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ABSTRACT
How to dynamically measure the local-to-global spatio-temporal coherence between demand and supply
networks is a fundamental task for ride-sourcing platforms, such as DiDi. Such coherence measurement is
critically important for the quantification of the market efficiency and the comparison of different platform
policies, such as dispatching. The aim of this paper is to introduce a graph-based equilibrium metric (GEM)
to quantify the distance between demand and supply networks based on a weighted graph structure.
We formulate GEM as the optimal objective value of an unbalanced optimal transport problem, which
can be formulated as an equivalent linear programming and efficiently solved. We examine how the GEM
can help solve three operational tasks of ride-sourcing platforms. The first one is that GEM achieves up to
70.6% reduction in root-mean-square error over the second-best distance measurement for the prediction
accuracy of order answer rate. The second one is that the use of GEM for designing order dispatching policy
increases drivers’ revenue for more than 1%, representing a huge improvement in number. The third one
is that GEM can serve as an endpoint for comparing different platform policies in AB test. Supplementary
materials for this article, including a standardized description of the materials available for reproducing the
work, are available as an online supplement.
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1. Introduction

Large volumes of data collected from multiple spatio-temporal
networks are increasingly studied in diverse fields including
climate science, social sciences, neuroscience, epidemiology,
and transportation. In addition, those spatio-temporal networks
may interact with each other across spatial and/or temporal
dimension. A typical example is that the dynamic demand and
supply networks of a ride-sourcing platform (Wang and Yang
2019) are two sequences of unnormalized masses measured on
the same undirected (or directed) graph G = (V,E), where
V and E are, respectively, a vertex set and a set of edges con-
necting vertex pairs. Figure 1 illustrates how the two compli-
cated networks interact with each other and evolve over time.
Specifically, a city is divided into hundreds of nonoverlapping
grids as the vertex set V with the edge structure E determined
by road networks and location functionalities. Both demands
and supplies are observed across grids at each time window
with possibly different total masses and distributions. The ride-
sourcing platform uses some order dispatching policy to match
customer requests with possible surrounding idle drivers, while
after finishing serving assigned orders, drivers return back to the
supply pool to prepare for the next feasible matching. The aim
of this paper is to address a fundamental question of interest for
the demand and supply networks of two-sided markets.

The fundamental question of interest that we consider
here is how to quantify the spatial equilibrium of dynamic
supply–demand networks for two-sided markets, particu-
larly ride-sourcing platforms (e.g., Uber and DiDi). To solve
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this question, we first introduce a weighted graph structure
(G, W, C) to characterize the transport network and transport
costs of a city. Specifically, we divide each market into N disjoint
areas and regard them as vertices, denoted as V = {v1, . . . , vN}.
Let E be a set of edges between any possible pair of vertices
such that (vi, vj) ∈ E ⊂ V × V is an edge equipped with an
nonegative weight wij (e.g., transportation cost). For all (vi, vj) /∈
E, we set wij = ∞. The weighted graph structure consists of
an undirected (or directed) graph G = (V,E) as well as a
weight matrix W = (wij), where wijs’ are nonegative weights.
A graph-based transport cost from vi to vj is defined as cij =
minK≥0,(ik)K

k=0:vi→vj
{∑k wik,ik+1 : ∀k ∈ [[0, K − 1]], (vik , vik+1) ∈

E}, where (ik)K
k=0 : vi → vj denotes any path on G through

E starting from vi0 = vi and ending at viK = vj. Thus, cij
is the geodesic distance from vi to vj or the minimal cost of
transporting one unit of object from vi to vj. Thus, we can define
a transport cost matrix on (G, W), denoted as C = (cij) ∈
RN×N . The C may be time variant, since it depends on the real-
time traffic and weather conditions for ride-sourcing platform.
The C is possibly asymmetric since the graph G can be directed.

Second, we need to introduce a distance (or metric) to
quantify the difference between demand and supply masses at
each time interval and across time on (G, W, C). At a given
time interval, we define νj = ν(vj) and μj = μ(vj) as the
point masses at vertex vj for the two measures ν and μ, which,
respectively, represent the number of customer requests and
available drivers inside the vertex vj of the ride-sourcing plat-
form (Wang and Yang 2019). The supply and demand systems
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Figure 1. Dynamic supply and demand networks at three time points in a representative ride-sourcing platform. We divide the whole city into multiple hexagon areas.

at each timestamp can be modeled as two discrete Lebesgue
measures μ and ν on (G, W, C) with locally finite masses such
that max(μ(V0), ν(V0)) is finite for every compact set V0 ⊂
V. We consider a general case that the two measures can be
unbalanced, that is, μ = ∑N

i=1 μi and ν = ∑N
i=1 νi may be

unequal to each other. Defining a metric between μ and ν falls
into the field of optimal transport.

Optimal transport has been widely studied in diverse
disciplines, such as statistics, applied mathematics, medi-
cal imaging, and computer vision. Wasserstein-based metrics
based on the mathematics of optimal mass transport have
been proved to be powerful tools for comparing objects in
complex spaces. Some successful applications include solv-
ing transport partial differential equation (PDE) (Ambrosio
and Gangbo 2008), imaging processing (Rabin and Papadakis
2015), statistical inference in machine learning (Solomon
et al. 2014), manifold diffeomorphisms (Grenander and Miller
2007), and serving as the cost function for training Gener-
ative Adversarial Networks (Arjovsky, Chintala, and Bottou
2017), among many others. However, existing Wasserstein-
based metrics are not directly applicable to the comparison of
two unbalanced measures defined on (G, W, C) as detailed in
Section 2.1.

We introduce a graph-based equilibrium metric (GEM) and
formulate it as an unbalanced optimal transport problem. Our
main contributions are summarized as follows. First, we propose
a novel GEM, which can be regarded as a restricted gener-
alized Wasserstein distance, to quantify the distance between
dynamic demand and supply networks on the weighted graph
structure. It not only allows the optimal transport guided by
asymmetric costs and node connections, but also accounts for
unbalanced masses. It also allows one of the two sides (supplies)

to play the transporting role and the other (demands) to be
fixed, which satisfies the physical interpretation of ride-sourcing
platforms. Second, varying the size of each vertex leads to
multilevel GEMs and their corresponding optimal transport
functions. At the finest scale, our GEM reduces to solving an
unbalanced assignment problem and its corresponding optimal
transport function contains many local details. In contrast, at a
relatively coarse scale, it gives a coarse representation (or low-
frequency patterns) of the optimal transport function. Third,
numerically, the calculation of GEM can be reformulated as
a standard linear programing (LP) problem. Theoretically, we
investigate several theoretical properties of GEM including the
convergence of the LP algorithm for computing GEM, the
expectation of GEM, and the metric property, additive property
and weak convergence of GEM. Fourth, we apply GEM to the
“supply-demand diagnostic data set” obtained from the DiDi
Chuxing in order to address some important operational tasks,
such as the prediction of the efficiency of a given dispatching
policy.

The remainder of this article is structured as follows. Sec-
tion 2 introduces graph-based equilibrium metrics and their
computational approach, while discussing their potential appli-
cations. Section 3 studies four theoretical properties associated
with GEM. Section 4 demonstrates the applications of GEM in
the intelligent operations of DiDi Chuxing.

2. Methodologies

2.1. Existing Wasserstein-Type Distances

Many approaches have been proposed to measure the distance
between two measures (or distributions) on a metric space. Most
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Figure 2. Examples of supply–demand networks for illustrating the limitations of Hellinger distance: blue and orange objects represent orders and idle drivers, respectively.
The first row illustrates the consequence of not transporting objects into nearby vertices. Specifically, the left one has a zero Hellinger distance, whereas the right one has a
nonzero Hellinger distance without transporting the two drivers into the nearby vertex with two orders. The second row illustrates that the normalization step can remove
the imbalance between orders and idle drivers. Specifically, the left one has a large imbalance between orders and idle drivers, whereas after the normlization, the right
one has a zero Hellinger distance.

of them fall into two broad categories including the aggregation
of pixel-wise differences and the transport cost of moving one
measure to match the other. Measurements in the first cate-
gory include the Lp-distance, the total variation (TV) distance,
and the Kullback–Leibler (KL) divergence (Cha 2007), among
others. A typical example is the Hellinger Distance reviewed as
follows.

Definition 2.1 (Hellinger Distance). Let M(X) and M+(X) be the
vector space of Radon measures and the cone of nonnegative
Radon measures on a Hausdorff topological space X. Then, we
use μ and ν to denote two probability measures that are abso-
lutely continuous with respect to a third probability measure ν0.
The square of the Hellinger distance between μ and ν ∈ M+(X)

is defined as D2
H(μ, ν) = 0.5

∫
X

(√
dμ/dν0 − √

dν/dν0
)2

dν0,
where dμ/dν0 and dν/dν0 are the Radon-Nikodym derivatives
of μ and ν, respectively.

All these metrics suffer from two major issues. Please refer
to Figure 2 for details. First, all these metrics not only fail to
consider the connections among different locations (vertices in
graph), but also ignore the topological (or geometric) structure
of X. Second, the use of Hellinger-type distances requires a
normalization step to enforce μ(X) = ∫

X dμ = ν(X) = ∫
X dν,

which can create a false balance issue.
To address these two issues, the second category of metrics,

such as the Wasserstein distance (Villani 2008), is proposed by
solving an optimal transport problem. In the real world, original
supply resources can usually be transported to achieve a better
equilibrium between μ and ν. All those distances have deep
connections to well-studied assignment problems from the field
of combinatorial optimization (Steele 1987).

Definition 2.2 (Wasserstein Distance). Let X and Y be Hausdorff
topological spaces and X × Y be their product space. We intro-
duce a lower semi-continuous function c : X×Y → R∪{∞}, an
nonnegative measure (or a transport function) γ ∈ M+(X×Y),
and an equality constraint ι{=}(α|β) which is 0 if α = β and

∞ otherwise. Then the optimal transport problem for measures
μ ∈ M+(X) and ν ∈ M+(Y) with the same total masses, that is
μ(X) = ν(Y), can be defined as

DW(μ, ν|c) (1)

= inf
γ∈M+(X×Y)

{∫
X×Y

cdγ + ι{=}(PX
# γ |μ) + ι{=}(PY

# γ |ν)

}
,

where PX
# γ and PY

# γ denote the first and second marginals of γ ,
respectively.

Intuitively, γ denotes a transport plan, measuring how far
you have to move the mass of μ to turn it into ν. Standard
optimal transport in (1) is only meaningful whenever μ and ν

have the same total masses. Whenever μ(X) 	= ν(Y), there is
no feasible solution γ in Equation (1). For the real-world ride-
sourcing platforms, however, it is important to compute some
sort of relaxed transport between two arbitrary nonnegative
measures. An improved approach is to build an unbalanced
optimal transport problem by introducing two divergences over
X and Y , denoted as Dϕ1 and Dϕ2 , respectively (Chizat et al.
2018; Liero, Mielke, and Savaré 2018).

Definition 2.3 (Divergences). Let ϕ be an entropy function. For
μ, ν ∈ M(T), dμ

dν
ν + μ⊥ is the Lebesgue decomposition of μ

with respect to ν. The divergence Dϕ is defined by Dϕ(μ|ν) :=∫
T ϕ(

dμ
dν

)dν + ϕ′∞μ⊥(T) if μ and ν are nonnegative and ∞
otherwise.

Now, we can give the formal definition of generalized Wasser-
stein distance.

Definition 2.4 (Generalized Wasserstein Distance (GWD)). Let
c : X × Y → [0, ∞] be a lower semi-continuous function, the
unbalanced optimal transport problem is

Dϕ1,ϕ2(μ, ν|c) (2)

= inf
γ∈M+(X×Y)

{∫
X×Y

cdγ + Dϕ1(PX
# γ |μ) + Dϕ2(PY

# γ |ν)

}
.
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Different from standard Wasserstein Distance which normal-
izes the input measures into probability distributions, GWD
quantifies in some way the deviation of the marginals of the
transport plan γ from the two unbalanced measures μ and ν by
using ϕ-divergence. Although Dϕ1,ϕ2(μ, ν|c) enjoys some nice
properties, such as metric property (Chizat et al. 2018; Liero,
Mielke, and Savaré 2018), the solution to Equation (2), denoted
as γ∗, may not have any physical meaning. For the ride-sourcing
business, such γ∗ is critically important for assigning supplies to
demands since it can be regarded as the graph representation
of a dispatching policy. Therefore, the use of Dϕ1,ϕ2(μ, ν|c) still
cannot fully cover the “useful” relative size between μ and ν,
since it may underestimate unmatched resources by allowing
some infeasible transports, that is, the space M+(X × Y) is too
large to be useful. Three major issues of using Dϕ1,ϕ2(μ, ν|c)
are given as follows. The first issue is that in many applications
(e.g., ride-sourcing platform), point masses in only one of the
two measures are allowed to be transported and those in the
other measure are fixed. In this case, the symmetric property
does not hold. The second issue is that neither W nor C can be
used to define a standard metric space on G = (V,E), since
transport cost (or weight) matrix may not satisfy the three key
assumptions of standard metrics. For instance, the transport
cost from vi to vj may be unequal to that from vj to vi, since
transport cost matrix C ∈ RN×N can be asymmetric for directed
graphs. Moreover, the direct transport cost from vi to vj may
be larger than or equal to the sum of the transport cost from
vi to vk and that from vk to vj. The third issue is that in some
applications, such as supply–demand networks, the transport
cost from vi to vj may not be a constant and the transport cost
from a vertex to itself may not be zero. It is possible that supply
units at vertex vi have their individual transport costs of mov-
ing within/outside the vertex vi. Subsequently, their transport
costs from vi to vj may follow a distribution instead of being
a constant.

2.2. Graph-based Equilibrium Metrics

On (G, W, C), we formally introduce our GEMs for two discrete
measures μ and ν in M+(V), among which point masses in μ

are allowed to be transported and those in ν are fixed. We need
to introduce some notations. In this case, we have X = Y = V

and use PV
#1γ and PV

#2γ to represent PX
# γ and PY

# γ , respectively.
Let |μ| = ∑N

i=1 μ(vi) and |μ− μ̃| = ∑N
i=1 |μ(vi)− μ̃(vi)|. For

i = 1, . . . , N, we use Ni to denote the neighboring set of vi in V,
which contains vi and its (possibly high-order) neighboring ver-
texes. Moreover, vi ∈ Nj does not ensure vj ∈ Ni since the traffic
and road networks may prohibit from directly transporting cars
from vj to vi.

Let c : V×V → R∪{∞} be a function and γ ∈ M+(V×V)

be a nonnegative measure. The general form of our GEM on
(G, W, C) is written as

ρλ(μ, ν|G, C) (3)

= inf
μ̃∈M+(V),γ∈M+(V×V)

{
|ν − μ̃| + λ

∫
V×V

cdγ

}
subject to an equality constraint and two sets of transport con-
straints given by

|μ| = |μ̃|, (PV
#1γ )(vi) =

∑
vj∈Ni

γ (vi, vj) = μi and

(PV
#2γ )(vi) =

∑
vi∈Nj

γ (vj, vi) = μ̃i, (4)

where λ is a nonnegative hyperparameter. The three sets of
constraints in Equation (4) ensure that μ̃ shares the same total
mass with μ and γ transports μ to μ̃. Thus, the feasible set for
Equation (4) is much smaller than that for Equation (2). The
integration of λ

∫
V×V

cdγ and the three sets of constraints in
Equation (4) is equivalent to the balanced Wasserstein distance
in Equation (1), so GEM is the integration of the balanced
Wasserstein distance and the L1 norm.

In our GEM framework, one of the two measures plays
the role of “predator” to move and “catch” the “prey,” which
mimics the general supply–demand system of ride-sourcing
platforms. Therefore, different from the setting of Piccoli and
Rossi (2014), in which both two measures are rescaled, we fix
ν but change μ only to make the two sides match each other
under the asymmetric distance and transport range constraints.
In Figure 3, we consider two simple examples in order to
understand the differences between GEM and GWD. Moreover,
since we only consider the transport from μ to μ̃ with ν fixed,
ρλ(μ, ν|G, C) is generally asymmetric and can be regarded as a
restricted GWD.

Besides GEM, the optimal solution of (μ̃, γ ) to Equation
(3), denoted as (μ̃∗, γ∗), also plays an important role in vari-
ous two-sided markets, such as ride-sourcing platforms and E-
commerce. The μ̃∗ can be regarded as the supply distribution
obtained by optimally transporting μ to match demands ν,
whereas γ∗ is an optimal transport function associated with
ρλ(μ, ν|G, C). If we vary the area of each vertex from the coars-
est to the finest scale, then we obtain multilevel GEM and its
transport function. At the finest scale, our GEM reduces to solv-
ing an unbalanced dispatching problem, so γ∗ is able to capture
the local structure of the optimal transport function. In contrast,
at a relatively coarse scale, we obtain a coarse representation of
the optimal transport function, reflecting its global patterns. We
will discuss how to apply GEM to ride-sourcing platforms in
Section 2.4.

Furthermore, we can simplify γ by defining γ = (γij) as an
N×N flow matrix with γij being the transport amount from vi to
vj. Let 
 represent the set consisting of all the feasible solutions γ

with all nonnegative elements γij ≥ 0. Let μ̃ = (μ̃1, . . . , μ̃N)T ∈
RN represent the measure μ after transporting γ such that μ̃i =∑

vj∈Ni γji holds for all i. Thus, our GEM is equivalent to solving
a discrete optimization problem as follows:

ρλ(μ, ν|G, C) = min
γ∈


{‖ ν − μ̃ ‖1 +λ
∑
vi∈V

∑
vj∈V

cijγij}

subject to
∑

vj∈Ni

γij = μi,
∑

vj /∈Ni

γij = 0, and

μ̃i =
∑

vi∈Nj

γji for ∀vi ∈ V, (5)

where ν = (ν1, . . . , νN)T ∈ RN and ‖ · ‖1 corresponds to the
L1 norm. Moreover, ‖ ν − μ̃ ‖1 in Equation (5) is equivalent to
the first term of the objective function in Equation (3).
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Figure 3. Examples illustrating the differences between GEM and GWD. Panel (a): For GEM, the four units can be matched in the left sub-figure, whereas it is infeasible in
the right one. There exists a directed edge from A to B, but not from B to A. Panel (b): In the top sub-figure, one “demand”unit at vertex C cannot be matched for GEM since
the transport from vertex A to vertex C is not allowed in this case, whereas in the bottom sub-figure, the transport is allowed by GWD. In panel (b), for GEM, it is assumed
that the neighboring set Ni only includes the adjacent vertexes of each vertex.

There are two key advantages of using the derived form given
in Equation (5) compared to the existing unbalanced optimal
transport problem. The first one is that transport is only allowed
between a vertex vi and its neighboring set Ni based on G.

The second one is that λ can balance the transport cost taken
to reallocate point masses and the requirement of assigning μ

to satisfy ν. The choice of λ in practice is data-driven. To ensure
that the transport only happens among selected vertex pairs
under the optimal transport plan, the theoretical upper bound
of λ is 2/ maxvi∈V ,vj∈Ñi

(cij), where Ñi ⊂ Ni contains all the
neighboring vertexes of vi that receive transport from vi. In this
case, the cost of transporting one unit of supply from vertex vi
to vj ∈ Ñi, λcij, is smaller than its contribution to reducing ‖
ν−μ̃ ‖1, which is 2 (1 for vi and vj, respectively), when νj−μj ≥
1 and μi − νi ≥ 1. Transport from vi to vj keeps decreasing
the objective value ρλ(μ, ν|G, C) until either the balance in the
destination vertex vj or that in the origin vertex vi is achieved.
In the real world, we usually let λ maxvi∈V ,vj∈Ñi

(cij) fall into
the range [0.4, 0.5] with cij being the geological distance and Ñi
containing all the first-order adjacent vertexes of vi in (G, W, C),
which can achieve the best performance in some problems, such
as the prediction of order answer rate.

2.3. Computational Approach

Optimal solution γ ∗ to Equation (5) can be calculated by solving
a standard linear programming (LP). We will reformulate (5) as
a LP problem and then use a revised simplex method incorpo-
rated in a C package GNU Linear Programming Kit (GLPK) to
solve it. We have found that GLPK works pretty well for our real
data analyses in Section 4.

We need to introduce some notations. Since the transport
range constraints in Equation (4) impose γij = 0 for vj /∈ Ni,
we only need to assign optimal values to γ̃ = Vec{γij, j ∈
Ni} ∈ RN0×1, where N0 = ∑N

i=1 ni and Vec(·) denotes the vec-
torization of a matrix. With this simplification, the dimension
of solvable variables is reduced from O(N2) to O(N0), which
highly increases the computational efficiency of our algorithm.
Let A1 and A2 be two N × N0 matrices. The ith row of A1
consists of 0’s except the (

∑i−1
j=1 nj+1)th to (

∑i
j=1 nj)th elements

being 1. Similarly, all the elements of the ith row of A2 are
zeros except the (

∑j−1
p=1 np + q)th element being 1 when grid

vi is indexed by q in the neighboring set Nj of vertex vj. Let
C̃ ∈ RN0×1 be the vector including the unit transport costs for
all the corresponding γij′s ∈ γ̃ . Moreover, we define

A = [
A1 0 0 0||A2 IN −IN 0||A2 −IN 0 IN

]
and b = [

μT , νT , νT]T ,

where μ = (μ1, . . . , μN)T , A ∈ R3N×(N0+3N), b ∈ R3N , and IN
is an identity matrix.

The (5) is equivalent to min{‖ ν−A2γ̃ ‖1 +λC̃T γ̃ } subject to
A1γ̃ = μ and γ̃ ≥ 0. Let S ∈ RN×1, it can be further transferred
into a standard linear programming (LP)

min{1TS + λC̃T γ̃ } subject to (6)
A1γ̃ = μ, A2γ̃ + S ≥ ν, A2γ̃ − S ≤ ν, γ̃ ≥ 0, and S ≥ 0.

The above LP can be further rewritten as

min
X

{BTX} subject to AX = b, X ≥ 0, (7)

where B = (λC̃T , 1T , 0T , 0T)T and X = (γ̃ T , ST , wT
1 , wT

2 )T ,
in which w1 and w2 are vectors of slack variables. The dual of
Equation (7) is assigned as

max
y∈R3N

{bTy} subject to ATy ≤ B, (8)

which further reduces the variable dimension from N0 + 3N
to 3N.

2.4. Applications of GEM in Ride-sourcing Platforms

To calculate GEM, we need to build a dynamic weighted graph
structure over time for each city on the ride-sourcing platform
as follows. We first divide a city into |V| = N nonoverlapping
hexagons and regard each hexagon as a vertex inV. Then, we set
Ni = ∪2

k=0N k
i , whereN k

i includes all the neighboring hexagons
within the kth outer layer of vi for k > 1 and N 0

i only includes
vi itself. A vertex vj belongs to the kth outer layer of vi if k steps
are required to walk from vi to vj on the hexagonal network.
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Thus, we determine G = (V,E). Second, we set Wt = (wijt),
where wijt is the distance between vi and vj in the tth timestamp.
Note that wijt may vary with time due to the real-time locations
of drivers and customers. Third, we compute Ct = (cijt) by
using Wt in the tth timestamp. Finally, we obtain the dynamic
weighted graph structure (G, Wt , Ct).

We show how to use GEM to address three operational tasks
of interest in ride-sourcing platforms. First, we can measure
the optimal distance between observed dynamic supply and
demand networks across time. We extract the spatio-temporal
data O = {(oit)}t and D = {(dit)}t from the dynamic demand
and supply systems, where oit and dit represent demands and
supplies at vertex vi in the tth timestamp, respectively. Given O
and D, we set μt = (dit)i and νt = (oit)i and use the LP algo-
rithm to calculate ρ(t) = ρλ(μt , νt|G, Ct) and its corresponding
solution, denoted as (μ̃t∗ = (d̃it∗)i, γt∗), in the tth timestamp.

Furthermore, we introduce an optimal supply–demand ratio
at each vi in the tth timestamp defined as the ratio of oit over
the ’optimal’ supplies d̃it∗ + ι{=}(d̃it∗ = 0), denoted as DSrit ,
in which we add an extra term ι{=}(d̃it∗ = 0) to avoid zero in
the denominator. Similarly, we can define an optimal supply–
demand difference as DSdit = oit − d̃it∗ at each (vi, t). It allows
us to create the spatiotemporal map of GEM-related measures
(DSrit , DSdit). Furthermore, we extend (DSrit , DSdit) to a wide
timespan T0 within a large region V0 ∈ V. For instance, we
define a weighted average supply–demand ratio over V0 in T0
and a weighted average absolute supply–demand difference over
V0 in T0 as follows:

DSrT0(V0) =
∫

t∈T0

∑
i∈V0 witDSritdt∫

t∈T0

∑
i∈V0 witdt

and

ADSdT0(V0) =
∫

t∈T0

∑
i∈V0 wit|DSdit|dt∫

t∈T0

∑
i∈V0 witdt

, (9)

in which we set wit as either oit or (oit + d̃it∗)/2 in order to high-
light vertices with high demands. A good market equilibrium in
ride-sourcing platforms corresponds to small values of |DSdit|
and |DSrit −1| across all (vi, t). Please see Section 4.1 for details.

Second, we can use historical supply–demand information
contained in {(DSrit , DSdit) : (vi, t) ∈ V × T0} to design
order dispatching policies for large-scale ride-sourcing plat-
forms. Order dispatch is an essential component of any ride-
sourcing platform for assigning idle drivers to nearby passen-
gers. Standard order dispatching approaches focus on imme-
diate customer satisfaction such as serving the order with the
nearest drivers (Liao 2003) or the first-come-first-go strategy to
serve the order on the top of the waiting list with the first driver
becoming available (Zhang and Pavone 2016). Those greedy
methods, however, fail to account for the spatial effects of an
order and driver (O-D) pair on the other O-D pairs. Thus,
they may not be optimal from a global perspective. To improve
the users’ experience, some more advanced techniques strive
to balance between immediate earnings and future returns.
To design better dispatching policy, we will include additional
historical supply–demand network information based on GEM
to delineate its effects on the average expected gain from serving
current order. Please see Section 4.2 for details.

Figure 4. Two examples to illustrate the importance of using random cij . In Panel
(a), two demands and two drivers can only be matched in the lower sub-figure since
their corresponding pairs of distance are below a given threshold, whereas it is not
the case in the upper sub-figure. In Panel (b), supply A is assigned to demand C
in the lower sub-figure when the within-grid cost cii is nonzero, and to demand B
when cii = 0, guided by the optimal transport plan with smaller transport costs.

Third, an important application of {ρ(t)} is to use it as a
metric to directly compare two (or more) dispatching policies
for ride-sourcing platforms. The key idea is to detect whether
there exists a significant difference between two sets of GEMs
for two competitive policies under the same platform envi-
ronment. Given the joint distribution of demand and supply
in the platform, the smaller GEM is, the better many global
operational metrics, such as order answer rate, order finishing
rate, and the driver’s working time, are. Compared with those
global operational metrics, GEM is a more direct measurement
of the operational efficiency for a ride-sourcing platform. Please
see Section 4.3 for details.

3. Theoretical Properties

In this section, we study the theoretical properties of our GEM-
related methods proposed in Section 2, most of whose proofs
can be found in the supplementary document.

First, we establish the convergence property of LP (7) for
GEM.

Theorem 3.1. The LP (7) has an optimal basic feasible solution.
Furthermore, if X is feasible for the primal problem (7) and y is
feasible for the duality (8), then we have

z̄ = yTb = yTAX ≤ BTX = z (10)

If either (7) or (8) has a finite optimal value, then so does the
other, the optimal values coincide, and the optimal solutions to
both (7) and (8) exist.

An implication of Theorem 3.1 is that Equation (7) is solv-
able. It demonstrates that there always exit theoretically opti-
mal transport plans (including no transport case) to maxi-
mally increase the systematic coherence between the initially
unbalanced supplies and demands. However, Theorem 3.1 also
indicates that the optimal transport plan may not be unique
considering the weighted graph structure and initial supply and
demand distributions.

Second, we carry out a probabilistic analysis of our LP (7)
for GEM when cij follows a distribution. Let us start with two
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motivating examples of ride-sourcing platforms described in
Figure 4. The wij represents the geological distance or the traffic
time, which may vary between each pair of supply at vj and
demand at vi. For the LP defined in (7), it is assumed that each
component of C̃ = (c̃1, c̃2, . . . , c̃N0)

T is a nonnegative random
variable, whereas all elements in A and b in Equation (7) are
known. Let z∗ denote the minimum value of (7). Since z∗ is a
function of C̃, it is also a random variable. We provide an upper
bound for the expectation of z∗ = z∗(C̃) below.

Theorem 3.2 (Expectation Bound). Let c̃1, . . . , c̃N0 be indepen-
dent nonnegative random variables. Suppose there exist α1 ∈
(0, ∞) and α2 ∈ (0, 1] such that for l = 1, 2, . . . , N0 and all
h > 0 with P(λc̃l ≥ h) > 0, we have

E(λc̃l|λc̃l ≥ h) ≥ α1λE(c̃l) + α2h, (11)
where the expectation is taken with respect to c̃l. Let
{x̂1, . . . , x̂3N+N0} be any fixed feasible solution to Equation (7).
We have

E(z∗) ≤ α−1
2 {

N0∑
l=1

(1 − α1δl)E(λc̃l)x̂l +
N0+N∑

l=N0+1
x̂l}, (12)

where δl ∈ [0, 1] defined in the supplementary document is a
pre-defined nonnegative constant for each l ∈ {1, . . . , N0}.

Theorem 3.2 has at least two implications. First, condition
(11) holds under some mild conditions. For instance, it can be
shown that if c̃j is a bounded random variable that takes values in
[cj,L, cj,U ] such that P(c̃j > cj,L) > 0 and lim infh→0 h−1P(λc̃j <

h + λcj,L) > 0, then condition (11) holds. Some examples of c̃j
include uniform, truncated normal, and truncated exponential
random variables, among others. For instance, we consider the
case that c̃j follows Uniform [cj,L, cj,U ]. It can be shown that
E(λc̃j|λc̃j ≥ h) = 0.5(λcj,U + h), yielding α1 = cj,U/(cj,U + cj,L)
and α2 = 0.5. Second, Equation (12) gives an upper bound
of the expected value of z∗(C̃). If we set δl = 0 for all l, then
we can obtain a larger upper bound compared with the right-
hand side of Equation (12). This result generalizes an existing
result of Dyer, Prieze, and Mcdiarmid (1986) for standard linear
programs with random costs under a stronger condition corre-
sponding to α1 = 1.

Third, we examine the metric properties of ρλ((·), (·)|G, C)

including non-negativity, identity, symmetry, and the triangle
inequality.

Theorem 3.3. The operator ρλ((·), (·)|G, C) is a semi-metric
such that it satisfies nonnegativity, identity, and symmetry, but
not necessarily the triangle inequality when (i) C = (cij) ∈
RN×N is symmetric with cii = 0 for all i; (ii) j ∈ Ni if and
only if i ∈ Nj.

Theorem 3.3 indicates that if C is symmetric, then
ρλ((·), (·)|G, C) as a semi-metric satisfies three properties
including non-negativity, identity, and symmetry. Although the
symmetric assumption of C may be incorrect for all vertexes,
it should be valid for most vertexes. Thus, ρλ((·), (·)|G, C) is
approximately a semi-metric.

Fourth, we give the upper and lower bounds of GEM and
consider an additivity property in order to better understand
how the transport costs and network structures affect GEM.

Theorem 3.4. The following properties hold:
(i). ||μ| − |ν|| ≤ ρλ(μ, ν|G, C) ≤ (|μ| + |ν|)
(ii). Additivity Property. For a nonnegative �, when C is

symmetric, we have

|ρλ(μ, ν + �|G, C) − ρλ(μ, ν|G, C)| ≤ N�;
|ρλ(μ + �, ν|G, C) − ρλ(μ, ν|G, C)| ≤ N�.

Property (i) shows that GEM can be bounded from both
above and below. Based on the additivity property, the GEM
value can either increase or decrease with one-side node-wise
augmentation, which depends on the weighted graph structure
and the distribution of supply and demand. This indicates that
applying proper stimulus at selected vertexes is more efficient
than globally increasing supply resources.

Fifth, we examine the weak convergence property of
ρλ((·), (·)|G, C).

Theorem 3.5 (Weak Convergence). Let {μn} be a sequence of
measures on space V, and μn, μ ∈ M+(V). If all the transport
costs are bounded, that is cij ≤ R holds for ∀vi ∈ V and vj ∈ Ni,
then ρλ(μ, μn|G, C) → 0 when μn → μ and {μn} is tight.

Here is an immediate corollary of Theorem 3.5.

Corollary 3.5.1. Let {μn} and {νn} be two sequences of measures
on spaceV, and μn, νn, μ, ν ∈ M+(V). If cij ≤ R holds for ∀ vi ∈
V and vj ∈ Ni, then we have

if μn (resp. νn) → μ (resp. ν) and {μn}, {νn} are tight,
then ρλ(μn, νn|G, C) → ρλ(μ, ν|G, C).

Theorem 3.5 states that the GEM value goes to 0 and no
transport is required when the initial distributions of μ and ν

are getting close to each other.

4. Experiments

In this section, we apply GEM to the supply–demand diagnostic
data set in order to address three important operational tasks
in ride-sourcing platforms, including answer-rate prediction,
the design of order dispatching strategy, and policy assessment.
Without special saying, we use the method described in Sec-
tion 2.4 to construct the dynamic weighted graph structure
across time in all these analyses. We have released the “supply–
demand diagnostic dataset” through the DiDi GAIA Open
Data Initiative at https://outreach.didichuxing.com/appEn-vue/
dataList and made the computer codes together with necessary
files available at https://github.com/BIG-S2/GEM.

4.1. Answer-Rate Prediction

The data set that we use here includes both demand and idle
driver information from April 21 to May 20, 2018 in a large
city H. We divide the whole city into N = 800 nonoverlapping
hexagonal sub-regions with side length being 1400 m to form
the whole vertex set V. We let the directed edge weight wij from
vi to vj ∈ N 1

i be the distance between the centers of the two
sub-regions, which is 2400 m if vj can be directly reached by
vi through traffic without first passing through another vertex.

https://outreach.didichuxing.com/appEn-vue/dataList
https://outreach.didichuxing.com/appEn-vue/dataList
https://github.com/BIG-S2/GEM
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Otherwise, wij = ∞. We compute the numbers of idle drivers
and demands in each vertex per minute and then extract the
dynamic supply–demand data set.

The aim of this data analysis is to examine whether the GEM-
related measures, such as DSrit , are useful for predicting order
answer rate in ride-sourcing platforms. Order answer rate is
defined as the number of orders accepted by drivers divided by
the total number of orders in a fixed time interval. Specifically,
we predict the log-value of order answer rate of the incoming 10
(or 60) minutes by using historical metric values. We computed
the Hellinger distance, the L2 distance, the Wasserstein distance,
and GEM for each 10-min interval. The L2 distance is calculated
by using the numbers of orders and available drivers in all
vertices across 10 consecutive 1-min timestamps. The Hellinger
distance is calculated by normalizing the numbers of orders
and available drivers in all vertices and across 10 consecutive 1-
min timestamps into probability distributions. For the Wasser-
stein distance, we first normalize both supplies and demands
at each 1-min time interval into two probability distributions
and calculate their corresponding Wasserstein distance. Subse-
quently, we obtain the metric value over each 10-min interval
by aggregating the Wasserstein distances computed across the
10 included 1-min timestamps by using their corresponding
weights

∑
vi∈V oitk/

∑
tk∈T

∑
vi∈V oitk . For GEM, we compute

the supply–demand ratio map of DSrit per minute and then we
calculate DSrT0(V) for each 10-min interval.

We split the supply–demand dataset into a training dataset
consisting of observations from April 26 to May 11, 2018, and a
test dataset consisting of observations from May 12 to May 21,
2018. We use linear regression models to predict the log-value of
order answer rate of the incoming jth 10 min for j = 1, . . . , 6 by
using various historical metric variables of the previous p = 10
10-min snapshots and those in the same time windows of the
previous 5 days.

We use mean absolute percentage error (MAPE) and root
mean squared error (RMSE) as evaluation metrics to examine
the prediction accuracy of all the four compared metrics. Table 1
shows their corresponding RMSE and MAPE values based on
the test data. Due to the space limitation, we only provide the
results corresponding to those at t + 10 and t + 60 min, which

Table 1. Results from the answer-rate prediction.

Hellinger L2-distance Wasserstein GEM

t+10 All time RMSE 0.1362 0.1496 0.1273 0.0552
MAPE 0.0801 0.0891 0.0718 0.0338

Peak hour RMSE 0.2219 0.2187 0.2088 0.0614
MAPE 0.1494 0.1457 0.1089 0.0422

t+60 All time RMSE 0.1522 0.1552 0.1413 0.1130
MAPE 0.0828 0.0868 0.0859 0.0620

Peak hour RMSE 0.2395 0.2565 0.2222 0.1530
MAPE 0.1077 0.1159 0.1317 0.0728

indicate the short-term and long-term prediction capacities of
all the four metrics. Moreover, we also include the results during
the evening peak hours starting from 6 p.m. to 8 p.m. For both
the t + 10 and t + 60 cases, GEM significantly outperforms
all other three metrics, which may not sufficiently capture the
dynamic transport and systematic balance of the weighted graph
structure.

Figure 5(a) presents the real order answer rates and their
predictive values in the last 7 test days (Tuesday to Monday)
from May 12 to May 18 based on all the four metrics for the
(t + 10) case. Compared with all other methods, GEM shows
higher consistency between the true and predicted answer rate
values, especially for some abnormal extreme cases. Further-
more, Figure 5(b) presents the histograms of RMSEs for the
Hellinger distance, the Wasserstein distance, and GEM at each
day of the last 7 days, indicating that GEM outperforms the other
two metrics consistently in all seven days. Therefore, our GEM
is able to capture the short- and long-term variability within the
coherence between the two spatial–temporal systems and has
strong prediction capacity for future answer rates.

4.2. Order Dispatching Policies

We consider the order dispatching problem of matching No
orders with Nd available idle drivers, where No and Nd denote
the total number of orders and that of idle drivers in the current
timestamp, respectively. The edge weight A(k, l) in the bipartite
graph equals to the expected earnings when pairing driver l

Figure 5. Results from the answer-rate prediction. Panel (a): comparisons of the log-value of real answer rates obtained from May 12 to May 18, 2018 and their predictive
values based on the L2 distance, the Hellinger distance, the Wasserstein distance, and GEM. Panel (b): comparisons of day-wise RMSEs of answer rate prediction obtained
from Monday to Sunday within the whole city area.
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Figure 6. The order dispatch as a bipartite matching problem: (a) available orders and drivers prepared for pairing; (b) quantifying all the potential expected earning A(k, l)
for all driver-order pairs (k, l) that satisfy the dispatching constraints; and (c) finding the optimal one-to-one bipartite matching in order to maximize the total revenue.

to order k. Let xkl be 1 if order k is assigned to driver l and
0 otherwise. The global order dispatching algorithm solves a
bipartite matching problem as follows:

arg max
xkl

Nd∑
k=0

No∑
l=0

A(k, l)xkl, s.t.
Nd∑

k=0
xkl ≤ 1 ∀l;

No∑
l=0

xkl ≤ 1 ∀k; xkl = 0 if ckl > ε ∀k, l. (13)

See Figure 6 for a graphical illustration of Equation (13). The
constraints ensure that each order can be paired to at most
one available driver and similarly each driver can be assigned
to at most one order. In practice, only drivers within a certain
distance could serve the corresponding orders, which means
that xkls’ are forced to be 0 when the distance between order
k and driver l, denoted as ckl, is beyond the maximal pick-
up distance ε. The state-of-art algorithm to solve this kind
of matching problem is the Kuhn-Munkres (KM) algorithm
(Munkres 1957), which will be used to solve the formulated
problem here.

In this article, we compare three different dispatching policies
based on three different formulations of A(k, l). The first one
as a baseline only considers the immediate reward of assigning
driver l to order k, which is defined as A(1)(k, l) = α1rk − α2ckl,
where rk is the driver’s earning by serving order k and ckl is the
pick-up distance between order k and driver l. Moreover, α1 and
α2 are tuning parameters such that the two terms are balanced
to maximize the drivers’ salaries, while reducing customers’
waiting time.

The second one is given by A(2)(k, l) = α1rk − α2ckl +
α3{η�tlk V1(s′lk) − V1(sl)}, where η is the discount factor and
an additional term α3{η�tlk V1(s′lk) − V1(sl)} is introduced to
enhance the long-term effects of current actions on drivers’
future income (Xu et al. 2018). Let V1(s) be the expected earn-
ings from now to the end of the day for a driver located at
s = (v, t), where v ∈ V and t is the current time. Moreover,
sl = (v(l), t) and s′lk = (v(k), t + �tlk) here represent the current
spatial-temporal state of driver l and his/her estimated finishing
state when completing serving order k, where v(l) ∈ V is the
current region of driver l before order assignment and v(k) ∈ V

is the destination region of order k and �tlk denotes the total
time required for driver l to finish the whole process of serving

order k. If a driver becomes available to a new order immediately
after finishing the ongoing one, then η�tlk V1(s′lk) − V1(sl) is the
extra future earning for driver l by serving order k other than
staying idle.

The third one is given by A(3)(k, l) = A(2)(k, l) +
α4{η�tlk V2(s′lk) − V2(sl)}, where α4{η�tlk V2(s′lk) − V2(sl)} is
introduced to balance the supply–demand coherence. More-
over, V2(s) = νt(v) − μ̃t(v) at s = (v, t) is calculated from
GEM in Equation (5). Using V2(·) increases the probability
that customers’ requests can be quickly answered by nearby
drivers, whereas V1(·) ignores the interaction effects when mul-
tiple drivers are heading to the same location. Thus, when the
future demand has already been fulfilled by drivers re-allocated
by previous completed servings, assigning more drivers might
decrease V1(·) in the target location.

We use a comprehensive and realistic dispatch simulator
designed for recovering the real online ride-sourcing system to
evaluate the three dispatching policies. The simulator models
the transition dynamics of the supply and demand systems to
mimic the real on-demand ride-hailing platform. The order
demand distribution of the simulator is generated based on
historical data. The driver supply distribution is initialized by
historical data at the beginning of the day, and then evolves
following the simulator’s transition dynamics (including drivers
getting online/offline, driver movement with passengers and
idle driver random movement) as well as the order dispatching
policies. The differences between the simulated results and the
real-world situation is less than 2% in terms of some important
metrics, such as the drivers’ revenue, answer rate, and idle driver
rate.

To compare the three dispatching policies, we randomly
selected a specific city S, which usually has in total 150, 000 to
200, 000 ride demands per day. We still divide the whole city area
into N = 800 hexagonal vertices and use the geological distance
between two nearby grids to be the edge weights. Furthermore,
three different days including 2018/05/15 (Tuesday), 2018/05/18
(Friday), and 2018/05/19 (Saturday) were analyzed since the
global order answer rates on weekday are usually much lower
than those at weekend by looking at the historical data. Both
V1(·) and V2(·) values were obtained by taking the average of
the same weekday or weekend from the previous four weeks
since the platform has significant weekly periodicity. The length
of time intervals that we used to compute V1(·) and V2(·) was
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set to be T0 = 10 min so that all the action windows inside share
the same V1(·) and V2(·) values. Specifically, V2(·) is achieved
by aggregating the |T0| continuous (νkt − μ̃kt)s’. We applied
the three dispatching policies with different edge weights to the
simulator even based on the same initial input and transition
dynamics. We set α1 = 1 and α2 = 0.001 to rescale the order
price rk and the pick-up distance ckl into comparable ranges.
The rk contributes more to the variations of A(k, l) because of
the constrained pick-up distance (ckl ≤ ε). Furthermore, we
perform grid search for a wide range of (α3; α4) combinations
to find its optimal solution, denoted as (α∗

3 , α∗
4 ), that maximizes

an average drivers’ revenues for weekdays and weekends in the
simulator. Specifically, we fixed α4 = 0 first and use the bisection
method to obtain a rough value range of length 0.1 for α3
with its initial start being [0, 1]. Then we apply the grid search
method to increase 0.01 amount for α3 each time within the
value range until finding the optimal α∗

3 corresponding to the
largest averaged drivers’ revenue. Subsequently, we fix α∗

3 and
do the similar grid search to get the optimal α∗

4 .
Tables 2 and 3 summarize the collected results corresponding

to the baseline policy, A(2)(k, l) with the optimal α3, and our

Table 2. Results from order dispatching policies. Comparisons of the three policies
with respect to two evaluation metrics including the drivers’revenue and the global
answer rate using the simulator for city S on two selected Weekdays.

α3 α4 Drivers’ revenue (Yuan) Order answer rate

2018/05/15 (Tuesday)

0 0 1191316 0.737
0.54 0 1227175(+3.01%) 0.760(+3.12%)
0.54 6 1235037(+3.67%) 0.761(+3.28%)
0.54 7 1236824(+3.82%) 0.763(+3.54%)
0.54 8 1240518(+4.13%) 0.765(+3.82%)
0.54 9 1238850(+3.99%) 0.764(+3.66%)
0.54 10 1231702(+3.39%) 0.761(+3.26%)

2018/05/18 (Friday)

0 0 13943666 0.539
0.61 0 14701230(+5.43%) 0.557(+3.34%)
0.61 6 14845486(+6.47%) 0.561(+4.08%)
0.61 7 14858400(+6.56%) 0.560(+3.90%)
0.61 8 14865454(+6.61%) 0.560(+3.90%)
0.61 9 14867573(+6.63%) 0.560(+3.90%)
0.61 10 14823121(+6.31%) 0.557(+3.34%)

NOTES: The rows with (α3, α4) = (0, 0) correspond to the first (or baseline) policy,
those with α4 = 0 and α3 	= 0 correspond to the second policy, and all other
rows correspond to the third policy. The numbers in the parentheses denote
the relative improvement of the corresponding policy over the baseline policy for
each evaluation metric.

Table 3. Results from order dispatching policies.

α3 α4 Drivers’ revenue (Yuan) Order answer rate

2018/05/19 (Saturday)

0 0 13507568 0.745
0.52 0 13886185(+2.80%) 0.768(+3.09%)
0.52 6 14034453(+3.90%) 0.774(+3.89%)
0.52 7 14008847(+3.71%) 0.772(+3.62%)
0.52 8 14043995(+3.97%) 0.773(+3.76%)
0.52 9 13996021(+3.62%) 0.770(+3.36%)
0.52 10 13934895(+3.16%) 0.768(+3.09%)

NOTE: Comparisons of the three policies with respect to two evaluation metrics
including the drivers’ revenue and the global answer rate using the simulator for
city S on a selected Weekend.

approach with different α4 values. It reveals that the order dis-
patching policy based on A(3)(k, l) could achieve higher drivers’
revenue and answer rate compared with the other two policies.
The optimal α3 is achieved at 0.54, 0.61, and 0.52 for 2018/05/15,
2018/05/18, and 2018/05/19, respectively. In 2018/05/15 and
2018/05/19, we obtain a smaller optimal α3 since a higher
coherence between supplies and demands is achieved under
the baseline policy (α3 = α4 = 0) than that of 2018/05/18,
which indicates that the supply–demand relationship is more
related to the policy efficiency than the weekday/weekend status.
Moreover, the supply abundance in 2018/05/15 and 2018/05/18
results in a higher order answer rate but a smaller optimal α4.
Compared to the policy corresponding to A(2)(k, l), adding the
GEM-related measurements increases the expected whole-day
answer rate and drivers’ revenue in more than 1%. It may indi-
cate that the supply–demand difference may affect the expected
future gain of a marginal driver.

In practice, we first perform grid search for a wide range of
(α3, α4) combinations to find its optimal solution (α∗

3 , α∗
4 ) that

maximizes the mean drivers’ revenue for some representative
days in the simulator. Then we fine-tune the parameters via on-
line A/B testing, and apply the policy in the real-life dispatching
system. The value functions V1(·) and V2(·) are updated with
the new policy being employed for a period of time, and α∗

3 and
α∗

4 are re-tuned in the real environment to achieve the optimal
efficiency.

4.3. Policy Evaluation

We conduct an experiment using another supply-demand
dataset of the same city H from December 3rd to December
16th, 2018 in order to compare the effectiveness between two
order dispatching policies. We executed them alternatively on
successive half-hourly time intervals. Moreover, we start with
the baseline policy for the first half hour and change the policy
every half hour through the whole day and reverse their order in
another day. We include an A/A test, which compares the base-
line policy against itself, by using the historical data obtained
from November 12 to November 25 as a direct comparison. We
calculate GEM within each time window of 30 min as follows.
There are in total MT = 48 time intervals per day. To obtain
GEM in each time interval T , we aggregate 30 GEM values,
each of which is calculated within the 1-min timestamp, by using
normalization weights oit/

∑
t∈T

∑
vi∈V oit .

We first need to introduce some notations. We denote ym(tk)
as the aggregated GEM value and use xm(tk) to denote a 2 × 1
vector of predictors, which are not strongly influenced by order
dispatching policy, including the total number of demands and
the total supply time of all drivers in the kth time interval of
day m for k = 1, . . . , MT and m = 1, . . . , MD. Let am(tk) =
1 if the new policy is used and = −1 otherwise. To examine
the marginal effect of policy on GEM, we consider the following
regression model:

ym(tk) = β0(tk) + β1(tk)
T{xm(tk) − x(tk)} + β2(tk)am(tk)

+ ηm(tk) + εm(tk),
(14)

where β(tk) = (β0(tk), β1(tk)
T , β2(tk))

T is a vector of regres-
sion coefficients at tk, and x(tk) is the sample mean of all
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xi(tk)s for k = 1, . . . , MT . In addition, we assume that ηm =
(ηm(t1), . . . , ηm(tMT ))T and εm = (εm(t1), . . . , εm(tMT ))T are
MT × 1 vectors of random errors, following mutually indepen-
dent multivariate Gaussian distributions N(0, �η) and N(0, σ 2

ε ·
IMT ), where �η is an MT ×MT matrix and σ 2

ε is a positive scalar.
We are interested in testing the following null and alternative
hypotheses:

H0 :
∫ MT

0
β2(t)dt = 0 v.s. H1 :

∫ MT

0
β2(t)dt 	= 0, (15)

where
∫ MT

0 β2(t)dt ≈ ∑MT
k=1 β2(tk)�t0 denotes the average

treatment effect per day, in which �t0 is the length of each
time interval. We propose a joint estimation procedure based on
Generalized Estimating Equations (GEE) to iteratively estimate
all unknown parameters until a specific convergence criterion
being reached (Liang and Zeger 1986). Subsequently, we com-
pute the t-test statistic associated with the average treatment
effect per day and its corresponding one-sided (or two-sided)
p-value (Mancl and DeRouen 2001).

Furthermore, we consider three global operational metrics
including the order answer rates, order finishing rate, and gross
merchandise value (GMV) as ym(tk) in model (14). We fit
the corresponding three regression models in order to study
whether the new dispatching policy significantly improves the
ride-sourcing platform at the operational level.

Table 4 summarizes all regression analysis results for both
the A/A and A/B experimental designs. We can see that in the
A/B experimental design, there exists a significant increase in

Table 4. Results from the policy evaluation: relative improvement and two-sided
p−value of average treatment effects for the A/A and A/B experiments.

Experiment Relative
Design ym(t) Improvement(%) p−value

Answer Rate 0.76 1.16e-12
A/B Finish Rate 0.36 4.32e-3

GMV 0.86 2.91e-6
GEM −0.80 4.06e-2

Answer Rate 0.01 0.96
A/A Finishing Rate 0.01 0.96

GMV −0.08 0.72
GEM −0.25 0.43

NOTES: Comparisons of Hellinger, L2-distance, Wasserstein, and GEM in predicting
answer rate at t + 10 and t + 60 min. Peak hour denotes the time from 6 p.m. to 8
p.m. MAPE and RMSE denote the mean absolute percentage error and root mean
squared error, respectively.

the mean answer rate, finishing rate and gross merchandise
value when replacing the old policy by the new one since all
the p-values associated with the average treatment effect are
smaller than 10−3. The new policy can also significantly reduce
the GEM value (p-value smaller than 0.05), which agrees with
our assumption that GEM can sufficiently quantify the supply–
demand relationship and subsequently affect the examined plat-
form indexes. In contrast, Table 4 shows that in the A/A exper-
imental design, all the four metrics do not show significant
treatment effect at the significance level of 5%.

Figure 7(a) presents the GEM value at in total 48 30-min
time windows on December 3, 2018 for the A/B experimental
design. We observe a significant reduction of GEM value when

Figure 7. Results from the policy evaluation. (a) The GEM values of a randomly selected day on 2018/12/08 for city H at 30-min scale. Green and red points represent
the GEM values generated by the baseline (control) and new (experimental) policies, respectively. In particular, we mark the time period 7:00 a.m. to 8:00 a.m. by a blue
circle, which demonstrates a significant reduction of GEM value when changing the policy from the control one to the experimental one. (b) The heatmaps of vertex-wise
supply–demand difference DSdit of city H under the control and experimental policies within the 30-min time window from 7:00 to 7:30 a.m. and that from 7:30 to 8:00
a.m., respectively. Hexagons in red and blue colors represent the locations with positive and negative DSdit , respectively, and a deeper color corresponds to a big |DSdit|
value.
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changing the policy from the control one to the experimental
one during the time period from 7:00 to 8:00 a.m. Figure 7(b)
presents the heat maps of vertex-wise DSdit within the same
time period under the control and experimental policies, respec-
tively. The customer requests in three selected regions marked
by green and purple circles were satisfied by the drivers in nearby
regions, resulting in the higher supply–demand coherence and
thus a smaller GEM value.

Supplementary Material

In the supplementary material, we provide the detailed technical proofs for
Theorems 3.1–3.5.
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