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More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging,
genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenera-
tive disorders. Several major big-data challenges arise from testing genome-wide (NC N 12 million known vari-
ants) associations with signals at millions of locations (NV ~ 106) in the brain from thousands of subjects
(n ~ 103). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS)
framework to efficiently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three com-
ponents including a heteroscedastic linear model, a global sure independence screening (GSIS) procedure, and a
detection procedure based onwild bootstrapmethods. Specifically, for standard linear association, the computa-
tional complexity isO (nNVNC) for voxelwise genomewide association analysis (VGWAS)method comparedwith
O ((NC + NV)n2) for FVGWAS. Simulation studies show that FVGWAS is an efficient method of searching sparse
signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have suc-
cessfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects,
193,275 voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645 s for a single
CPU. Our FVGWASmay be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rap-
idly advancing with ultra-high-resolution imaging and whole-genome sequencing.

© 2015 Elsevier Inc. All rights reserved.
Introduction

With the advent of both imaging and genotyping techniques, many
large biomedical studies have been conducted to collect imaging
and genetic data and associated data (e.g., clinical data) from in-
creasingly large cohorts in order to delineate the complex genetic
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du/wp-content/uploads/how_
andenvironmental contributors tomany neuropsychiatric and neurode-
generative diseases, such as schizophrenia. Understanding such genetic
and environmental factors is an important step for the development of
urgently needed approaches to the prevention, diagnosis, and treatment
of these complex diseases. Such studies and research projects include
the Philadelphia Neurodevelopmental Cohort (PNC), the Alzheimer's
Disease Neuroimaging Initiative (ADNI), and the Longitudinal Study of
Early Brain Development (LSEBD), among others (NIH; Durston, 2010;
Shen et al., 2010; Satterthwaite et al., 2014; Gilmore et al., 2010;
Knickmeyer et al., 2014). These initiatives have generated many high-
dimensional and complex data sets, referred to as big data, whose size
is beyond the ability of commonly used software tools to capture, man-
age, and process data within a tolerable elapsed time. The real-time and
proper analysis of such big data requires the development of fast and ef-
ficient data analysis methods.

There are three groups of methods for jointly analyzing imaging
measurements and genetic variations. The first group focuses on candi-
date phenotypes and/or candidate genotypes using pre-screenmethods
or variable selection methods (Braskie et al., 2011). To adopt these ap-
proaches, one must have prior knowledge of the disease pathology in
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order to choose proper region of interest in imaging data or potential
genetic variation of interest. The second group of methods performs
voxel-wise genomic-wide association analysis that repeatedly fits a uni-
variate model (e.g., linear regression model) to each voxel and single-
nucleotide polymorphism (SNP) (or gene) pair following with multiple
comparison adjustment to control for false positive finding (Hibar et al.,
2011; Shen et al., 2010; Ge et al., 2012a).

The third group ofmethods is to fit a very bigmodel accommodating
all (or part of) genetic variation and imaging measurements (Vounou
et al., 2010, 2012; Zhu et al., 2014;Wang et al., 2012a,b). Thesemethods
use penalization-based method and sparse regression techniques, such
as Lasso, to select putative genetic markers and affected voxels. Never-
theless, this group of methods often cannot provide p-values and it usu-
ally results in a relatively small number of scattered voxels in imaging
space.

RunningVGWAS poses significant computational challenges, includ-
ing limited computermemory, finite CPU speed, and limited CPU nodes,
since it usually runs genome-wide (NC ~ 106 known variants) associa-
tions with signals at millions of locations (NV ~ 106) in the brain. It
leads to a total of NCNV (~1012) massive univariate analyses and an
expanded image × gene search space with NCNV elements (Medland
et al., 2014; Thompson et al., 2014; Liu and Calhoun, 2014). As demon-
strated in Stein et al. (2010), it took 300 high performance CPU nodes
running approximately 27 h to perform VGWAS analysis based on sim-
ple linear models with only a few covariates to process an imaging ge-
netic dataset with 448,293 SNPs and 31,622 voxels in the brain of each
of 740 subjects. As demonstrated in Hibar et al. (2011), it took 80 high
performance CPU nodes running approximately 13 days to perform
VGWAS analysis based on simple linear models with only a few covari-
ates to process an imaging genetic dataset with 18,044 genes and
31,622 voxels in the brain of each of 740 subjects. One can imagine
the computational challenges associated with VGWAS when the imag-
ing genetics is advanced to the use of both ultra-high-resolution imag-
ing (NV ~ 107) and whole-genome sequencing (NV ~ 108). A critical
question is whether any scalable statistical method can be used to per-
form VGWAS efficiently for both imaging and genetic big data obtained
from thousands of subjects.
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The aim of this paper is to develop a Fast Voxelwise Genome Wide
Association analysiS (FVGWAS) framework to efficiently carry out
voxel-wise genomic-wide association (VGWAS) analysis. A schematic
overview of FVGWAS is given in Fig. 1. There are four methodological
contributions in this paper. The first one is to use a heteroscedastic lin-
ear model, which does not assume the presence of homogeneous vari-
ance across subjects and allows for a large class of distributions in the
imaging data. These features are desirable for the analysis of imaging
measurements, because between-subject and between-voxel variability
in the imaging measures can be substantial and the distribution of the
imaging data often deviates from the Gaussian distribution (Salmond
et al., 2002; Zhu et al., 2007). The second one is to develop an efficient
global sure independence screening (GSIS) procedure based on global
Wald-test statistics, while dramatically reducing the size of search
space from NCNV to ~N0NV, in which N0 ≪ NC. The GSIS procedure ex-
tends the notorious sure independence screening method (Fan and Lv,
2008; Fan and Song, 2010) from univariate responses to ultra-high di-
mensional responses. The third one is to use wild-bootstrap methods
to testing hypotheses of interest associated with image and genetic
data. In addition, the wild bootstrap methods do not involve repeated
analyses of simulated datasets and therefore is computationally cheap.
Moreover, the wild bootstrap method requires neither complete ex-
changeability associated with the standard permutation methods nor
strong assumptions associated with random field theory. The fourth
one is to reduce the computational complexity fromO (nNVNC) for stan-
dard VGWAS in (Stein et al., 2010) to O ((NC + NV)n2) for FVGWAS.
When n ≪ min (NC, NV), we have O((NC + NV)n2) = O(nNVNC) ×
(nNC

−1 + nNV
−1), leading to a computational gain at the order of

O (min (NC, NV) / n). Such computational gain makes it possible to run
VGWAS on a single CPU. Finally, we will develop companion software
for FVGWAS and release it to the public through http://www.nitrc.org/
and http://www.bios.unc.edu/research/bias.

The paper is organized as follows. Section 2 describes the three
components of FVGWAS including a heteroscedastic linear model in
Section 2.1, a global sure independence screening (GSIS) procedure in
Section 2.2, and a detection procedure based onwild bootstrapmethods
in Section 2.3. In Section 3, we evaluate the finite-sample performance
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and computational efficiency of FVGWAS by using simulation studies
and a real data analysis. In Section 4, some conclusions and discussions
are provided.

Method

Suppose we observe a set of imaging measurements, clinical vari-
ables, and genetic markers from n unrelated subjects. LetV be a selected
brain region with NV voxels and v be a voxel in V . Let C be the set of
NC SNPs and c be a locus in C. For each individual i (i= 1,…, n), we ob-
serve an NV × 1 vector of imaging measurements, denoted by Yi ¼
yi vð Þ : v∈Vf g, a K × 1 vector of clinical covariates xi = (xi1, ⋯, xiK)T,
and an L × 1 vector zi(c) = (zi1(c), ⋯, ziL(c))T for genetic data at the c-
th locus. For notational simplicity, only univariate image measurement
(e.g., no tensors) is considered here.

The objective of this paper is to develop FVGWAS to efficiently carry
out voxel-wise genomic-wide association analysis (VGWAS). As
discussed above, since standard VGWAS consists of NVNC massive uni-
variate analyses for all possible combinations of (c, v), it is computation-
ally challenging and intensive to compute all NVNC test statistics and to
store and manage all NC test statistic images in limited computer hard
drive. To solve these computational bottlenecks, we propose FVGWAS
with three major components including:

• (I) a heteroscedastic linear model;
• (II) a global sure independence screening procedure;
• (III) a detection procedure based on wild bootstrap methods.

We elaborate on each of these components below.

FVGWAS (I): heteroscedastic linear model

We consider a heteroscedastic linear model (HLM) consisting of
a heteroscedastic linear model at each voxel and a very flexible covari-
ance structure. At each voxel v in V , yi(v) can be modeled as a
heteroscedastic linear model given by

yi vð Þ ¼ xTi β vð Þ þ zi cð ÞTγ c; vð Þ þ ei vð Þ for i ¼ 1;⋯;n; ð1Þ

where β(v) = (β1(v), ⋯, βK(v))T is a K × 1 vector associated with non-
genetic predictors, and γ(c, v)= (γ1(c, v),⋯, γL(c, v))T is an L× 1 vector
of genetic fixed effects (e.g., additive or dominant). Moreover, ei(v) are
measurement errors with zeromean and ei vð Þ : v∈Vf gare independent
across i. The spatial covariance structure of HLM assumes that ei ¼
ei vð Þ : v ∈Vf g has zeromean and a heterogeneous covariance structure,
that is, Cov(ei) may vary across subjects. Since we do not impose any
smoothness assumption on the covariance matrix of ei as a function of
v, HLM should be desirable for the analysis of real-world imaging mea-
surements, which commonly have large variation across the image ×
gene search space. Therefore, the assumptions of HLM aremuchweaker
than those of random field theory Hayasaka et al., 2004; Worsley et al.,
2004; Hayasaka and Nichols, 2003.

Most GWAS focuses on the use of test statistics for a given pheno-
type to test the null hypothesis of no association at each loci. Here, we
need to test

H0 c; vð Þ : γ c; vð Þ ¼ 0 versus H1 c; vð Þ : γ c; vð Þ ≠ 0 for each c; vð Þ: ð2Þ

We introduce the standardWald-test statistic as follows. Let Y(v) =
(y1(v), ⋯, yn(v))T and PX = X(XTX)−1XT be the projection matrix of
model (1), where X = (x1, ⋯, xn) is a K × n matrix. Similar to Zhu
et al. (2007), we calculate an ordinary least squares estimate ofγ(c, v), denoted by ~γ c; vð Þ, given by

~γ c; vð Þ ¼ ZT
c In−PXð ÞZc

n o−1
ZT
c In−PXð ÞY vð Þ; ð3Þ
where In is an n× n identitymatrix, Zc=(z1(c),⋯, zn(c)) is an L× nma-
trix. Ignoring heteroscedasticity inmodel (1) leads to an approximation
of Cov ~γ c; vð Þð Þ given by

Cov ~γ c; vð Þð Þ≈ σ2
e c; vð Þ ZT

c In−PXð ÞZc

n o−1
; ð4Þ

where σe
2(c, v) is the variance of ei(v) under the homogeneous assump-

tion of model (1). To test whether γ(c, v) = 0 or not, we calculate a
Wald-type statistic as

W c; vð Þ ¼ ~γ c; vð ÞT Cov ~γ c; vð Þð Þf g−1~γ c; vð Þ
¼ tr ZT

c In−PXð ÞZc

n o−1
ZT
c In−PXð Þσ−2

e c; vð ÞY vð ÞY vð ÞT In−PXð ÞZc

� �
:

ð5Þ

Under the heterogeneity assumption of model (1), one may not use
standard approximations based on the χ2(L) (or F) distribution to ap-
proximate the null distribution of W (c, v). As shown below, we can
use the wild bootstrap method to approximate the null distribution of
W (c, v) even under such assumption for model (1), which can be desir-
able for real-world imaging data.

Several big-data challenges arise from the calculation of W (c, v) as
follows.

• (B1) Calculating σe
2(c, v) across all (c, v)s' can be computationally

intensive.
• (B2) Holding allW (c, v) in the computer hard drive requires substan-
tial computer resources.

• (B3) Speeding up the calculation of W (c, v).

As shown below, the complexity of computing {σe
2(c, v),W(c, v)} is

at the order of NCNVn
2. Therefore, it is almost impossible to run a

voxel-wise genome-wise association analysis in a single CPU.
To solve these computational bottlenecks, we propose two solutions

as follows.

• (S1) Calculate σe
2(c, v) under the null hypothesis H0(c, v) for each v

and c.
• (S2) Develop a GSIS procedure to eliminatemany ‘noisy’ loci based on
a global Wald-type statistic.

By using (S1) and (S2), we are able to reduce the computational
complexity from O (NCNVn) to O ((NC + NV)n2).

The key idea of (S1) is to estimate σe
2(c, v) under the global null hy-

pothesis γ(c, v) = 0, which is similar to the well-known score test sta-
tistic. Under H0 (c, v), we compute an unbiased estimate of σe

2(c, v),

denoted by σ̂2
e c; vð Þ, given by

σ̂2
e c; vð Þ ¼ Y vð ÞT In−PXð ÞY vð Þ= n−Kð Þ: ð6Þ

Since σ̂ 2
e c; vð Þ is invariant across all loci, we only need to calculate

σ̂ 2
e c; vð Þ at each voxel v and denote it as σ̂ 2

e vð Þ from now on. The com-

putational complexity of computing σ̂2
e vð Þ is O (n), and thus the total

complexity of computing all σ̂2
e vð Þ

n o
equals O (NVn). Therefore, com-

puting σ̂2
e vð Þ

n o
is about min (NV, NC) times faster than estimating

σe
2(c, v) under H1 (c, v) for all possible (c, v). We will elaborate (S2) in

the next subsection.

FVGWAS (II): a global sure independence screening procedure

The key idea of (S2) is to extend the sure independence screening
(SIS) procedure (Fan and Lv, 2008; Fan and Song, 2010; He and Lin,
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2011). The key idea of GSIS is to first reduce the dimension from a very
large scale to a moderate scale, and then select significant (c, v) pairs by
using an approximationmethod. Specifically, wewill use a globalWald-
type statistic to eliminatemany ‘noisy’ loci (no effect), since it is expect-
ed that only a small number of causal genetic markers contribute to the
imaging phenotypic measures. The global Wald-type statistic at locus c
is defined as

W cð Þ ¼ N−1
V tr ZT

c In−PXð ÞZc

n o−1
ZT
c In−PXð Þ

X
v∈V

σ̂ e vð Þ−2Y vð ÞY vð ÞT
( )

In−PXð ÞZc

( )
:

ð7Þ

The statisticW(c) is an average ofW(c, v) across all v ∈ V or an inte-
gration of W(c, v) over v ∈ V. We choose W(c) since detecting wide-
spread genetic effects is more powerful and meaningful than testing
for focal effects in neuroimaging. At a given locus c, V can be
decomposed as the union of a true genetic effect region, denoted by
VS cð Þ, and a false genetic effect region, denoted by VUS cð Þ, such that V ¼
VS cð Þ∪VUS cð Þ and VS cð Þ∩VUS cð Þ ¼ ∅. If the volume of VS cð Þ is relatively
large and signals in VS cð Þ are moderate, then the value of W(c) should
be relatively large. Biologically, it is expected that important genetic
markers should be associated with relatively large regions of interest
(ROIs). However, a possible shortcoming of using W(c) is that we may
miss some loci with moderate signals in a small genetic effect region
VS cð Þ. In contrast, observing large values of W(c, v) in an extremely
small effect region can be primarily caused by various noise compo-
nents, such as stochastic noise, susceptibility artifacts, or misalignment,
in imaging data.

The complexity of computing {W(c)} is at the order of (NC + NV)n2,

since ∑v∈V σ̂ e vð Þ−2Y vð ÞY vð ÞT
n o

is independent of c. In contrast, the

complexity of computing {W(c, v)} is at the order of NCNVn. Therefore,
computing {W(c)} is about NVNC/{(NV + NC)n} times faster than com-
puting all {W(c, v)}.

Our GSIS consists of the following steps:

• Step (II.1). Calculate Σ1 = (XTX)−1 with the computational complex-
ity of O (nK2).

• Step (II.2). CalculateΣ2 ¼ In−PXð Þ ∑v∈V σ̂e vð Þ−2Y vð ÞY vð ÞT
n o

In−PXð Þ
with the computational complexity of O (NVn

2).
• Step (II.3). For the c-th locus, we do
– Calculate ZcTZc with the computational complexity of O (L2n)
– Calculate ZcTX with the computational complexity of O (LKn).
– Calculate ZcT(In− PX)Zc=(ZcTZc)− (ZcTX)Σ1(XTZc)with the computa-

tional complexity of O (L2K2).
– Calculate ZcTΣ2Zc with the computational complexity of O (L2n2).
– Calculate W(c) with the computational complexity of O (L2).
• Step (II.4). Repeat Step (II.3) for all loci and calculate the p-value of
W(c), denoted by p(c), across all loci by using an approximationmeth-
od. Specifically, as shown in Zhu et al. (2011) Zhang (2005, 2011) and
Zhang and Chen (2007), if yi(v) are treated as functional responses,
then W(c) asymptotically converges to a weighted χ2 distribution as
n → ∞ when H0(c, v) holds for all (c, v) pairs. Let K1 Wð Þ, K2 Wð Þ, and
K3 Wð Þ be, respectively, the first three cumulants of W(c). Therefore,
following the reasonings in Zhang (2005),W(c) can be approximated
by aχ2-type randomvariableα1χ2(α2)+α3, whereα1,α2, andα3 are,
respectively, given by

α1 ¼ K3 Wð Þ
4K2 Wð Þ ; α2 ¼ 8K3

2 Wð Þ
K2

3 Wð Þ ; and α3 ¼ K1 Wð Þ−2K2
2 Wð Þ

K3 Wð Þ : ð8Þ

We approximate αk;Kk Wð Þð Þf gk≤3 by using the sample cumulants of
W(c) for k=1, 2, 3. Finally, the p-value ofW(c) can be approximated
by using P(χ2(α2) ≤ [W(c) − α3]/α1). Note that the calculation of
these p-values is not critical for the success of GSIS.
• Step (II.5). Sort the − log10(p)-values of all W(c)s' (or the values of
W(c)s') according to their magnitudes and select the top N0 loci
(e.g., N0 = 1000), denoted by ~C0 ¼ ~c1;⋯;~cN0

� �
. From now on, we

call ~C0 as a candidate significant locus set.

There are some rationales of choosingW(c) to determine ~C0 and set-
ting a relatively large N0 in GSIS. As shown in simulations, if the volume
of VS cð Þ is relatively large and signal strength in VS cð Þ is moderate, then
W(c) should put the c-th locus into ~C0 . This feature distinguishes
VGWAS from eQTL analysis in the genetic literature (Sun, 2012;
Shabalin, 2012). Moreover, we choose a relatively large N0 so that the
probability of all true positive loci contained in ~C0 is relatively large.
We will carry out simulations to evaluate such probability for different
signal-to-noise ratios and sizes of VUS cð Þ.

The accuracy of theχ2− type approximation in Step (II.4) is not crit-
ical for the success of GSIS due to at least three reasons. First, since all

loci share the same matrices PX and ∑v∈V σ̂e vð Þ−2Y vð ÞY vð ÞT , W(c)s
slightly differ from each other only in term of Zc. Moreover, when
H0(c, v) holds for all v for the c-th locus, the expectation of W(c) is
close to the dimension of zi(c) (or L). Second, since it is expected that
only a small number of causal geneticmarkers contribute to the imaging
phenotypicmeasures, mostW(c) should roughly follow the same distri-
bution and their empirical cumulants converge to Kk Wð Þ under some
mild conditions. Third, in ADNI data analysis presented in Section 3,
we have found that such approximation is not only computationally
simple, but also practically important. Specifically, for the whole brain
analysis, the quantile–quantile (QQ) plots of {p(c)} show a solid line
matching expected = observed until it sharply curves at the end
(representing the small number of true associations among thousands
of unassociated SNPs). See Figs. 6 and 7 for details.

FVGWAS (III): a detection procedure based on wild bootstrap methods

Our detection procedure consists of two wild bootstrap methods:

(III.1) The first one is to detect significant voxel–locus pairs.
(III.2) The second one is to detect significant cluster–locus pairs.

The first wild bootstrap method is to simultaneously detect signifi-
cant (locus, voxel) pairs. Conditional on the candidate significant locus
set ~C0 with the top N0 loci, we calculate a maximum statistic over all
voxels for the top N0 loci as

WV;~C0 ¼ max
~c∈ ~C0 ;v∈V

W ~c; vð Þ: ð9Þ

The maximum statistic WV;~C0 plays a crucial role in controlling the
family-wise error rate. The key idea of the first wild bootstrap method
is to approximate the null distribution of WV;~C0 under that the null hy-
pothesis H0(c, v) holds for all c∈C and v∈V.

We propose an efficient wild bootstrap procedure to detect signifi-
cant ~c; vð Þ∈~C0 � V as follows:

• Step (III.1.1). Calculate W ~c; vð Þ for each pair ~c; vð Þ∈~C0 � V as

W ~c; vð Þ ¼ tr ZT
c In−PXð ÞZc

n o−1
ZT
c In−PXð Þ σ̂ e vð Þ−2Y vð ÞY vð ÞT

n o
In−PXð ÞZc

� �
:

The computational complexity is O (NVnN0).
• Step (III.1.2). Calculate WV;~C0 .
• Step (III.1.3). Apply the first wild bootstrap method to the set ~C0.
– Fit a linear model yi(v) = xi

Tβ(v) + ei(v) to imaging data and
calculate êi vð Þ ¼ yi vð Þ−xTi

~β vð Þ for all i and v, where ~β vð Þ ¼
∑i¼1xixTi
� �−1∑n

i¼1xiyi vð Þ. Generate G bootstrap samples y gð Þ
i vð Þ ¼

xTi
~β vð Þ þ η gð Þ

i êi vð Þ for all i and v, where ηi
(g)

are independently gener-
ated from aN (0, 1) generator. The key idea of this step is to generate



617M. Huang et al. / NeuroImage 118 (2015) 613–627
imaging data frommodel (1) satisfyingγ(c, v)=0 for all c; vð Þ∈C � V,
while asymptotically preserving the spatial correlation structure of
imaging data. We can show that this data generating process can
asymptotically preserve the spatial dependence structure among
the imaging data under the null hypotheses. Specifically, the average
conditional covariance between the residuals {ηi

(g)
êi(v)}i ≤ n at voxel v

and the residuals {ηi
(g)

êi(v′)}i ≤ n at v′ given the raw imaging data is
given by

n−1
Xn
i¼1

Cov η gð Þ
i êi vð Þ;η gð Þ

i êi v
0ð ÞjData

!
¼ n−1

Xn
i¼1

êi vð Þêi v0ð Þ:
 

It follows from the law of large number that n−1∑i = 1
n êi(v)êi(v′)

converges to the spatial covariance between voxels v and v′.
– Let η(g) = (η1

(g)
,⋯, ηn

(g)
)T and Ê(v) = diag(ê1(v),⋯, ên(v)), we calcu-

late W ~c; vð Þ gð Þ given by

tr ZT
c In−PXð ÞÊ vð Þ2 In−PXð ÞZc

n o−1
ZT
c In−PXð ÞÊ vð Þ η gð Þ η gð ÞT Ê vð Þ In−PXð ÞZc

� 	
ð10Þ

for all ~c; vð Þ∈C0 � V, which leads to W gð Þ
V;~C0 .

– For all c∈C, we calculateW cð Þ gð Þ ¼ ∑v∈VW c; vð Þ gð Þ ¼ η gð ÞTS cð Þ η gð Þ,
where S(c) is given by

X
v∈V

Ê vð Þ In−PXð ÞZc ZT
c In−PXð ÞÊ vð Þ2 In−PXð ÞZc

n o−1
ZT
c In−PXð ÞÊ vð Þ: ð11Þ

– Sort allW(c)(g)s according to their magnitudes and select the top N0

loci to form ~C gð Þ
0 . Calculate W gð Þ

V;~C gð Þ
0

¼ max
~c∈ ~C gð Þ

0 ;v∈V W ~c; vð Þ gð Þn o
:

• Step (III.1.4). Calculate approximated Chi-squared distributions based

on the bootstrapped samples W ~c; vð Þ gð Þn o
g¼1;⋯;G

and calculate the un-

corrected p-values of W ~c; vð Þ across all ~c; vð Þ∈~C0 � V.
• Step (III.1.5). Calculate the family-wise error (FWE) corrected p-
values ofW ~c; vð Þ across all ~c; vð Þ∈~C0 � V based on the empirical distri-

bution of W gð Þ
V;~C gð Þ

0

: g ¼ 1;⋯;G
� �

. At a given significance level α, we

can detect significant ~c; vð Þ pairs in ~C0 � V. Since the number of pairs
NCNV in C � V is much larger than the sample size, we choose a signif-
icance level, say α = 0.5.

There are three key advantages of using the wild bootstrap method
in (III.1). First, it is robust to several key assumptions of normal linear
model, such as Gaussian noise and homogeneous variance. See exten-
sive simulations in Zhu et al. (2007) for the evaluation of the wild boot-
strap method at the voxel level. Second, it automatically accounts for
spatial correlations among imaging data and those among genetic
data. Then, based on all bootstrapped samples at each locus c0, we use
the same approximation method in Step (II.4) to approximate the null
distribution of the test statistic W(c, v). By using such parametric ap-
proximation, we are able to obtain p-values that are better behaved
(i.e., that are not necessarily multiples of 1/G, as would be the case if
{W(c, v)(g)}g = 1,⋯,Gwere used directly). Third, since S(c) is independent
of η(g), it is computationally efficient to calculateW(c)(g) and sort them

in order to compute ~C gð Þ
0 .

The second wild bootstrap method is to simultaneously detect
significant cluster–locus pairs. In neuroimaging, cluster size inference
has been widely used to assess the significance of all numbers of inter-
connected voxels greater than a given threshold, sayαI=0.005 or 0.001
Ge et al., 2012b; Salimi-Khorshidi et al., 2011; Smith and Nichols, 2009;
Hayasaka et al., 2004. For the c-th locus, letN(c, αI) be the largest cluster
size at a given threshold αI based on the p-values of W c; vð Þ : v∈Vf g. To
detect significant (locus, cluster) pairs, we consider a maximum cluster
size statistic and its approximation as

N C;αIð Þ ¼ max
c∈C

N c;αIð Þ≈N ~C0;αI
� � ¼ max

c ∈ ~C0
N c;αIð Þ: ð12Þ

Given ~C0 and the definition of W(c) (Eq. (7)), it is expected that
N C;αIð Þ is very close to N ~C0;αI

� �
both in terms of both size and

distribution.
We propose an efficient wild bootstrap procedure to detect signifi-

cant cluster–locus pairs as follows:

• Step (III.2.1). For a given αI, we use thewild bootstrapmethod in Step

(III.1.3) to generate W c; vð Þ gð Þ : c∈ ~C gð Þ
0 ; v∈V; g ¼ 1;⋯;G

n o
and calcu-

late N ~C gð Þ
0 ;αI


 � gð Þ
for each wild bootstrap sample. For computational

efficiency, we suggest to directly compare W(c, v)(g) with the
100(1 − αI)th percentile of the F distribution in order to determine
clusters at each locus c.

• Step (III.2.2). For each locus c∈ ~C0, we calculate all possible clusters
and their associated FWE-corrected p-values based on the empirical

distribution of N ~C gð Þ
0 ;αI


 � gð Þ� �
g¼1;⋯;G

.

Simulation studies and ADNI data analysis

In this section,we useMonte Carlo simulations and a real example to
evaluate the finite-sample performance of FVGWAS. All computations
for these numerical examples were done in Matlab on a Dell C6100
server. The computation for FVGWAS is efficient even for large scale im-
aging genetic data and its computational time can be further reduced by
using other computer languages, such as C++.

Simulation studies

We simulated imaging data at NV = 3355 pixels in the brain region
of a 128× 128 image, which is amiddle slice of a brain volume obtained
from the public accessible data of the Alzheimer's Disease Neuroimage
Initiative (ADNI). More information on the ADNI data used in the cur-
rent study will be given in the ADNI data analysis section. We assumed
that the genetic effect of SNPs is additive and homogeneous such that
yi(v) were generated from:

yi vð Þ ¼ xTi β vð Þ þ
XNC

j¼1

γ c j; v
� �

zi c j
� �þ ei vð Þ; ð13Þ

where ei(v) ~ N(0, σ2), zi(cj) were simulated genetic data as described
below, and xi = (1, xi1, …, xi9)T were designed to mimic the covariates
used in ADNI data analysis and were generated from either U(0, 1) or
the Bernoulli distribution with success probability 0.5. The true values
ofβ(v) were set to be those of estimated β(v) by fittingmodel (1) with-
out genetic covariates to real ADNI dataset in the real ADNI data analysis
section. The elements inγ(cj, v) corresponding to the pre-specified pairs
of causal SNPs and effected Regions Of Interest (ROI) were set to effect
magnitude γ⁎, zero otherwise. In addition, the effected ROI associated
with the causal SNPs was pre-fixed as a r × r region (Fig. 2).

We simulated genetic data zi(cj) as follows. We used Linkage Dis-
equilibrium (LD) blocks defined by the default method (Gabriel, 2002)
of Haploview (Barrett et al., 2005) and PLINK (Purcell et al., 2007) to
form SNP-sets. To calculate LD blocks, n subjects were simulated by ran-
domly combining haplotypes of HapMap CEU subjects. We used PLINK
to determine the LD blocks based on these subjects. We randomly
selected 2000 blocks, and combined haplotypes of HapMap CEU sub-
jects in each block to form genotype variables for these subjects. We



ROI: 5 × 5 ROI: 10 × 10 ROI: 20 × 20

Fig. 2. Simulation settings: the dark, gray, and white regions in each panel, respectively,
represent background, brain region, and the effected ROI associated with the causal
SNPs. From the left to the right, the sizes of the effected ROI are, respectively, set as
5 × 5, 10 × 10, and 20 × 20.

618 M. Huang et al. / NeuroImage 118 (2015) 613–627
randomly selected 10 SNPs in each block, and thus we had NC=20,000
SNPs for each subject. Moreover, we chose the first q SNPs as the causal
SNPs. We set the sample size (n), the number of causal SNPs (q), the
standard deviation of measurement error (σ), and the size of effected
ROI (r × r) to be 1000, 100, 1, and 10 × 10, respectively. 100 Monte
Carlo realizations were used.

First, we evaluate the finite sample performance of the proposed
GSIS for γ⁎ = 0.005, 0.010, 0.015, 0.020, and 0.025, and N0's ranging
between 200 and 2000. Moreover, we set q = 100. We measure the
causal SNP rate, which is defined as the ratio of the number of causal
SNPs in ~C0 over the total number of causal SNPs. Table 1 includes the
causal SNP rates corresponding to different top N0 SNPs and γ⁎ values.
As expected, the causal SNP rate increases as the number of top N0

SNPs and γ⁎ increase. However, the causal SNP rate is low for N0 =
100. Onemay use large N0 in order to increase the probability of includ-
ing all causal SNPs in ~C0. Specifically, whenN0was set as 2000, almost all
causal SNPs are included in the set ~C0 even for small γ⁎, such as γ⁎ =
0.005. See Table 1 for more details.

Second, we evaluate the finite sample performance of FVGWAS in
the detection of the causal SNPs and voxels in the affected ROIs as N0

varies from 100, 500, to 1000. Moreover, parameter q was set to 100.
The panels in the first row of Fig. 3 show Receiver Operating Character-
istic (ROC) curves corresponding to different γ⁎ and N0 values. As ex-
pected, large γ⁎ values representing larger genetic effects lead to a
higher probability of detecting the causal SNPs and their associated
voxels in the effected ROIs. For γ⁎ ≥ 0.015, the ROC curves maintain
high true positive rates and low false positive rates when N0 = 1000.
Moreover, a larger N0 usually leads to a higher true positive rate for dif-
ferent γ⁎ values, whereas a larger N0 can lead to a higher false positive
rate. Then, we set γ⁎ to be 0.010, which is a moderate signal, in order
to investigate the effects of different ROI sizes, σ, and n on signal detec-
tion. As expected, in the second row of Fig. 3, the true positive rate in-
creases as the size of ROI increases; in the third row of Fig. 3, the true
positive rate decreases as the value of σ increases; in the fourth row of
Fig. 3, the true positive rate decreases with the sample size.

Third, we evaluate the finite sample performance of FVGWAS in
detecting the causal SNP and cluster pairs. We set n = 1000, q = 100,
σ = 1, γ⁎ = 0.01, and r = 10. Moreover, we used an uncorrected 0.01
p-value threshold to identify clusters of contiguous supra-threshold
Table 1
Simulation results: causal SNP rates correspond to different (N0,γ⁎) values in the effected ROIwi
over the total number of causal SNPs.

N0

γ⁎ 100 200 300 400 500 600 700 8

0.005 0.18 0.3 0.4 0.5 0.6 0.71 0.79 0
0.010 0.24 0.43 0.57 0.66 0.72 0.8 0.87 0
0.015 0.31 0.46 0.59 0.68 0.73 0.82 0.88 0
0.020 0.31 0.5 0.6 0.68 0.76 0.82 0.88 0
0.025 0.32 0.5 0.6 0.68 0.76 0.84 0.9 0
pixels. If the pixels in a thresholded cluster overlap with some pixels
in the effected ROI at a causal SNP, we call these pixels as “true positive
pixels”. If a thresholded cluster does not overlap with any pixels of the
effected ROI at any causal SNP, we call a cluster as a “false positive” clus-
ter. We summarized results by using the dice overlap ratio (DOR), the
number of false positive clusters, and the size in the number of pixels
in false positive clusters. DOR is the ratio between the number of true
positive pixels over the size of the effected ROI. Thus, the higher DOR
means the higher probability of detecting the effected ROI. As shown
in Fig. 4, there is no false positive cluster is detected. These results fur-
ther demonstrate that the GSIS procedure can effectively detect and
localize relatively strong genetic effects. Moreover, the average DOR of
N0 = 500 is higher than that of N0 = 100.

Fourth, we compared the proposed method with the Matrix eQTL
method (Shabalin, 2012) for pixel-wise inference. For a fair comparison,
we applied both the Matrix eQTL and FVGWAS to the same simulated
data sets. We set γ⁎ to be either 0.005 or 0.01. Fig. 5 presents the ROC
curves corresponding to differentN0 and γ⁎ values. The proposedmeth-
od outperforms the Matrix eQTL method when γ⁎ = 0.005, indicating
that the proposed method is more capable than the Matrix eQTL meth-
od to detect small genetic effects. For γ⁎=0.01, the true positive rates of
the proposedmethodwithN0=100 andN0=500 are lower than those
of the Matrix eQTL method, whereas the true positive rates of the pro-
posed method with N0 = 1000 are higher than those of the Matrix
eQTL method. Specifically, the false positive rate of FVGWAS is lower
than that of the Matrix eQTL method for different N0 and γ⁎ values.
This result is primarily attributed to the GSIS procedure used in
FVGWAS.

Fifth, we set γ(c, v) = 0 for all (c, v) in order to assess the overall
Type I error rates. We calculated the family-wise error rate (FWER) for
the Type I error rates at both the voxel–locus and cluster–SNP levels
(Dudoit et al., 2003; Shaffer, 1995). The significance level α was varied
from 0.1 to 0.5, and 1000 replications were used to estimate FWERs.
For a fixed α, if the FWER is smaller than α, then the test is conservative,
whereas if the FWER is greater than α, then the test is anticonservative,
or liberal (Hayasaka and Nichols, 2003). Moreover, α was set to 0.005.
Table 2 lists the FWERs corresponding to different N0 and α values. For
detecting significant SNP and voxel pairs, the rejection rates of the
proposed method are accurate with large N0 and α values. Moreover,
for relatively small α = 0.1, no significant SNP and cluster pairs are
detected.

ADNI data analysis

To illustrate the usefulness of FVGWAS, we considered anatomical
MRI data collected at the baseline by the Alzheimer's Disease Neuroim-
aging Initiative (ADNI) study. “Data used in the preparation of this arti-
clewere obtained from theAlzheimer's Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial magnetic
th size 10× 10. The causal SNP rate is defined as the ratio of the number of causal SNPs in~C0

00 900 1000 1200 1400 1600 1800 2000

.83 0.84 0.86 0.92 0.96 0.97 0.98 1

.95 0.98 1 1 1 1 1 1

.95 0.98 1 1 1 1 1 1

.96 0.99 1 1 1 1 1 1

.96 0.99 1 1 1 1 1 1
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Fig. 3. Simulation results for the association between SNPs and voxels: the first row contains ROC curves with varying γ⁎ values (corresponding to the causal SNPs' effect magnitude) and
the number of the topN0 SNPs included in the selection procedure. Parameters r, σ2, and n are set to 10, 1, and 1000, respectively. The second row contains ROC curveswith different ROIs.
Parameters γ⁎, σ2, and n are set to 0.01, 1, and 1000, respectively. The third row contains ROC curves with varying σ. Parameters γ⁎, r, and n are set to 0.01, 10, and 1000, respectively. The
fourth row contains ROC curves with varying n. Parameters γ⁎, σ2, and r are set to 0.01, 1, and 10, respectively.
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resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer's disease (AD). Determination of sensi-
tive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments andmonitor their
effectiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California, San Francisco. ADNI is the
result of efforts of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI, and peo-
ple with early AD. The follow up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.”

The brainMRI datawere providedby theADNI database,which can be
downloaded fromhttp://adni.loni.usc.edu/.We considered 708MRI scans
of AD, MCI, and healthy controls (164 AD, 346MCI, and 198 healthy con-
trols) fromADNI1 in this data analysis. These scans on 421males and 287
females (age 75.61±6.76 years)were performed on a 1.5 TMRI scanners
using a sagittal MPRAGE sequence. The typical protocol includes the fol-
lowing parameters: repetition time (TR) = 2400 ms, inversion time
(TI) = 1000 ms, flip angle = 8°, and field of view (FOV) = 24 cm with

http://www.adni-info.org
http://adni.loni.usc.edu/
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Fig. 4. Simulation results for the association between SNPs and clusters: (a) the size in the number of pixels of false positive clusters in each causal SNP; (b) number of false positive clusters
in each causal SNP; and (c) dice overlap ratio (DOR) in each causal SNP. Parameters γ⁎, σ2, n, and r are set to 0.01, 1, 1000, and 10, respectively.
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a 256 × 256 × 170 acquisition matrix in the x-, y-, and z-dimensions,
which yields a voxel size of 1.25 × 1.26 × 1.2 mm3.

We processed the MRI data by using standard steps including ante-
rior commissure and posterior commissure correction, skull-stripping,
cerebellum removal, intensity inhomogeneity correction, segmenta-
tion, and registration (Shen and Davatzikos, 2004). After segmentation,
we segmented the brain data into four different tissues: gray matter
(GM), white matter (WM), ventricle (VN), and cerebrospinal fluid
(CSF). We used the deformation field to generate RAVENS maps
(Davatzikos et al., 2001) to quantify the local volumetric group differ-
ences for the whole brain and each of the segmented tissue type (GM,
WM, VN, and CSF), respectively. Moreover, we automatically labeled
93 ROIs on the template and transferred the labels following the de-
formable registration of subject images (Wang et al., 2011). We com-
puted the volumes of all ROIs for all subjects.

We considered the 818 subjects' genotype variables acquired by
using the Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA) in
the ADNI database, which includes 620,901 SNPs. To reduce the popula-
tion stratification effect, we used 749 Caucasians from all 818 subjects
with complete imaging measurements at baseline. Quality control
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Fig. 5. Simulation results for comparisons between FVGWAS and theMatrix eQTL in identifying
1000, and the Matrix eQTL method at γ⁎ = 0.005 and γ⁎ = 0.01. Parameters σ2, n, and r are se
procedures include (i) call rate check per subject and per SNP marker,
(ii) gender check, (iii) sibling pair identification, (iv) the Hardy–
Weinberg equilibrium test, (v) marker removal by the minor allele fre-
quency, and (vi) population stratification. The second line preprocess-
ing steps include removal of SNPs with (i) more than 5% missing
values, (ii) minor allele frequency smaller than 5%, and (iii) Hardy–
Weinberg equilibrium p-value b 10−6. Remaining missing genotype
variables were imputed as the modal value. After the quality control
procedures, 708 subjects and 501,584 SNPs remained in the final data
analysis.

We consider both ROI volumes and RAVENS maps to illustrate the
wide applicability of FVGWAS. We carried out two different FVGWAS
analyses: one is to use the volumes of 93 ROIs asmultivariate phenotyp-
ic vectors and the other is to use RAVENS maps as whole-brain pheno-
typic vectors. In both analyses, we used model (1) and included an
intercept, gender, age,whole brain volume, and the top 5 principal com-
ponent scores in SNPs. Then, we tested the additive effect of each of
501,584 SNPs on either 93 ROI volumes or RAVENS maps. In particular,
for RAVENSmaps, with 708 subjects, 193,275 voxels, 501,584 SNPs, and
N0 = 1000, the total processing timewas 203,645 s, of which 116 s was
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Table 2
Percentage of times of significant voxel and SNP pairs or cluster and SNP pairs at different
thresholds (total times of significant pairs/repeat times).

N0 α

0.1 0.2 0.3 0.4 0.5

Voxel and
SNP pairs

500 0 0.04 0.12 0.24 0.74
1000 0.06 0.1 0.17 0.48 0.52

Cluster and
SNP pairs

500 0 0.575 1 1 1
1000 0 0 0.38 0.94 1

Table 3
ADNI ROI volume GWAS: selected top SNPs associated with volumes of HL/HR —
Hippocampus Left/Right and AL/AR— Amygdala Left/Right.

ROI Best SNP CHR BP p-Value Gene

HL rs2075650 19 45395619 1.4E-07 TOMM40
rs6896317 5 142949513 5.5E-05 TRIO
rs439401 19 45414451 7.6E-04 APOE

HR rs2075650 19 45395619 2.7E-07 TOMM40
rs6896317 5 142949513 5.5E-05 TRIO
rs439401 19 45414451 1.2E-03 APOE

AL rs2075650 19 45395619 1.5E-05 TOMM40
rs6896317 5 142949513 5.8E-05 TRIO
rs405509 19 45408836 1.4E-03 APOE

AR rs2075650 19 45395619 1.4E-08 TOMM40
rs6896317 5 142949513 4.7E-07 TRIO
rs405509 19 45408836 1.1E-03 APOE
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allotted for the GSIS procedure and 203,529 swas allotted for determin-
ing significant voxel–locus and cluster–SNP pairs. Finally, as a compari-
son, we applied the Matrix eQTL to RAVENS maps to carry out VGWAS.

ROI volumes
The Manhattan and QQ plots of GWAS for all volumes of 93 ROIs

are shown in Fig. 6. In Fig. 6(a), only SNP in TOMM40 in chromosome
19 passes the threshold 5 × 10−8 commonly used in GWAS. In the QQ
plot (Fig. 6(b)), the observed p-values fit the expected p-values from
the null hypothesis well for most of the p-values. The p-values in the
upper tail of the distribution do show a significant deviation suggesting
strong associations between these SNPs and the univariate image mea-
sures. Figs. 6(c) and (d) show the number of significant SNP–ROI pairs
with different numbers of top N0 SNPs. The number of significant
SNP–ROI pairs decreases when the number of N0 increases. These re-
sults may indicate that more important information (significant SNP
pairs) can be identified when N0 is small. Therefore, we can just select
a small N0 value in the first screen step, which is a huge save of both
computational time and memory.

To test the effect of SNPs on the volumes of 93 ROIs, we first setN0 as
1000 and 2000. In this case, we can only detect significant ROI–locus
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Fig. 6. ADNI ROI volume GWAS: (a) Manhattan plot; (b) QQ plot; and the numbers of significan
responding to the top (c) N0 = 1000 and (d) N0 = 2000 SNPs.
pairs by using Step (III.1). Specifically, we generated 1000 bootstrapped

samplesW gð Þ
V;~C0 for g=1,…, G=1000 and then calculated the corrected

p-values of W ~c; vð Þ across all ~c; vð Þ∈ ~C0 � V . By setting the 0.5 signifi-
cance level, we are able to detect 2 and 1 significant ROI–locus pairs
for N0 = 1000 and 2000, respectively. These 2 significant ROI–locus
pairs are rs2075650 (TOMM40) and hippocampal formation left and
amygdala right, respectively.

We selected several ROIs that are known to be meaningful bio-
markers for Alzheimer's disease: Hippocampus Left/Right (HL/HR) and
Amygdala Left/Right (AL/AR). Then, we carried out GWAS for each of
the four ROIs. The SNPs associated with volumes of ROIs are reported
in Table 3, together with their corresponding chromosome numbers,
genomic coordinates, and p-values. Among the identified SNP sets in
Table 3, the famous ApoE and TOMM40 in chromosome (Chrs) 19 are
known to be associated with Alzheimer's disease.
(b)
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t SNP–ROI pairs based on the corrected p-values ofW(c, v) at the 0.5 significance level cor-
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RAVENS maps
Figs. 7(a) and (b) show the Manhattan and QQ plots of the GWAS

results for RAVENSmaps and Table 4 includes the top 30 SNPs associat-
ed with the whole brain. Fig. 8(a) shows the density of the global Wild-
type statistic and its Chi-squared approximation for the whole brain.
These two curves are very close to each other, indicating the accuracy
of the χ2 approximation. At the 10−5 significance level, 21 SNPs were
detected to be associated with the whole brain in the GSIS analyses.
For instance, these 21 SNPs include four SNPs in chromosome 10
(rs11815438, rs1060373, rs2480271, and rs2935713) and 2 SNPs
(rs11891634 and rs13419007) in chromosome 2. Moreover, among
the top N0 = 1000 SNPs, we able to detect several important SNPs in-
cluding rs2480271 on gene GLRX3 (chr 10), rs1534446 on gene PCEF1
(chr6), rs12436472 on gene NOVA1 (chr14), rs6116375 20 on gene
PRNP (chr 20), rs4746622 on gene CTNNA3 (chr 10), rs4296809 on
gene FGF10 (chr 5), rs439401 on gene APOE (chr 19), rs2075650 on
gene TOMM40 (chr 19), rs3826810 on gene LDLR (chr 19), rs2679098
on gene NTRK3 (chr 15), and rs6896317 on gene TRIO (chr 5). Gene
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Fig. 7. ADNI whole-brain GWAS: (a) Manhattan plot; (b) QQ plot; the numbers of significant v
sponding to the top (c)N0=1000 and (d)N0=2000 SNPs; the numbers of significant voxel–lo
corresponding to the top N0 = 1000 SNPs.
PRNP, gene CTNNA3, and gene LDLR are related to the Alzheimer's
disease (Golanska et al., 2009; Miyashita et al., 2007; Gopalraj et al.,
2005). Gene NOVA1 is associated with aging and neurodegeneration
(Tollervey et al., 2011). Gene NTRK3 is related to schizophrenia, bipolar
disorder, and obsessive–compulsive disorder hoarding (Braskie et al.,
2013). Gene TRIO is also related to schizophrenia (Stelzer et al., 2011).
Further information about all top 1000 SNPs will be available at http://
www.bios.unc.edu/research/bias.

In Step (III.1), we first calculated the raw p-values ofW(c, v) in order
to detect significant voxel–locus pairs. We set N0 as either 1000 or 2000
and then generated 1000 bootstrapped samples {W(c, v)(g)} for g =
1, …, G = 1000. By using χ2 approximation, we calculated the raw p-

values ofW ~c; vð Þ across all ~c; vð Þ∈ ~C0 � V. At the 10−5 significance level,
Figs. 7(c) and (d) show the number of significant voxel–locus pairs

based on the raw p-values ofW ~c; vð Þ against the top N0 SNPs in ~C0.
Second, we calculated the corrected p-values of W(c, v) in order to

detect significant voxel–locus pairs by correcting for multiple
(b)
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oxel–locus pairs based on the raw p-values ofW(c, v) at the 10−5 significance level corre-
cus pairs based on the corrected p-values ofW(c, v) at the (e) 0.5 or (f) 0.8 significance level

http://www.bios.unc.edu/research/bias
http://www.bios.unc.edu/research/bias


Table 4
ADNI whole-brain GWAS: selected top 30 SNPs associated with the whole brain.

SNP CHR BP p-Value SNP CHR BP p-Value

rs11815438 10 62501737 6.5E-08 rs17182599 14 22051519 5.8E-06
rs11891634 2 65926939 1.9E-07 rs11717277 3 54220871 5.9E-06
rs1060373 10 62554500 3.8E-07 rs971752 4 103224534 6.5E-06
rs2480271 10 132061197 5.6E-07 rs11872654 18 2164155 6.7E-06
rs10402592 19 11256887 1.4E-06 rs2935713 10 123432188 7.6E-06
rs12001550 9 120672883 1.5E-06 rs4129156 18 25437752 8.1E-06
rs13419007 2 145043653 1.7E-06 rs10261484 7 22583326 1.0E-05
rs2834077 21 34422738 2.0E-06 rs522793 6 10802955 1.2E-05
rs9645752 12 12544266 2.0E-06 rs14067 13 114110660 1.2E-05
rs5994978 22 34988594 2.0E-06 rs2443568 8 99254045 1.2E-05
rs4924156 15 37688630 2.5E-06 rs1448575 2 6386393 1.4E-05
rs2514323 8 99236899 3.3E-06 rs2697880 8 37337905 1.5E-05
rs1852755 11 13996686 3.9E-06 rs9382934 6 14040480 1.5E-05
rs7001339 8 69855507 4.8E-06 rs472276 1 244112606 1.5E-05
rs1528663 11 13967222 5.4E-06 rs1767282 1 112357101 1.5E-05
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comparisons. Figs. 8(c) and (d) show the density plots ofWV ;~C0
forN0=

1000 and N0 = 2000. It can be seen that these two densities are quite
close to each other. Moreover, Fig. 8(b) shows that the density plot of
WV ;~C0

for N0 = 1000 is close to its Chi-squared approximation. Subse-

quently, we calculated the corrected p-values of W ~c; vð Þ. Figs. 7(e) and
(f) show the number of significant voxel–locus pairs based on the
corrected p-values of W ~c; vð Þ against the top N0 = 1000 SNPs at the
0.5 and 0.8 significance, respectively. Table 5 includes 3 selected SNPs,
who have the 3 largest numbers of significant voxel–locus pairs.

In Step (III.2), we set αI = 0.005 and then calculated all possible
clusters and their associated p-values for the top N0 SNPs in order to de-
tect significant voxel–cluster pairs. Figs. 9(a) and (b) show the density

plots of N ~C0;αI ¼ 0:005

 �

for N0 = 1000 and N0 = 2000, respectively.

Figs. 9(c) and (d) show the numbers of significant voxel-locus pairs
based on the corrected p-values of all clusters corresponding to the
top N0 = 1000 and N0 = 2000 SNPs. Table 5 includes 3 selected SNPs,
who have the 3 largest numbers of significant cluster–locus pairs.
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Fig. 8. ADNI whole-brain GWAS: (a) the density plot ofW(c) and its χ2 approximation; (b) the

(c) and N0 = 2000 (d).
Fig. 10 shows some selected slices maps of − log10(p) values for
significant clusters corresponding to a selected SNP (rs2480271).
Inspecting significant clusters in Fig. 10 shows symmetric clustering
across the left and right hemispheres. Since brain structures are highly
symmetric between hemispheres, at least for most brain regions, it
may be biologically plausible to observe symmetric associations for
the SNPs and clusters. Several major clusters includemajor ROIs includ-
ing superior temporal gyrus, inferior temporal gyrus, anterior cingulate
gyrus, hippocampus, putamen, and fusiform. Among them, the superior
temporal gyrus is an essential structure involved in auditory processing,
in social cognition processes, as well as in the function of language. The
inferior temporal gyrus is one of the higher levels of the ventral stream
of visual processing. The anterior cingulate gyrus is involved in rational
cognitive functions, such as reward anticipation, decision-making,
empathy, impulse control, and emotion. The hippocampus is known
to be associated with memory and cognition. The fusiform is associated
with color recognition, word and body recognition and the putamen is
associated with motor skills.
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Table 5
RAVENS map GWAS: significant voxel–locus pairs at the 0.5 significance level (left) and
significant cluster–SNP pairs at the 0.5 significance level (right).

SNP Number of
voxel–locus
pairs

SNP Number of
cluster–SNP
pairs

Max
cluster
size

p-Value of
the max
cluster

rs2075650
(TOMM40)

23 rs11815438 1 7906 0.11

rs9490103 4 rs2480271 1 7365 0.23
rs2244634 2 rs7001339 1 6864 0.45

624 M. Huang et al. / NeuroImage 118 (2015) 613–627
Weused theMatrix eQTL to carry out VGWAS by calculating the raw
p-values of standard t statistics based on the normal linearmodel across
all voxel–locus pairs.We selected those voxel–locus pairs, whose raw p-
values are smaller than 10−7, and then calculated their corresponding
FWE corrected p-values by using the first wild bootstrap method de-
scribed in Steps (III.1.1)–(III.1.5). Fig. 11(a) shows the raw − log10(p)-
values of all selected voxel–locus pairs corresponding to our method
and the standard t test. It can be seen that the − log10(p)-values of our
method are approximately proportional to those of the standard meth-
od, indicating an agreement between our proposed method and the
standard method. However, for all selected pairs, the − log10(p)-value
of our method is smaller than that of the standard t test. It may indicate
that some of key assumptions (e.g., homogeneous variance) for the nor-
mal linear model is problematic in these voxels.

Similar the FVGWAS results presented in Fig. 7 and Table 5, we used
the FWE corrected p-value 0.5 as the significant level to determine im-
portant voxel–locus pairs obtained from the Matrix eQTL results. Note
that each SNPmay havemultiple voxelswith their raw p-values smaller
than 10−7. Fig. 11(b) shows the number of significant voxel–locus pairs
corresponding to all unique SNPs obtained from theMatrix eQTL results
at the 0.5 significant level. Then, for each voxel–locus pair, whose FWE
corrected p-value is smaller than 0.5, we took its 3 × 3 × 3 neighbor-
hood in the image space and then calculated the percentage of neigh-
boring voxels, whose raw p-values were smaller than 10−5. We found
that such percentage of neighboring voxels is 0 for all voxel–locus
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Fig. 9. ADNI whole-brain GWAS: density plots ofN ~C0;αI ¼ 0:005

 �

forN0= 1000 (a) and N0=

W(c, v) at the 0.5 significance level corresponding to the top N0 = 1000 (c) and N0 = 2000 (d
pairs, which indicates that these significant voxels are isolated in the
image space. Such isolated voxel–locus pairs may be biologically
meaningless.

Subsequently, we selected all SNPs with more than 20 sig-
nificant voxel–locus pairs based on the Matrix eQTL results in order to
detect the significant cluster–locus pairs. For each of such SNPs, we
used the same setting for the cluster–locus pairs used for FVGWAS.
Figs. 11(c) and (d) show the maximum cluster size for each SNP and
its corresponding corrected p-value. From Fig. 11(d), two significant
cluster–locus pairs are detected at the 0.5 significant level. These two
SNPs are rs11815438 and rs7001339, which are included in our detect-
ed significant cluster–locus pairs listed in Table 5. This result demon-
strates that our proposed method may be able to identify important
significant cluster–locus pairs.

Conclusion and discussions

We have developed a FVGWAS pipeline for efficiently carrying out
whole-genome analyses of whole-brain data. Our FVGWAS consists of
a heteroscedastic linear model, a global sure independence screening
(GSIS) procedure, and a detection procedure based on wild bootstrap
methods. Two key advantages of using FVGWAS include amuch smaller
computational complexityO ((NC+NV)n2) for FVGWAS comparedwith
O (nNVNC) for VGWASandGSIS for screeningmanynoisy SNPs.Wehave
used simulations to evaluate the finite sample performance of each
component of FVGWAS. Finally, we have successfully applied FVGWAS
to imaging genetic data of ADNI study. Our FVGWASmay be a valuable
statistical toolbox for fast large-scale imaging genetic analysis particu-
larly when the field is rapidly advancing with ultra-high-resolution im-
aging and whole-genome sequencing.

Many important issues need to be addressed in future research. First,
the heteroscedastic linear model in FVGWAS is a standard voxel-wise
method. However, as discussed in (Li et al., 2011; Polzehl et al., 2010),
the voxel-wise methods are not optimal since they ignore a spatial fea-
ture of imaging data. Imaging data are spatially correlated in nature and
contain spatially contiguous regions with rather sharp edges due to the
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(a)

Fig. 10. ADNI whole-brain GWAS: selected slices of−log10(p) for significant clusters corresponding to a SNP (rs2480271).
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inherent biological structure and function of objects. Such spatial in-
formation can be important for accurate estimation and prediction.
Although it is common to useGaussian smoothingwith a prefixed band-
width, it may introduce substantial bias in the statistical results (Li et al.,
2012, 2013). Although several multi-scale adaptive regression models
(MARMs) have been developed for the group analysis of imaging data
(Li et al., 2011; Skup et al., 2012; Li et al., 2012; Polzehl et al., 2010),
these methods are not computationally feasible even for thousands of
SNPs. It is critically important to develop some novelmethods to explic-
itly incorporate the spatial feature of the imaging data in FVGWAS,
while achieving computational efficiency for ultra-high-resolution im-
aging and whole-genome sequencing.

Second, the effectiveness of GSIS strongly depends on the behavior
of the global Wald-type statistics {W(c)}c. Although, as shown in simu-
lations, GSIS can perform reasonably well for moderate and strong sig-
nals, we expect that it can suffer some difficulties in the detection of
weak genetic effects on ROIs. We may consider two strategies. One is
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Fig. 11. ADNI FVGWAS versus VGWAS: (a) raw−log10(p)-values of all selected voxel–locus pa
locus pairs at the 0.5 significant level; (c) maximum cluster sizes of all selected SNPs obtained fr
selected SNPs.
to explicitly incorporate the spatial feature of the image data as
discussed above. The other is to propose other global statistics to in-
crease the power of detecting weak genetic effects on ROIs (Zhang
et al., 2014; Chen and Qin, 2010; Sun et al., 2015).

Third, FVGWAS is still a single SNP analysis framework (Hibar et al.,
2011; Shen et al., 2010). However, it is well known that the power of
genome-wide association studies (GWAS) for mapping complex traits
with single SNP analysis may be undermined by modest SNP effect
sizes, unobserved causal SNPs, correlation among adjacent SNPs, and
SNP–SNP interactions (Tzeng et al., 2011). It has been shown that alter-
native approaches for testing the association between a single SNP-set
and individual phenotypes are promising for improving the power of
GWAS (Schaid et al., 2002; Vounou et al., 2010; Ge et al., 2012a;
Thompson et al., 2013). Therefore, it is definitely interesting and impor-
tant to extend FVGWAS to carry out marker-set and whole-brain asso-
ciation mapping. We expect many challenging issues arising from
such development.
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