance of K-means,
HMM, vertex-wise SDM, and SDM, the adjusted Rand index (ARI) was calculated for each
subject. For the adjusted Rand index, a higher value indicates a more accurate detection result.
The detailed definition of ARI is included in the Appendix. Simulation results based on all
the subjects are presented in Figure 4. In terms of both mean value and variability of ARI,
SDM outperforms the other three methods, which indicates that it performs very well in the
diseased region detection. In particular, due to the functional data analysis tools in our SDM,
the estimation variability was reduced compared to that in vertex-wise SDM, leading to higher
performance in terms of the average ARI.

Next, we investigated the Type I error rate and power of test statistics (22) and (24). First,
for the covariate “age” (xi2), we set the corresponding coefficient function to B∗

2(s) = aB2(sk),
where B2(sk) is the obtained parameter estimators that were used as the true values in previous
simulation setting, and a is a scalar to be specified later. Here, we were interested in the following
hypothesis-testing problem

H0 ∶ vec(B∗
2(s)) = 0 ∀ s, vs. H1 ∶ vec(B∗

2(s)) ≠ 0 for at lease one s. (27)

We set a= 0 to assess the Type I error rate for TB in (22) and set a = 0.2, 0.4, 0.6, 0.8, and
1 to examine the power of TB. Second, for the diseased region-related coefficient, we set it as
B̄∗ = cB̄c, where the elements in B̄c were generated from the uniform distribution U(− 0.5,− 0.1),
and c is a scalar to be specified later. Here, another hypothesis-testing problem was considered
as follows:

H0 ∶ vec(B̄∗) = 0 vs. H1 ∶ vec(B̄∗) ≠ 0. (28)

We set c= 0 to assess the Type I error rate for TB̄ in (24) and set c = 0.2, 0.4, 0.6, 0.8, and 1
to examine the power of TB̄. For each situation, the significance levels were set to 𝛼 = 0.05 and
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24 LIU AND ZHU Vol. 49, No. 1

FIGURE 4: Adjusted Rand index (ARI) of detection results for four different methods: K-means clustering
method, HMM, vertex-wise SDM, and SDM.

FIGURE 5: Simulation results: power curve for testing problem (31) with different choices of c in B∗
2(s)

(left panel) and testing problem (32) with different choices of c in B̄∗ (right panel).

𝛼 = 0.01, and 500 bootstrap replications were generated to construct the empirical distribution
of TB under H0.

Figure 5 depicts the power curves for both test statistics. It can be seen that the Type I
error rates for TB and TB̄ are accurate at both significance levels (𝛼 = 0.01 or 0.05), while the
testing power is reasonable for both test statistics when the corresponding effect size becomes
larger.

Finally, besides the individual diseased region detection, our SDM was also applied to
construct the disease map at the whole population level, which is presented in Figure 6 (a). For
the purpose of comparison, two alternative approaches are considered here: (i) vertex-wise SDM

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11595
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 25

FIGURE 6: Group-level disease map for three different methods: (a) disease probability from SDM, (b)
disease probability from vertex-wise SDM, and (c) FDR-adjusted −log10(p) value map for hypothesis

testing (34) based on MVCM.

and (ii) local hypothesis testing in MVCM. The group-level disease map based on vertex-wise
SDM was calculated and presented in Figure 6 (b). According to the disease maps, both SDM and
vertex-wise SDM successfully detected the disease pattern in each of the three groups. However,
our SDM shows better performance as the disease probability in the predefined diseased pattern
is higher than that based on vertex-wise SDM and is very close to the empirical probability, that
is, 0.33. For the second approach, we introduced a dummy variable xi3 indicating whether the ith
subject is a patient or not. Then, the varying coefficient model is written as

yi(s) = B0(s) + B1(s)xi1 + B2(s)xi2 + B3(s)xi3 + 𝜼i(s) + 𝝐i(s), (29)

where 𝜼i(s) and 𝝐i(s) have the same assumptions as those in model (1). In order to derive the
group-level disease map, the following local hypothesis-testing problem is considered at each
sk, k = 1,… ,m,

H0 ∶ vec(B3(s)) = 0 , vs. H1 ∶ vec(B3(s)) ≠ 0. (30)

The FDR-adjusted −log10(p) values across all vertices based on (33) are shown in Figure 6
(c). Compared to the previous two approaches, the group-level disease map based on the local
hypothesis testing fails to accurately detect all the predefined group disease patterns. Therefore,
our SDM also performs very well in building the group-level disease map.

3.4. ADNI Hippocampal Surface Data Analysis
The proposed SDM was used to detect the diseased regions in this dataset. In SDM, we set
x =(1, Gender, Age). Four local features were considered, including the logged radial distance
and multivariate TBM statistics (details in Shi et al. (2013)). The local feature maps of logged
radial distance and multivariate TBM statistics for three randomly selected subjects (one normal
control, one MCI, and one AD) are presented in Figure 7.

After extracting the local feature maps, we applied MVCM across all normal control subjects,
and the estimates of coefficient functions associated with the covariates gender and age are
presented in Figure 8. In order to test whether the covariates of interest (gender and age) locally
or globally affect the regions for normal controls, the local and global Wald test statistics were
calculated. The adjusted −log10(p) values across all vertices are shown in Figure 9, while the
global P-value related to each covariate is listed as well. To calculate the distribution percentile
of the global test statistic under the null hypothesis, the wild bootstrap method was adopted to
construct the empirical distribution of test statistic under H0. It indicates that, compared to the
gender effect, the age effect is more significant in terms of the local features across the left and
right hippocampal surfaces.
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FIGURE 7: ADNI hippocampal surface data analysis: local feature maps of logged radial distance and
multivariate TBM statistics for three randomly selected subjects (one normal control, one MCI, and one

AD).

Then, we applied SDM to the local feature maps from both MCI and AD patients. The
inference results of B̄ were presented in Table 1. For the diseased regions, the detection results
of one randomly selected MCI patient and one randomly selected one AD patient were plotted in
Figure 10, in which the red area indicates the detected diseased region. The disease maps for some
subgroups were also estimated. Note that AD is considered to be younger-onset Alzheimer’s if
it affects a person under 65 years of age (Batsch & Mittelman, 2015). In this article, it is critical
to investigate the difference between younger-onset AD patients and other AD patients in terms
of their group-level disease map. Actually, eight different subgroups were considered here: (i)
male MCI with age below 65 years, (ii) male MCI with age above 65 years, (iii) male AD with
age below 65 years, (iv) male AD with age above 65 years, (v) female MCI with age below 65
years, (vi) female MCI with age above 65 years, (vii) female AD with age below 65 years, and
(viii) female AD with age above 65 years.

Figure 11 presents the estimated disease maps. It can be found that: (a) the disease patterns
are different between MCI and AD groups; (b) the disease patterns are different between
younger-onset Alzheimer’s and ADs; and (c) the disease patterns are different between left and
right hippocampal surfaces, indicating the hippocampal asymmetry (Shi et al., 2009).

For comparison, here, we also calculated the disease map based on the hypothesis-testing
problem (34) for model (33). Both the MCI group and the AD group were compared with the
normal controls, and the FDR-adjusted −log10(p) values across all vertices are presented in
Figure 12. In order to further compare those two approaches, we investigated specific subregions
corresponding to the disease mapping based on the cytoarchitectonic subregions (Figure 13)
mapped on blank MR-based models at 3T of the hippocampal formation (Duvernoy, 2005;
Frisoni et al., 2008). Compared to the results based on the hypothesis-testing method, all the
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 27

FIGURE 8: ADNI hippocampal surface data analysis: parameter estimation for covariates of interest (top:
gender; bottom: age).

FIGURE 9: ADNI hippocampal surface data analysis: local adjusted−log10(p) values associated to covariates
of interest (column 1: gender; column 2: age). The global P-values are listed below the local P-value maps.
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TABLE 1: Hypothesis testing results of B̄

Left hippocampal surface

Covariate Parameter Estimation Standard error −log10(p) value

Gender B̄12 −0.0269 0.0033 1.9324

B̄22 −0.0677 0.0081 1.2257

B̄32 −0.0318 0.0029 0.8901

B̄42 0.0374 0.0027 0.9062

Age B̄13 −0.0788 0.0075 4.3138

B̄23 −0.0874 0.0094 3.9866

B̄33 −0.0264 0.0026 2.7935

B̄43 −0.0336 0.0030 3.5263

Right hippocampal surface

Covariate Parameter Estimation Standard error −log10(p) value

Gender B̄12 −0.0291 0.0033 1.0035

B̄22 0.0022 0.0005 0.2717

B̄32 −0.0011 0.0009 0.1990

B̄42 0.0044 0.0011 0.3167

Age B̄13 −0.0690 0.0048 3.9711

B̄23 −0.0092 0.0013 0.4323

B̄33 −0.0020 0.0008 0.5292

B̄43 −0.0050 0.0007 0.3308

FIGURE 10: ADNI hippocampal surface data analysis: detection results obtained from two randomly
selected subjects (column 1: MCI patient; column 2: AD patient).
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 29

FIGURE 11: ADNI hippocampal surface data analysis: disease map for different subgroups (top: male;
bottom: female).

risky subregions detected by SDM are found in the CA1 subfield, some are found on the
lateral and medial aspects of the tail (CA1 subfield), and others are found on the dorso-
lateral aspect of the head (CA1 subfield). It is interesting to note that volumes of similar
hippocampal subregions were found to be affected in AD (Frisoni et al., 2008), indicat-
ing that the results obtained from SDM agree with those of previous work. Therefore, the
detected diseased regions are meaningful and may be treated as potential imaging biomarkers
for AD.
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30 LIU AND ZHU Vol. 49, No. 1

FIGURE 12: ADNI hippocampal surface data analysis: FDR-adjusted −log10(p) value maps for two group
comparisons: (a) MCI versus NC and (b) AD versus NC.

FIGURE 13: ADNI hippocampal surface data analysis: cytoarchitectonic subregions mapped on blank
MR-based models at 3T of the hippocampal formation (Duvernoy, 2005; Frisoni et al., 2006; Frisoni

et al., 2008).

4. CONCLUSION AND DISCUSSION

In this article, we have developed a novel SDM framework to address the challenges stemming
from disease heterogeneity at both the group and individual scales. Our SDM included two
components: (i) an image-on-scalar regression model that integrates HMRFM and MVCM
and (ii) a disease regression model SZIPM. Specifically, the functional data analysis tools in
MVCM can help SDM capture spatial smoothness and correlation in local feature maps across
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2021 SDM FOR HETEROGENEOUS NEUROIMAGING STUDIES 31

subjects; the HMRFM can detect individual diseased regions; and the DRM can capture the
disease pattern within specific subgroups. Both simulation studies and real data analysis have
revealed that SDM can efficiently delineate imaging heterogeneity at both global and local
scales.

Some important issues need to be addressed in future research. First, in our SDM, the SZIPM
is a subsequent analysis based on the estimation procedure in the first component of SDM.
Compared to the vertex-wise analysis, our SDM builds the group-level disease map through
the detected subject-specific diseased regions instead of hypothesis testing-based methods,
which indicates that SDM is insensitive to the potential imaging heterogeneity. However, this
framework has a drawback that the latent variables {bi(s)}n

i=1 are double modelled in SDM, that
is, HMRFM and SZIPM are adopted to model the latent variables in each of the two components
in SDM, respectively. However, the relationship between these two models has not been well
investigated, which will be one of our future research topics, a few efficient joint analysis
frameworks will also be investigated.

Second, in order to detect the subject-specific diseased region detection, an HMRFM, the
Potts model, is considered in the first component of SDM. Although some other models such
as Ising model (Shu, Nan & Koeppe, 2015) can be applied here instead, the Potts model in
this article has a simple Gibbs form and shows great performance in both simulation studies
and real data analysis in terms of diseased region detection. However, for a more complicated
imaging dataset in the future, this simple structure may not be enough. In that case, some weakly
supervised learning method, such as multiple instance learning (Zhou, 2018), will be considered
to discover the potential individual disease patterns.
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APPENDIX

The estimation procedure for Steps 1 and 2 is summarized below.

Algorithm 1. Estimation procedure for Step 1 and Step 2

Input Data: {yi(sk)}m
k=1, xi, zi, i = 1,… , n

Initialize random effects (K-means): {b̃(0)i }n
i=1

WLS method for normal controls:
{B̂(sk), �̂�𝜂(sk), �̂�𝜖(sk), �̂�i(sk)}m

k=1, i = 1,… , n0

Initialize estimation {�̃�(0)i (sk)}m
k=1 and ̃̄B

(0)
for patients

Repeat (r ≥ 0)
• Update {b̃(r+1)

i }n
i=n0+1 via MRF-MAP method

• Update 𝜏(r+1) via pseudo-likelihood method
• Update ̃̄B(r+1) and {�̃�(r+1)

i (sk)}m
k=1 via WLS method

End repeat
Output: detection results {b̂i(sk)}m

k=1 for each patient
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The estimation procedure for Step 3 is summarized below.

Algorithm 2. Estimation Procedure for Step 3

Input Data: detection results {qk =
∑n

i=1 b̂i(sk)𝛿i}m
k=1 for subgroup of interest

Initialize estimation {𝜉(0)
𝜆
(sk)}m

k=1 and {𝜉(0)𝜋 (sk)}m
k=1

EM algorithm (iteration r)
• E-step: calculate E(𝜈k|qk, 𝜉

(r)
𝜆
(sk), 𝜉

(r)
𝜋 (sk)), k = 1,… ,m

• M-step: update 𝜉
(r+1)
𝜆

(s) and 𝜉
(r+1)
𝜋 (s) via Newton–Raphson method

End iteration
Output: disease mapping in (5) for subgroup of interest

Adjusted Rand index (ARI)
Given a set of n objects and two groupings or partitions (i.e., one is the detection result, and

the other is ground truth) of these elements, namely, X = {X1, X2} and Y = {Y1, Y2}, the number
of objects in common between Xi and Yj is defined as nij =Xi ∩Yj, i= 1, 2, j= 1, 2. Then, the
original ARI using the permutation model is

ARI =

∑2
i=1

∑2
𝑗=1

(
ni𝑗
2

)
−
[∑2

i=1

(
ai
2

)][∑2
𝑗=1

(
b𝑗
2

)]
∕
(

n
2

)
1
2

[∑2
i=1

(
ai
2

)
+
∑2

𝑗=1

(
b𝑗
2

)]
−
[∑2

i=1

(
ai
2

)][∑2
𝑗=1

(
b𝑗
2

)]
∕
(

n
2

) ,
where ai = ni1 + ni2, i= 1, 2, and bj = n1j + n2j, j= 1, 2.
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