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Summary. We consider selecting both fixed and random effects in a general class of mixed effects models using maximum
penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute
shrinkage and selection operator (ALASSO) penalty functions. The MPL estimates are shown to possess consistency and
sparsity properties and asymptotic normality. A model selection criterion, called the ICQ statistic, is proposed for selecting
the penalty parameters (Ibrahim, Zhu, and Tang, 2008, Journal of the American Statistical Association 103, 1648–1658). The
variable selection procedure based on ICQ is shown to consistently select important fixed and random effects. The methodology
is very general and can be applied to numerous situations involving random effects, including generalized linear mixed models.
Simulation studies and a real data set from a Yale infant growth study are used to illustrate the proposed methodology.
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1. Introduction
In the analysis of mixed effects models, a primary objective is
to assess significant fixed effects and/or random effects of the
outcome variable. For instance, when simultaneously selecting
both random and fixed effects, that is, when selecting mixed
effects, it is common to use a selection procedure (e.g., for-
ward or backward elimination), coupled with a selection cri-
terion, such as the Akaike information criterion (AIC) and/or
Bayesian information criterion (BIC) based on the observed
data log likelihood, to compare a set of candidate models (Ke-
selman et al., 1998; Gurka, 2006; Claeskens and Consentino,
2008; Ibrahim, Zhu, and Tang, 2008; Liang, Wu, and Zou,
2008). Zhu and Zhang (2006) proposed a testing procedure
based on a class of test statistics for general mixed effects
models to test the homogeneity hypothesis that all of the
variance components are zero. Such methods, however, suffer
from a serious deficiency in that it is infeasible to simultane-
ously select significant random and fixed (mixed) effects from
a large number of possible models (Fan and Li, 2001, 2002).
To overcome such a deficiency, variable selection procedures
based on penalized likelihood methods, such as the smoothly
clipped absolute deviation (SCAD; Fan and Li, 2001) and
the adaptive least absolute shrinkage and selection opera-
tor (ALASSO; Zou, 2006), may be developed to select mixed
effects.

Compared to the large body of literature on variable selec-
tion procedures, we make several novel contributions in this
article. This is one of the few papers on developing selec-
tion methods for selecting mixed effects in a large class of
mixed effects models. Most variable selection procedures are
developed for various parametric models and semiparametric
models with/without random effects and/or unobserved data
(Fan and Li, 2002, 2004; Cai et al., 2005; Qu and Li, 2006;
Zhang and Lu, 2007; Johnson, Lin, and Zeng, 2008; Ni, Zhang,

and Zhang, 2009, Garcia, Ibrahim, and Zhu, 2010a, 2010b),
but all these procedures have only been used for the selec-
tion of significant fixed effects. The only exception is the re-
cent work by Krishna (2009, unpublished data) and Bondell,
Krishna, and Ghosh (2010), in which only the linear mixed
model is considered. We use a novel reparametrization to re-
formulate the selection of mixed effects into the problem of
grouped variable selection in models with heavy “missing”
data, where the missing data are represented by the random
effects. This reparametrization makes it possible to use pe-
nalized likelihood methods to select both fixed and random
effects. Compared to most variable selection methods for lin-
ear models, we must address additional challenges due to the
presence of missing observations for each subject. A compu-
tational challenge here is to directly maximize the observed
data log-likelihood function along with the SCAD or ALASSO
penalties to select both fixed and random effects and to calcu-
late their estimates. The observed data log-likelihood for com-
plicated mixed effects models is often not available in closed
form, and is computationally intractable because it may in-
volve high-dimensional integrals that are difficult to approx-
imate. When selecting random effects, this maximization is
further complicated because one must eliminate the corre-
sponding row and column of an insignificant random effect
and constrain the remaining matrix to be positive definite.
Another challenge is to select appropriate penalty parame-
ters to produce estimates having proper asymptotic proper-
ties (Fan and Li, 2001), whereas existing selection criteria
(Kowalchuck et al., 2004; Gurka, 2006; Claeskens and Con-
sentino, 2008; Liang et al., 2008) are computationally difficult
for general mixed effects models.

The goal of this article is to develop a simultaneous
fixed and random effects selection procedure based on the
SCAD and ALASSO penalties for application to longitudinal
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models, correlated models, and/or mixed effects models. We
reformulate the problem of selecting mixed effects and develop
a method based on the ICQ criterion to select the penalty
parameters. We also specify the penalty parameters in the
SCAD and ALASSO penalty functions as a hyperparame-
ter, and then we use the expectation-maximization (EM) al-
gorithm to simultaneously optimize the penalized likelihood
function and estimate the penalty parameters. Under some
regularity conditions, we establish the asymptotic properties
of the maximum penalized likelihood estimator and the con-
sistency of the ICQ -based penalty selection procedure.

To motivate the proposed methodology, we consider a data
set from a Yale infant growth study (Stier et al., 1993; Wasser-
man and Leventhal, 1993). The objective of this study is to
investigate the relationship between maternal cocaine depen-
dency and child maltreatment (physical abuse, sexual abuse,
or neglect). This study had a total of 298 children from the co-
caine exposed and unexposed groups. The outcome variable
is infant weight (in pounds), which is obtained over several
time points. Seven covariates were considered: day of visit,
age of mother, gestational age of infant, race, previous preg-
nancies, gender of infant, and cocaine exposure. Each child
had a different number and pattern of visits during the study.
We consider the mixed effects model by using the seven covari-
ates as fixed effects and the first three covariates as random
effects. Our objective in this analysis is to select the most im-
portant predictors of infant weight as well as select significant
random effects. The selection of random effects is crucial in
this application, as it is not at all clear whether a random in-
tercept model will suffice or whether the longitudinal model
should also contain random slope effects. Moreover, there is
large number of covariates to select from in the fixed effects
component of the model. The selection can be done by our
penalized likelihood method, which includes a penalty func-
tion (SCAD or ALASSO) with a random effect, and an ICQ

penalty estimate. More details regarding the analysis of this
data set are given in Section 5.

The rest of the article is organized as follows. Section 2
introduces the general development for maximizing the pe-
nalized likelihood function and selecting the penalty param-
eters. Section 3 examines the asymptotic properties of the
maximum penalized likelihood (MPL) estimator and the ICQ

penalty selection procedure. Section 4 presents a simulation
study to examine the finite sample performance of the MPL
estimate. A real data analysis of the Yale infant growth study
is given in Section 5. Section 6 concludes the article with some
discussion.

2. Mixed Effects Selection for Mixed Effects Models
2.1 Model Formulation
Suppose we observe n independent observations (y1, X1), . . . ,
(yn , Xn ), where yi is an ni × 1 vector of responses or repeated
measures and Xi is an ni × p matrix of fixed covariates for
i = 1, . . . , n. We assume independence among the different
(yi , Xi )’s and

E[yi |bi , Xi ; θ] = g(Xiβ + ZiΓbi ), (1)

where bi is a q × 1 vector of unobserved random effects, θ
denotes all the unknown parameters, Γ is a q × q lower trian-

gular matrix, g(·) is an known link function, β = (β1, . . . , βp )T

is a p × 1 vector of regression coefficients, and Zi is an
ni × q matrix composed of the columns of Xi . In practice,
it is common to assume that the conditional distribution of
yi given (bi , Xi ), denoted by f (yi |bi , Xi ; θ), belongs to the
exponential family, such as the binomial, normal, and Pois-
son (Little and Schluchter, 1985; Ibrahim and Lipsitz, 1996).
For notational simplicity, the random effects bi ∼ Nq (0, Iq )
are assumed to follow a multivariate normal distribution with
zero mean and a q × q covariance matrix Iq . Equivalently,
Γbi ∼ Nq (0, D = ΓΓT ) and Γ is the Cholesky composition of
the q × q matrix D. We allow the possibility of D being pos-
itive semidefinite so that certain components of Γbi may not
be random but 0 with probability 1.

2.2 EM Algorithm for Maximizing the Penalized Likelihood
Selecting mixed effects involves identifying the nonzero com-
ponents of β, determining the nonrandom elements of Γbi ,
and simultaneously estimating all nonzero parameters. We
propose to maximize the penalized likelihood function given
by

PL(θ) = �(θ) − n

p∑
j=1

φλ j
(|βj |) − n

q∑
k=1

φλ p +k
(||γk ||), (2)

where �(θ) =
∑n

i=1 �i (θ), in which �i (θ) = log
∫

f (yi , bi |
Xi ; θ) dbi is the observed data log-likelihood for the ith in-
dividual, λj is the penalty parameter of βj , and the penalty
function φλ j

(·) is a nonnegative, nondecreasing, and differ-
entiable function on (0, ∞) (Fan and Li, 2001; Zou, 2006).
In addition, the k × 1 vector γk consists of all nonzero ele-
ments of the kth row of the lower triangular q × q matrix Γ,
||γk || = (γT

k γk )1/2, and λp+k is the group penalty parameter
corresponding to the whole kth row of Γ. The structure in
(2) ensures that certain estimates of β are zero (Fan and Li,
2001), which are insignificant predictors of the outcome vari-
able, and the other covariates are significant predictors. The
penalization of γk is performed in a group manner to preserve
the positive definite constraint on D such that the estimates
of the parameter vector γk either are all not zero or all equal
to zero (Yuan and Lin, 2006). If all the elements of γk are
zero, then the kth row of Γ is zero and the kth element of
Γbi is not random.

Similar to Chen and Dunson (2003), we reparametrize the
linear predictor as

Xiβ + ZiΓbi =
(
Xi

(
bT

i ⊗ Zi

)
Jq

)(
β

γ

)
= Uiδ, (3)

where Jq is the q2 × q(q + 1)/2 matrix that transforms γ to
vec(Γ), i.e., vec(Γ) = Jq γ. By reparametrizing the linear pre-
dictor this way, the selection of mixed effects is equivalent to
the problem of grouped variable selection in regression mod-
els with missing covariates, where the random effects in the
design matrix Ui can be interpreted as the “missing covari-
ates.” Using this reparametrization, we can apply the variable
selection methods proposed in Garcia et al. (2010a, 2010b) to
select important mixed effects.

Because the observed data log-likelihood function usually
involves intractable integrals, we develop a Monte Carlo EM
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algorithm to compute the MPL estimator of θ, denoted by
θ̂λ , for each λ = (λ1, . . . , λp+q ). Denote the complete and ob-
served data for subject i by dc ,i = (yi , Xi , bi ) and do ,i =
(yi , Xi ), respectively, and the entire complete and observed
data by dc and do , respectively. At the sth iteration, given
θ(s), the E-step is to evaluate the penalized Q-function, given
by

Qλ

(
θ |θ(s)

)
=

n∑
i=1

E
{
log f (di ,c ; θ) |do ; θ(s)

}
−n

p∑
j=1

φλ j
(|βj |)

−n

q∑
k=1

φλ p +k
(||γk ||) (4)

= Q1

(
θ |θ(s)

)
− n

p∑
j=1

φλ j
(|βj |)

−n

q∑
k=1

φλ p +k
(||γk ||) + Q2

(
θ(s)

)
, (5)

where θ = (δT , ξT )T , in which ξ represents all other parame-
ters other than δ, di ,c = (yi , bi , Xi ), and

Q1

(
θ |θ(s)

)
=

n∑
i=1

∫
{log f (yi |bi , Xi ; δ, ξ)}f

(
bi |di ,o ; θ(s)

)
dbi ,

(6)

Q2

(
θ(s)

)
=

n∑
i=1

∫
{log f (bi )}f

(
bi |di ,o ; θ(s)

)
dbi . (7)

Because the integrals in (6) and (7) are often intractable, we
approximate these integrals by taking a Markov chain Monte
Carlo sample of size L from the density f (bi |di ,o ; θ(s)) (see
Ibrahim, Chen, and Lipsitz, 1999). Let b(s , l)

i be the lth simu-
lated value at the sth iteration of the algorithm. The integral
in (6) can be approximated as,

Q1

(
θ |θ(s)

)
=

1
L

L∑
l=1

n∑
i=1

log f
(

yi |b(s , l)
i , Xi ; θ

)
. (8)

The M-step involves maximizing

Q1,λ

(
θ|θ(s)

)
=Q1

(
θ|θ(s)

)
−n

p∑
j=1

φλ j
(|βj |)−n

q∑
k=1

φλ p +k
(||γk ||)

(9)

with respect to (δ, ξ). Maximizing Q1,λ (δ, ξ |θ(s)) with respect
to ξ is straightforward and can be done using a standard opti-
mization algorithm, such as the Newton–Raphson algorithm
(Little and Schluchter, 1985; Ibrahim, 1990; Ibrahim and Lip-
sitz, 1996). Maximizing Q1,λ with respect to δ is difficult be-
cause Q1,λ is a nondifferentiable and nonconcave function of
δ, respectively (Zou and Li, 2008).

To maximize Q1,λ , following Fan and Li (2001), a second-
order Taylor’s series approximation of Q1,λ centered at the
value δ(s) is used. Using this approximation, Q1,λ resembles
a penalized weighted least squares regression, so algorithms
for minimizing penalized least squares can be used (Fan and
Li, 2001; Hunter and Li, 2005). We use a modification of the
local linear approximation algorithm (Zou and Li, 2008) to
incorporate grouped penalization. For γk , we use an approx-
imation centered at γ

(s)
k as follows:

φλ p +k
(||γk ||) ≈

k∑
t=1

⎧⎨⎩φλ p +k

(∣∣∣∣γ (s)
k

∣∣∣∣) ∣∣γ (s)
k t

∣∣∣∣∣∣γ (s)
k

∣∣∣∣
⎫⎬⎭ |γk t |,(10)

where γk t is the tth element of the vector γk and we assume
||γ (s)

k || > 0. If ||γ (s)
k || = 0, then we let γ

(s+1)
k = 0. Using this

approximation, Q1,λ resembles a penalized regression with an
L2 penalty, so the methods for performing the LASSO can be
used to maximize Q1,λ (Tibshirani, 1996; Fu, 1998).

Let ξ(s+1) = argmaxξ Q1,λ (δ(s), ξ |θ(s)) and δ(s+1) =
argmaxδ Q1,λ (δ, ξ(s+1) |θ(s)). Due to the Taylor’s series
approximation of Q1 and the local linear approximation
algorithm of φλ j

, θ(s+1) = (δ(s+1), ξ(s+1)) may not necessarily
be the maximizer of Qλ (θ |θ(s)). By implementing the ex-
pectation conditional maximization (ECM) algorithm (Meng
and Rubin, 1993), however, we can find a θ(s+1) such that
Qλ (θ(s+1) |θ(s)) � Qλ (θ(s) |θ(s)) instead of directly maximiz-
ing Qλ (θ |θ(s)). This process is iterated until convergence
and the value at convergence, denoted by θ̂λ , maximizes the
penalized observed data log-likelihood function.

2.3 Penalty Parameter Selection Procedure
To ensure that θ̂λ has good properties, the penalty parame-
ter λ has to be appropriately selected. Two commonly used
criteria for selection of the penalty parameter include the gen-
eralized cross validation and BIC criteria (Wang, Li, and Tsai,
2007). These criteria cannot be easily computed in the pres-
ence of random effects, because they are functions of observed
data quantities whose expressions may require intractable in-
tegrals. Moreover, it has been shown in Wang et al. (2007)
that even in the simple linear model, the generalized cross
validation criterion can lead to significant overfit.

We propose two methods to select the penalty parame-
ter: an ICQ criterion and a random effects penalty selection
method. The ICQ criterion (Ibrahim et al., 2008) selects the
optimal λ by minimizing

ICQ (λ) = −2Q(θ̂λ | θ̂0) + cn (θ̂λ ),

where θ̂0 = argmaxθ �(θ) is the unpenalized maximum like-
lihood estimate (MLE) and cn (θ) is a function of the data
and the fitted model. For instance, if cn equals twice the to-
tal number of parameters, then we obtain an AIC-type cri-
terion; alternatively, we obtain a BIC-type criterion when
cn (θ) = dim(θ) × log n. Moreover, in the absence of random
effects, ICQ (λ) reduces to the usual AIC or BIC criteria. As
in the EM algorithm, we can draw a set of samples from
f (bi |di ,o ; θ̂0) for i = 1, . . . , n to estimate Q(θ̂λ | θ̂0) for any
λ.

The random effects penalty estimator is calculated under
the assumption that δ is distributed as a random effect vec-
tor in a hierarchical model. The quantity λ can be regarded
as a hyperparameter vector in the distribution of δ, denoted
by f (δ |λ, n). Then, λ can be estimated by maximizing the
marginal likelihood with respect to (ξ, λ), which is given by∫ n∏

i=1

∫
f (yi |Xi , bi , δ; ξ)f (bi )f (δ |λ, n) dbi dδ

=
n∏

i=1

∫
f (di ,o | ξ)f (δ |λ, n) dδ, (11)
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where f (δ |λ, n) is defined by

f (δ |λ, n) =
p∏

j=1

exp{−nφλ j
(|βj |)}

×
q∏

k=1

exp{−nφλ p +k
(||γk ||)}/{C(λ, n)},

and C(λ, n) is the normalizing constant of f (δ |λ, n). The re-
sulting estimate of λ, denoted by λ̂RE , from the maximization
of (11), is the random effects penalty estimator. Treating δ as
missing data, the Monte Carlo EM algorithm can be used to
maximize (11) with respect to (ξ, λ).

We consider the SCAD and ALASSO penalty functions for
determining λ. The ALASSO penalty is defined by

φλ j
(|βj |) = λj |βj | for j = 1, . . . , p,

φλ p +k
(||γk ||) = λp+k ||γk || for k = 1, . . . , q.

Typical values of λj are λj = λ01|β̂j |−1 and λp+k =
λ02

√
k||γ̂k ||−1, where β̂j and γ̂k are the unpenalized MLEs.

The multiplier
√

k normalizes the penalty parameter γk to
accommodate the varying sizes of γk . When λj = λ01 and
λp+k = λ02

√
k, the ALASSO reduces to the LASSO penalty.

The SCAD penalty (Fan and Li, 2001) is a noncon-
cave function defined by φλ (0) = 0 and for |β| > 0,
φ′

λ (|β|) = λ1(|β| � λ) + (aλ−|β |)+
a−1 1(|β| > λ), where t+ denotes

the positive part of t, 1(.) denotes the indicator func-
tion, and a = 3.7. Because the integral of the negative
exponential of the ALASSO and SCAD penalties is not
finite, i.e.,

∫ ∞
−∞ exp{−nφλ (||γk ||)} dγk = ∞, the expression

exp{−nφλ (||γk ||)} is defined in a bounded space to ensure
that f (δ |λ, n) is a proper density. Because a closed form ex-
pression of λ̂RE is unavailable for both the ALASSO and
SCAD penalties, we use the Newton–Raphson algorithm
along with the ECM algorithm to estimate λ̂RE .

3. Theoretical Results
In this section, we establish the asymptotic theory of the
MPL estimator and the consistency of the penalty selection
procedure based on ICQ . Suppose β = (βT

(1), β
T
(2))

T , where
β(1) and β(2) are, respectively, p1 × 1 and (p − p1) ×
1 subvectors. Let β∗ = (β∗T

(1) , β
∗T
(2) )

T denote the true value
of β. Without loss of generality, we assume that β∗

(2) = 0
and all of the components of β∗

(1) are not equal to zero.
Similarly let γ = (γT

1 , . . . , γT
k )T = (γT

(1), γ
T
(2))

T where γT
(1) =

(γT
1 , . . . , γT

q1
)T , γT

(2) = (γT
q1+1, . . . , γ

T
q )T and γ (1) and γ (2) are

q1(q1 + 1)/2 × 1 and {q − q1(q1 + 1)/2} × 1 subvectors,
respectively. Let γ∗ = (γ∗T

(1) , γ
∗T
(2) )

T denote the true value of γ.
Without loss of generality, we assume that γ∗

(2) = 0 and some
of the components of each γ∗

k are not equal to zero for k =
1, . . . , q1.

Let S = {j11, . . . , j1d1 ; j21, . . . , j2d2} be a candidate model
containing the j11th, . . . , j1d th columns of X and the
j21th, . . . , j2d2 th columns of Z. Thus, SF = {1, . . . , p; 1, . . . , q}
and ST = {1, . . . , p1; 1, . . . , q1} denote the full and true covari-
ate models, respectively. If S misses at least one important
covariate, that is S 
⊃ ST , then S is referred to as an under-
fitted model; however, if S ⊃ ST and S 
= ST , then S is an
overfitted model. The unpenalized and penalized maximum

likelihood estimators of θ = (βT , γT , ξ)T , denoted by θ̂S and
θ̂λ , respectively, are defined as

θ̂S = argmax
θ : βj 
=0,∀j∈S

�(θ) and

θ̂λ = argmax
θ

{
�(θ) − n

p∑
j=1

φλ j
(|βj |) − n

q∑
k=1

φλ p +k
(||γk ||)

}
,

and particularly θ̂SF
= θ̂0. We obtain the following theorems

whose assumptions and proofs can be found in the Web Ap-
pendix.

Theorem 1: Under Assumptions (C1)–(C7) in the Web
Appendix, we have

(i) θ̂λ − θ∗ = Op (n−1/2) as n → ∞, where θ∗ is the true
value of θ;

(ii) Sparsity: P (β̂(2)λ = 0, γ̂ (2)λ = 0) → 1;

(iii) Asymptotic normality:
√

n{(β̂T

(1)λ , γ̂
T
(1)λ , ξ̂

T

λ )T −
(β∗T

(1) , γ
∗T
(1) , ξ

∗T )T } is asymptotically normal with mean
and covariance matrix defined in the Web Appendix.

Theorem 1 states that by appropriately choosing the
penalty λ, there exists a root-n estimator of θ, θ̂λ , and that
this estimator must possess the sparsity property, i.e., β̂(2)λ =

0, γ̂ (2)λ = 0 in probability. Moreover, (β̂
T

(1)λ , γ̂
T
(1)λ , ξ̂

T

λ )T is
asymptotically normal.

We investigate whether the ICQ (λ) criterion can consis-
tently select the correct model. For each λ ∈ Rp+, (β̂λ , γ̂λ )
naturally defines a candidate model Sλ = {j : β̂λ ,j 
= 0; k :
||γ̂λ ,k || 
= 0}. Generally, Sλ can be either underfitted, overfit-
ted, or true. Therefore, Rp+ can be partitioned into three mu-
tually exclusive regions Rp+

u = {λ ∈ Rp+ : Sλ 
⊃ ST }, Rp+
t =

{λ ∈ Rp+ : Sλ = ST }, and Rp+
o = {λ ∈ Rp+ : Sλ ⊃ ST ,Sλ 
=

ST }. Furthermore, if we can choose a reference penalty param-
eter sequence {λn ∈ Rp+}∞n =1, which satisfies the conditions of
Theorem 1, then Sλn = ST in probability.

To select λ, we first calculate

dICQ(λ2,λ1) = ICQ(λ2)− ICQ(λ1)

= −2Q(θ̂λ 2 | θ̂0) + cn (θ̂λ 2 ) + 2Q(θ̂λ 1 | θ̂0)− cn (θ̂λ 1)

for any two λ1 and λ2. We assume Sλ 2 ⊃ Sλ 1 and choose
the model Sλ 1 resulting from using the penalty value λ1 if
dICQ (λ2, λ1) � 0, otherwise we choose the model Sλ 2 .

Define δQ (λ1, λ2) = E{Q(θ∗
Sλ 1

|θ∗)} − E{Q(θ∗
Sλ 2

|θ∗)},
and δc (λ2, λ1) = cn (θ̂λ 2 ) − cn (θ̂λ 1 ), where θ∗

S is defined in
the Web Appendix.

Theorem 2: Under Assumptions (C1)–(C7) in the Web
Appendix, we have the following results.

(i) If for all Sλ 
⊃ ST , lim infn δQ (λ, 0)/n > 0 and
δc (λ, 0) = op (n), then dICQ (λ, 0) > 0 in probability.

(ii) If E{Q(θ∗
Sλ 1

| θ̂0)} − E{Q(θ∗
Sλ 2

| θ̂0)} = Op (n1/2) and

Q(θ̂λ t | θ̂0) − E{Q(θ∗
Sλ t

| θ̂0)} = Op (n1/2) for t = 1, 2,

then dICQ (λ2, λ1) > 0 in probability as n−1/2δc (λ2, λ1)
converges to ∞ in probability.
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(iii) If Q(θ̂λ 1 | θ̂0) − Q(θ̂λ 2 | θ̂0) = Op (1), then dICQ

(λ2, λ1) > 0 in probability as δc (λ2, λ1) converges
to ∞ in probability.

Theorem 2 has some important implications. Theorem 2(a)
shows that ICQ (λ) chooses all significant covariates with
probability 1. Because S0 ⊂ Rp

t ∪ Rp
o , the optimal model that

is selected by minimizing ICQ (λ) will not select a λ with
Sλ 
⊃ ST because dICQ (λ, 0) > 0 in probability. Therefore,
the ICQ (λ) criterion selects all significant covariates with
probability tending to 1. Generally, the most commonly
used cn (θ), such as 2dim(θ), dim(θ) log(n), and K log log (n)
(K > 0), satisfy the condition δc (λ, 0) = op (n). The condi-
tion lim infn n−1δQ (λ, 0) > 0 ensures that ICQ (λ) chooses a
model with large E{Q(θ∗

S |θ∗)}. This condition is analogous
to condition 2 in (Wang et al., 2007), which elucidates the
effect of underfitted models. The term n−1E {Q (θ∗ |θ∗)} −
n−1E {Q (θ∗

S |θ∗)} can be written as

n−1�(θ∗) − n−1�
(
θ∗
S
)

+ n−1E {H (θ∗ |θ∗)} − n−1E
{
H

(
θ∗
S |θ∗)},

(12)

where

H(θ1 |θ2) =
n∑

i=1

∫
log{f (bi |do ,i ; θ1)}f (bim |do ,i ; θ2) dbim .

(13)

By Jensen’s inequality, the third and fourth terms of (12)
are greater than zero and the first and second terms must be
greater than zero for large n. Thus, lim infn n−1δQ (λ, 0) � 0
in probability.

If λ1 and λ2 have the same average n−1E{Q(θ∗
Sλ

|θ∗)},
that is, lim infn n−1δQ (λ2, λ1) = 0, then Theorem 2(b) and
(c) indicate that ICQ (λ) picks out the smaller model Sλ 1

when δc (λ2, λ1) increases to ∞ at a certain rate (e.g.,
log (n)). For example, for the BIC-type criterion, δc (λ2, λ1) =
{dim(θ̂Sλ 2

) − dim(θ̂Sλ 1
)} log(n) � log(n) because we assume

Sλ 2 ⊃ Sλ 1 . The AIC-type criterion, for which cn (θ) = 2 ×
dim(θ), however, does not satisfy this condition. Thus, simi-
lar to the AIC criterion with no random effects, ICQ (λ) with
cn (θ) = 2 × dim(θ) tends to overfit.

4. Simulation Study
We use simulations to examine the finite sample performance
of the MPL estimates using our proposed penalty estima-
tors and compare them to the unpenalized MLE. Our objec-
tives for these simulations are to (1) compare the random ef-
fects and ICQ penalty estimators and (2) compare the SCAD,
LASSO, and ALASSO penalty functions.

To do this, we simulated a data set consisting of n in-
dependent observations according to the model yi = Xiβ +
ZiΓbi + σεi , i = 1, . . . , n, where bi and εi are indepen-
dent and standard multivariate normal random vectors, and
β = (3, 2, 1.5, 0, 0, 0, 0, 0)T . Moreover, ΓΓT = D is a 3 × 3 ma-
trix, such that the (r, s) element of D is ρ|r−s|. The matrix
Xi is a 12 × 8 matrix of independent rows, where each row
of Xi has mean zero and covariance matrix Σxx whose (r, s)
element is ρ|r−s|. The matrix Zi was set equal to Xi .

We considered six different settings: (n = 50, σ = 3), (n =
50, σ = 1), (n = 100, σ = 3), (n = 100, σ = 1), (n = 200,

σ = 3), and (n = 200, σ = 1) with a value of ρ = .5 for all
settings. For each setting, one design matrix was simulated
and 100 data sets (yi , Xi ) for i = 1, . . . , n were generated.

For each simulated data set, the MPL estimate using the
SCAD, LASSO, and ALASSO penalties was computed us-
ing the random effects and ICQ penalty estimates. All the
simulation results are given in Table 1, where the estimates
are denoted as SCAD-RE, SCAD-ICQ , LASSO-RE, LASSO-
ICQ , ALASSO-RE, and ALASSO-ICQ , respectively. For the
ICQ estimate, the BIC-type criterion, cn (θ) = dim(θ) log n,
was used. For the Monte Carlo EM algorithm, 2000 Monte
Carlo samples were used within each iteration of EM. For
the SCAD and LASSO penalties, we set λj = λ01, for
j = 1, . . . 8, and λ8+k = λ02

√
k, for k = 1, . . . , 3 whereas

for the ALASSO penalty, λj = λ01|β̂j |−1, for j = 1, . . . 8, and
λ8+k = λ02

√
k||γ̂k ||−1 for k = 1, . . . , 3 where β̂j , and γ̂k are

the unpenalized MLEs of β j and γk , respectively, and the
penalty (λ01, λ02) was estimated using the ICQ and random
effects penalty selection methods.

For each estimate, the penalized estimates of β and D
were computed, denoted as β̂λ and D̂λ , respectively, and the
mean square error ME(β̂λ ) = (β̂λ − β)T Σxx (β̂λ − β)T and
the quadratic loss error ME(D̂λ ) = trace[(D̂λ − D)2]1/2 were
computed. The ratio of the model error of the MPL esti-
mate to that of the unpenalized MLE, ME(β̂λ )/ME(β̂0), and
ME(D̂λ )/ME(D̂0), were computed for each data set and the
median of the ratios over the 100 simulated data sets, denoted
as MRME in Table 1, was calculated. The MRME of the true
model is also reported. In addition, we report two types of
errors regarding the fixed and random effects, see Table 1.
ZERO1 is the mean number of type I errors (an effect is truly
not significant or random but the corresponding MPL esti-
mate indicates that it is significant or random) and ZERO2 is
the mean number of type II errors (an effect is truly signifi-
cant or random but the corresponding MPL estimate indicates
that it is not significant or random).

For the MPL estimates, MRME values greater than one in-
dicates that the estimate performs worse than the MLE, val-
ues near one indicate it performs as well as the MLE, whereas
values near the “true” MRME value indicate optimal perfor-
mance. The values ZERO1 and ZERO2 can be interpreted as
estimates of the probability of overfit and underfit, respec-
tively, and the value 1 − ZERO1 − ZERO2 is an estimate of
the probability of selecting the true model. Ideally, one would
like to have MPL estimates with small ZERO1 and ZERO2

values and small MRME values. We can see from Table 1
that, overall, the MRME values of all of the MPL estimates
were less than or equal to one, which indicates that regardless
of the sample size or noise level, the MPL estimates perform
better than the MLE. Across all samples sizes and noise lev-
els, the MRME values of the MPL estimates using the random
effects penalty estimates were higher than the MPL estimates
using the ICQ penalty estimates. For the ICQ MPL estimates,
as the noise level decreases from σ = 3 to σ = 1, the MRME
values increase. For a fixed noise level, the MRME values at
sample sizes of n = 50 and n = 200 are comparable but there
is a slight decrease in the MRME values at a sample size of
n = 100. This indicates that the MPL estimates perform bet-
ter, relative to the MLE, at low noise levels and sample sizes
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Table 1
Simulation results of linear mixed effects models comparing SCAD, LASSO, and ALASSO penalty functions with random effects

and ICQ penalty estimates

β Estimate (D Estimate)

Model Method MRME ZERO1 ZERO2

n = 50, σ = 3 SCAD-RE 0.576 (0.980) 0.11 (0.94) 0.00 (0.00)
SCAD-ICQ 0.552 (0.259) 0.01 (0.09) 0.00 (0.01)
LASSO-RE 0.983 (0.988) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.605 (0.241) 0.04 (0.10) 0.00 (0.01)
ALASSO-RE 0.949 (0.983) 0.80 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.597 (0.263) 0.01 (0.13) 0.00 (0.01)
True 0.559 (0.228) 0.00 (0.00) 0.00 (0.00)

n = 50, σ = 1 SCAD-RE 0.906 (0.803) 0.58 (1.00) 0.00 (0.00)
SCAD-ICQ 0.869 (0.461) 0.03 (0.13) 0.00 (0.00)
LASSO-RE 0.997 (0.996) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.884 (0.438) 0.04 (0.08) 0.00 (0.00)
ALASSO-RE 0.983 (0.989) 0.81 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.858 (0.441) 0.03 (0.10) 0.00 (0.00)
True 0.846 (0.439) 0.00 (0.00) 0.00 (0.00)

n = 100, σ = 3 SCAD-RE 0.571 (0.970) 0.13 (0.93) 0.00 (0.00)
SCAD-ICQ 0.565 (0.219) 0.01 (0.04) 0.00 (0.00)
LASSO-RE 0.993 (0.994) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.584 (0.232) 0.01 (0.04) 0.00 (0.00)
ALASSO-RE 0.949 (0.987) 0.81 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.574 (0.205) 0.01 (0.04) 0.00 (0.00)
True 0.513 (0.196) 0.00 (0.00) 0.00 (0.00)

n = 100, σ = 1 SCAD-RE 0.895 (0.803) 0.57 (1.00) 0.00 (0.00)
SCAD-ICQ 0.820 (0.452) 0.01 (0.07) 0.00 (0.00)
LASSO-RE 0.999 (0.997) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.835 (0.478) 0.03 (0.08) 0.00 (0.00)
ALASSO-RE 0.982 (0.989) 0.82 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.839 (0.415) 0.02 (0.06) 0.00 (0.00)
True 0.832 (0.392) 0.00 (0.00) 0.00 (0.00)

n = 200, σ = 3 SCAD-RE 0.553 (0.987) 0.13 (0.94) 0.00 (0.00)
SCAD-ICQ 0.554 (0.245) 0.01 (0.07) 0.00 (0.00)
LASSO-RE 0.995 (0.996) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.617 (0.244) 0.05 (0.09) 0.00 (0.00)
ALASSO-RE 0.934 (0.992) 0.78 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.603 (0.237) 0.02 (0.11) 0.00 (0.00)
True 0.546 (0.218) 0.00 (0.00) 0.00 (0.00)

n = 200, σ = 1 SCAD-RE 0.902 (0.833) 0.55 (1.00) 0.00 (0.00)
SCAD-ICQ 0.853 (0.487) 0.01 (0.12) 0.00 (0.00)
LASSO-RE 0.998 (0.998) 0.99 (1.00) 0.00 (0.00)
LASSO-ICQ 0.873 (0.554) 0.07 (0.20) 0.00 (0.00)
ALASSO-RE 0.982 (0.991) 0.79 (1.00) 0.00 (0.00)
ALASSO-ICQ 0.871 (0.468) 0.02 (0.11) 0.00 (0.00)
True 0.839 (0.408) 0.00 (0.00) 0.00 (0.00)

of around n = 100. The MPL estimates using the random
effects penalty estimate tended to overfit significantly. On av-
erage, the MPL estimate using the ALASSO penalty function
had smaller estimation error and overfit than the LASSO es-
timate. For estimating the fixed effects, the SCAD-ICQ es-
timate has, on average, smaller estimation error and overfit
than the other estimates. For estimating the random effects,
the ALASSO-ICQ has smaller error and overfit.

5. Yale Infant Growth Study
We applied the proposed methodology to the Yale infant
growth study of Wasserman and Leventhal (1993) and Stier

et al. (1993). The Yale infant growth data were collected to
study whether cocaine exposure during pregnancy leads to
the maltreatment of infants after birth, such as physical and
sexual abuse. A total of 298 children were recruited from
two subject groups (cocaine exposure group and unexposed
group). Throughout the study, different children had different
numbers and patterns of visits during the study period. The
multivariate response was weight of the infant at each visit.
Let yij denote the weight (in pounds) at the jth visit of infant
i, for i = 1, . . . , 298, j = 1, . . . , ni and let yi = (yi1, . . . , yin i

).
The covariates used were: xij1 = day of visit, xij2 = age
(in years) of mother, xij3 = gestational age (in weeks) of
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Table 2
MPL estimates of Yale infant grown data comparing SCAD and ALASSO penalty functions with random effects and ICQ

penalty estimates

Fixed estimatea (Variance estimate of random effectb)

SCAD ALASSO

Variable MLEc RE ICQ RE ICQ

Intercept 7.002∗ (–) 6.924 (–) 6.988 (–) 6.913 (–) 6.913 (–)
Visit 2.641∗ (0.230∗) 2.576 (0.087) 2.617 (0.109) 2.543 (0.040) 2.548 (0.067)
Age −0.035 (0.017) 0.000 (0.000) 0.000 (0.007) 0.000 (0.000) 0.000 (0.000)
Gestation 0.528∗ (0.017) 0.424 (0.000) 0.455 (0.011) 0.322 (0.000) 0.424 (0.000)
Race −0.060 (–) 0.000 (–) 0.000 (–) 0.000 (–) 0.000 (–)
Pregnant −0.004 (–) 0.000 (–) 0.000 (–) 0.000 (–) 0.000 (–)
Gender 0.139∗ (–) 0.022 (–) 0.033 (–) 0.000 (–) 0.000 (–)
Cocaine 0.103∗ (–) 0.016 (–) 0.022 (–) 0.000 (–) 0.000 (–)
σ2d 0.512 (–) 0.552 (–) 0.527 (–) 0.612 (–) 0.594 (–)
ICQ

e 9223.7 11,507.32 9660.013 11,999.01 11,773.25
a Estimate of β.
b Estimate of diag(D).
c ∗ Indicates significant effects by MLE analysis.
d The variance estimate of error term of the linear mixed model.
e A measure of goodness of fit.

infant, xij4 = race (two levels: African American and other,
coded as 1 and 0), xij5 = previous pregnancies (two levels:
no and yes, coded as 1 and 0), xij6 = gender of infant (two
levels: male and female, coded as 1 and 0), xij7 = cocaine
exposure (two levels: yes and no, coded as 1 and 0). The
design matrix Xi is a ni × 8 matrix with the jth row equal to
(1, xij1, xij2, xij3, xij4, xij5, xij6, xij7), Zi is a ni × 3 matrix com-
posed of the first three continuous covariates of Xi , i.e., the
jth row of Zi is (xij1, xij2, xij3), and therefore q = 3 here. All
covariates were centered in the analysis for numerical stability.
Further, we assume that [yi |Xi ; β, D] is normally distributed
with mean E(yi ) = Xiβ + ZiΓbi , where ΓΓT = D and
[yij |Xi ; β, D] and [yij ′ |Xi ; β, D] are independent for j 
= j ′.

The objective of this analysis was to determine the sig-
nificant predictors of infant weight and the significant ran-
dom effects. Because the ALASSO penalty outperformed
the LASSO penalty in the simulations, only the SCAD and
ALASSO penalty functions were used along with the ICQ

and random effects penalty estimates. Note that the inter-
cept term was not penalized. For the SCAD, λj = λ01 for
j = 2, . . . , 8 and λ8+k = λ02

√
k, for k = 1, . . . , 3, whereas

for the ALASSO penalty, λj = λ01|β̂j |−1 for j = 2, . . . , 8 and
λ8+k = λ02

√
k||γ̂k ||−1, for k = 1, . . . , 3, where β̂j and γ̂k are

the unpenalized MLEs of β j and γk , respectively, and (λ01,
λ02) was estimated using the ICQ and random effects penalty
selection methods.

The results of the analysis are presented in Table 2. The
MPL estimates using the SCAD penalty identify visit, gesta-
tional age of infant, gender of infant, and cocaine exposure as
significant predictors of infant weight, and visit as a signifi-
cant random effect. These estimates coincide with the results
of the maximum likelihood analysis, which identify the same
fixed and random effects as significant (significant effects by
the MLE analysis are indicated by a ∗ in Table 2). The results
of using the SCAD with two different sets of penalty estimates
are similar. Although the estimates using SCAD with the ICQ

penalty estimates do not shrink the random effect variances
for age and gestational age to 0, these variance estimates are
relatively smaller than that of the visit random effect, which
still identifies the correct random effect. The MPL estimate
using the ALASSO penalty shrunk two more coefficients of
the fixed effects to zero: gender and cocaine. Although these
two effects are identified as significant in the MLE analysis,
we see that their corresponding MLE estimates are smaller
relative to the other significant fixed effects. The estimates us-
ing the ALASSO penalty with the ICQ penalty estimates are
close to that of the RE penalty estimates. The MPL estimates
using the ALASSO penalty identify visit and gestational age
of infant as significant fixed effects, and visit as a significant
random effect.

6. Discussion
We have proposed a general method that performs simul-
taneous fixed and random effects selection as well as esti-
mation. Under certain regularity conditions and appropriate
assumptions on the penalty parameters, the maximum pe-
nalized likelihood estimate possesses oracle properties. We
have used two methods for estimating the penalty parame-
ters, the random effects and ICQ penalty selection methods,
and showed that under an appropriate choice of cn (θ), the
ICQ penalty estimate chooses all the significant fixed and ran-
dom effects with probability 1. Because penalized likelihood
methods have been shown to perform poorly in finite sam-
ples, simulations were performed to examine the finite sam-
ple properties of the MPL estimators and the performance
of the Monte Carlo EM algorithm. In the simulations, the
SCAD and ALASSO penalty functions using the ICQ penalty
estimate performed best and had significantly less estimation
error than the MLE. Unlike previous implementations of the
random effects penalty estimate (Garcia et al., 2010a, 2010b),
the simulations and real data analysis results show that for
mixed effects regression models, the random effects penalty
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estimate has significant overfit. For estimating fixed effects,
the SCAD-ICQ estimate had, on average, smaller estimation
error and overfit, whereas for estimating random effects, the
ALASSO-ICQ had smaller error and overfit.

Many aspects of this work warrant further research and
investigation. Recent developments have shown that there
may be more than one plausible scheme for formulating the
grouped penalty in the penalized likelihood (Breheny and
Huang, 2009; Zhao, Rocha, and Yu, 2009). To select signif-
icant random effects using a Cholesky parametrization of the
covariance matrix of the random effects requires that each row
of the Cholesky matrix be penalized as a group. Other param-
eters, however, can be grouped and penalized in various ways.
For instance, it is possible to group parameters corresponding
to the fixed effects if one is interested in determining whether
a particular group of fixed effects is significant or not. It is
also possible to use different penalty functions for each group
of parameters.

The objective of this article was to perform simultaneous
selection of fixed and random effects. To the best of our knowl-
edge, this is the first article to propose this type of methodol-
ogy. In the existing literature, (Daniels and Kass, 1999, 2001;
Chen and Dunson, 2003; Gurka, 2006), the predominant ap-
proach to mixed effects selection has been to fix either the
mean model or the covariance structure of the random effects,
and then either test variance components or perform variable
selection on the mean model (Keselman et al., 1998). This
approach, because it fixes certain parts of the model, makes
assumptions regarding the model structure, which may be
inappropriate. A possible reason that simultaneous mixed ef-
fects selection may not have been pursued before is perhaps
due to the numerical complexity inherent in the model-fitting
algorithms. With penalized likelihood methods, however, si-
multaneous mixed effects selection is straightforward to im-
plement and no assumptions are necessary regarding any part
of the model.

As it stands, calculating the ICQ penalty estimator is
slightly demanding. An alternative to ICQ penalty parameter
estimation is to select the penalty parameter, which optimizes
other criteria developed in mixed effects models such as those
in Claeskens and Consentino (2008) and Liang et al. (2008).
We will formally study these issues in future work.

7. Supplementary Materials
The Web Appendix referenced in Section 3 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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