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Summary. The paper develops a general regression framework for the analysis of manifold-
valued response in a Riemannian symmetric space (RSS) and its association with multiple
covariates of interest, such as age or gender, in Euclidean space. Such RSS-valued data arise
frequently in medical imaging, surface modelling and computer vision, among many other fields.
We develop an intrinsic regression model solely based on an intrinsic conditional moment
assumption, avoiding specifying any parametric distribution in RSS. We propose various link
functions to map from the Euclidean space of multiple covariates to the RSS of responses.
We develop a two-stage procedure to calculate the parameter estimates and determine their
asymptotic distributions. We construct the Wald and geodesic test statistics to test hypotheses
of unknown parameters. We systematically investigate the geometric invariant property of these
estimates and test statistics. Simulation studies and a real data analysis are used to evaluate
the finite sample properties of our methods.

Keywords: Generalized method of moment; Geodesic; Group action; Lie group; Link function;
Regression; Riemannian symmetric space

1. Introduction

Manifold-valued responses in curved spaces frequently arise in many disciplines including med-
ical imaging, computational biology and computer vision, among many others. For instance,
in medical and molecular imaging, it is interesting to delineate the changes in the shape and
anatomy of a molecule. See Fig. 1 for four examples of manifold-valued data. Regression anal-
ysis is a fundamental statistical tool for relating a response variable to a covariate, such as age
and gender. In particular, when both the response and the covariate(s) are in Euclidean space,
the classical linear regression model and its variants have been widely used in various fields (Mc-
Cullagh and Nelder, 1989). However, when the response is in a Riemannian symmetric space
(RSS) and the covariates are in Euclidean space, developing regression models for this type of

Address for correspondence: Hongtu Zhu, Department of Biostatistics, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA.
E-mail: hzhu@bios.unc.edu

© 2016 Royal Statistical Society 1369-7412/17/79463



464 E. Cornea, H. Zhu, P. Kim and J. G. Ibrahim

200 250 300

(@) (b) (© (d)

Fig. 1. Examples of manifold-valued data: (a) diffusion tensors along white matter fibre bundles and their
ellipsoidal representations; (b) principal direction map of a selected slice for a randomly selected subject and
the directional representation of some randomly selected principal directions on S2; (c) median representa-
tions and median atoms of a hippocampus from a randomly selected subject; (d) an extracted contour and
landmarks along the contour of the mid-saggital section of the corpus callosum from a randomly selected
subject

data raises both computational and theoretical challenges. The aim of this paper is to develop
a general regression framework to address these challenges.

Little has been done on the regression analyses of manifold-valued response data. The existing
statistical methods for general manifold-valued data are primarily developed to characterize the
population ‘mean’ and ‘variation’ across groups (Bhattacharya and Patrangenaru, 2003, 2005;
Fletcher et al., 2004; Dryden and Mardia, 1998; Huckemann et «l., 2010). In contrast, even
for the ‘simplest’ directional data, there is a sparse literature on regression modelling of a
single directional response and multiple covariates (Mardia and Jupp, 2000). In addition, these
regression models of directional data are primarily based on a specific parametric distribution,
such as the von Mises—Fisher distribution (Mardia and Jupp, 2000; Kent, 1982). However, it
can be very challenging to assume useful parametric distributions for general manifold-valued
data, and thus it is difficult to generalize these regression models of directional data to general
manifold-valued data except for some specific manifolds (Shi ez al., 2009, 2012; Fletcher, 2013;
Kim et al., 2014; Zhu et al., 2009). There is also a great interest in developing non-parametric
regression models for manifold-valued response data and multiple covariates (Bhattacharya
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and Dunson, 2010, 2012; Samir et al., 2012; Su et al., 2012; Muralidharan and Fletcher, 2012;
Machado and Leite, 2006; Machado et al., 2010; Yuan et al., 2012).

An intriguing question is whether there is a general regression framework for manifold-valued
response in an RSS and covariates in a multi-dimensional Euclidean space. The aim of this paper
is to give an affirmative answer to such a question. The theoretical development is challenging
but of great interest for carrying out statistical inferences on regression coefficients. We make
five major contributions in this paper as follows.

(a) We propose an intrinsic regression model solely based on an intrinsic conditional moment
for the response in an RSS, thus avoiding specifying any parametric distributions in a
general RSS—the model can handle multiple covariates in Euclidean space.

(b) We develop several ‘efficient’ estimation methods for estimating the regression coefficients
in this intrinsic model.

(c) Wedevelop several test statistics for testing linear hypotheses of the regression coefficients.

(d) Wedevelop a general asymptotic framework for the estimates of the regression coefficients
and test statistics.

(e) We systematically investigate the geometrical properties (e.g. chart invariance) of these
parameter estimates and test statistics.

The paper is organized as follows. In Section 2, we review the basic notion and concepts of Rie-
mannian geometry. In Section 3, we propose the intrinsic regression models and propose various
link functions for several specific RSSs. In Section 4, we develop estimation and test procedures
for the intrinsic regression models. In Section 5, we carry out a detailed data analysis on the shape
of corpus callosum (CC) contours obtained from the ‘Alzheimer’s disease neuroimaging initiative’
(ADNI) study. Finally, we conclude with some discussions in Section 6. Technical conditions,
simulation studies, theoretical examples and proofs are deferred to the on-line supplemen-
tary document. Our code and data are available from http: //www.bios.unc.edu/resea
rch/bias/software.html.

2. Differential geometry preliminaries

We briefly review some basic facts about the theory of Riemannian geometry and present more
technical details in the on-line supplementary document. The reader can refer to Helgason
(1978), Spivak (1979) and Lang (1999) for more details.

Let M be a smooth manifold and da4 be its dimension. A tangent vector of M at pe M
is defined as the derivative of a smooth curve «(¢) with respect to ¢ evaluated at r =0, denoted
as (0), where y(0) = p. The tangent space of M at p is denoted as 7, M and is the set of all
tangent vectors at p.

A Riemannian manifold (M, m) is a smooth manifold together with a family of inner prod-
ucts, m ={m,}, on the tangent spaces 7, Ms that vary smoothly with p € M, and m is called a
Riemannian metric. This metric induces a so-called geodesic distance dist 4 on M. The geodesics
are, by definition, the locally distance minimizing paths. If the metric space (M dist r¢) is com-
plete, the exponential map at p is defined on the tangent space T, M by Exp s WV)=~(;p, V),
where t — v(z; p, V) is the geodesic with «(0; p, V) = p and (0; p, V) V. Exp is well defined
near 0 and is a diffeomorphism on an open neighbourhood V of the origin in T M onto U with
V such that rV e Vfor0<r<1and VeV. The inverse map is the logarithmic map at p, which is
denoted by Log . Then, for g e, dist pq(p,q) = ||Log (@ lm,,- The radius of injectivity of M
at p, which is denoted by p*(M, p), is the largest r >0 such that Exp is a diffeomorphism on
the open ball B,,,(0,7) C T, M onto an open set in M near p. Any ba51s in the tangent space
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Tp M induces an isomorphism from 7, M to RM _ and then the logarithmic map Log » brovides
a local chart near p. If 7, M is endowed with an orthonormal basis, such a chart is called a
normal chart and the co-ordinates are called normal co-ordinates.

A Lie group G is a group together with a smooth manifold structure such that the operations
of multiplication and inversion are smooth maps. Many common geometric transformations
of Euclidean spaces that form Lie groups include rotations, translations, dilations and affine
transformations on R¢. In general, Lie groups can be used to describe transformations of smooth
manifolds.

An RSS is a connected Riemannian manifold M with the property that, at each point, the
mapping that reverses geodesics through that point is an isometry. Examples of RSSs include
Euclidean spaces R*, spheres S¥, projective spaces PR* and hyperbolic spaces H*, each with
their standard Riemannian metrics. Symmetric spaces arise naturally from Lie group actions
on manifolds; see Helgason (1978). Given a smooth manifold M and a Lie group G, a smooth
group action of G on M is a smooth mapping G x M — M, (a, p)—>a-p such thate-p=p
and (ad)-p=a-(d - p) for all a,a’ € G and all p € M, where ¢ is the unit element of G. The
group action should be interpreted as a group of transformations of the manifold M, namely
{La}aeG, La(p)=a- p for pe M. L, is a smooth transformation on M and its inverse is L 1.
The orbit of a point p e M is defined as G(p) ={a- plae G}. The orbits form a partition
of M. If M consists of a single orbit, the group action is transitive or G acts transitively on
M, and we call M a homogeneous space. The isotropy subgroup of a point p € M is defined as
Gp={aeGla-p=p}. When G is a connected group of isometries of the RSS M, M can always
be viewed as a homogeneous space, M = G/G p,, and the isotropy subgroup G, is compact.

From now on, we shall assume that the manifold M is an RSS and M =G /G, with G being
a Lie group of isometries acting transitively on M. Geodesics on M are computed through
the action of G on M. Owing to the transitive action of the group G of isometries on M, it
suffices to consider only the geodesic starting at the base point p. Geodesics on M starting from
p are the images of the action of a one-parameter subgroup of G acting on the base point p,
i.e. for any geodesic v on M, ~v(-) : R— M, starting from p, there is a one-parameter subgroup
¢(-): R— G such that y(f) =c(¢) - p for all t € R.

3. Intrinsic regression model

Let (M, m) be a (C*°) RSS of dimension d 4 and geodesically complete with an inner product
m, and let G be a Lie group of isometries acting smoothly and transitively on M with the
identity element e.

3.1.  Formulation
Consider n independent observations (y1,X1), ..., (¥, X,), Where y; is the M-valued response
variable and x; = (x;q, ... ,xidx)T is a dy x 1 vector of multiple covariates. Our objective is to
introduce an intrinsic regression model for RSS responses and multiple covariates of interest
from n subjects.

The specification of the intrinsic regression model involves three key steps including

(a) alink function mapping from the space of covariates to M,
(b) the definition of a residual and
(¢) the action of transporting all residuals to a common space.

First, we explicitly formalize the link function. From now on, all covariates have been centred
to have mean 0. We consider a single-centre link function given by
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(X, q,8): R x M x R% — M, M

where p(x,q,3) is a known link function, ¢ € M can be regarded as the intercept or centre
and B=(4y,..., ﬁdﬂ)T is a dg x 1 vector of regression coefficients. Moreover, it is assumed that
n(x,q, B) satisfies a single-centre property as follows:

10,q,8)=p(x,q,0)=q. (2)

When the regression coefficient vector 3 equals 0, the link function is independent of the co-
variates and, thus, it reduces to the single centre (or ‘mean’) g € M. When all the covariates
are equal to 0, the link function is independent of the regression coefficients and reduces to the
centre g € M. An example of the single-centre link function is the geodesic link function in Kim
et al. (2014) and Fletcher (2013), which is given by

dx
px.q.0) = EquM( Pt Vk) : 3)
where Vs are tangent vectors in 7, M and 3 includes all unknown parameters associated with
the tangent vectors.

More generally, we shall consider a multicentre link function to account for the presence of
multiple discrete covariates and even a general link function defined as p(x,0): R* x © — M,
where 0 is a vector of unknown parameters in a parameter space ©. For the multicentre link
function, 0 contains all unknown intercepts, denoted as g(xp), corresponding to each discrete
covariate class and all regression parameters 3 corresponding to continuous covariates and their
potential interactions with the discrete variables. However, the details on these link functions
are presented in the on-line supplementary document, and here, for notational simplicity, we
focus on function (1) from now on.

Second, we introduce a definition of ‘residual’ to ensure that u(x;, ¢, 3) is the proper ‘condi-
tional mean’ of y; given x;, which is the key concept of many regression models (McCullagh and
Nelder, 1989). For instance, in the classical linear regression model, the response can be written
as the sum of the regression function and a residual term and the regression function is the
conditional mean of the response only when the conditional mean of the residual is equal to 0.
Given the points y; and u(x;, g, 3) on an RSS M, we need to define the residual as ‘a difference’
between y; and p(x;,q, 3). Assume that y; and p(x;, g, 3) are ‘sufficiently close’ to each other
in the sense that there is an open ball B(0, p) C Ty(x;,4,3)/M such that, foralli=1,...,n,

Yyi € Expy(xi,q,ﬁ) {B(O’ P)} (4)

or

Log,,(x;,4.8 i) C B(0, p).

However, according to a result in Le and Barden (2014), Logu(x 0.3 (vi) is well defined under
some very mild conditions, which require that | e dista (p, yi)?dv(y;) be finite and achieve a
local minimum at p(x;, g, 3), where v(y;) is any finite measure of y; on M. Thus, Log wixing3) i)
makesit a good candidate to play the role of a ‘residual’. These residuals, however, lie on different
tangent spaces from M, so it is difficult to carry out a multivariate analysis of these residuals.
Third, since M is an RSS, this enables us to ‘transport’ all the residuals, separately, to a
common space, say T, M, by exploiting the fact that the parallel transport along the geodesics
can be expressed in terms of the action of G on M. Indeed, since M is a symmetric space, the
base point p and the point p(x;, ¢, 3) can be joined in M by a geodesic, which can be seen as
the action of a one-parameter subgroup c(¢;X;, g, 3) of G such that c¢(1;x;,4,3) - p=p(xi,q, 3).
We define the rotated residual £(y;,x;; q, 3) of y; € M with respect to pu(x;, ¢, 3) as the parallel
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transport of the actual residual, Log,,, , 3) (i), along the geodesic from the conditional mean
n(xi,q, ), to the base point p, i.e.

E(inxiiq.B) =Ei(q.8) :=Log,{c(1:xi.q.8) "' vi} e T,M (5
fori=1,...,n, where T, M is identified with RIM_ The intrinsic regression model on M is
defined by

E[E(yi,Xi5qx, Bs)|xi] =0, (6)

where (¢, 34) denotes the true value of (¢, 3) and the expectation is taken with respect to the
conditional distribution of y; given x;. Model (6) is equivalent to E[Log,,, 4. 8, i) |x;]=0 for
i=1,...,n, since the tangent map of the action of c(l;xi,q*,ﬁ*)’l on M is an isomorphism
of linear spaces (invariant under the metric m) between the fibres of the tangent bundle 7M.
This model does not assume any parametric distribution for y; given x;, and thus it allows for a
large class of distributions. The model is essentially semiparametric, since the joint distribution
of (y,x) is not restricted except by the zero conditional moment requirement in equation (6).

3.2. A theoretical example: the unit sphere S¥
We investigate the intrinsic regression model for S*-valued responses and include several other
examples in the on-line supplementary document. We review some basic facts about the geomet-
ric structure of M =S¥ = {xe R* ! |lx||, =1} (Shi et al., 2012; Mardia and Jupp, 2000; Healy
and Kim, 1996; Huckemann et al., 2010). For g € S¥, T, S* is given by T,5* = {ve R**1:vTg=0}.
The canonical Riemannian metric on S¥ is that induced by the canonical inner product on
R¥t1. Under this metric, the geodesic distance between any two points g and ¢’ is equal to
Va.q' =cos~!(gTq"). If the points are not antipodal (i.e. ¢ # —q), then there is a unique geo-
desic path that joins them. Therefore, the radius of injectivity is p*(S¥) =n. For ve TqSk , the
Riemannian exponential map is given by Exp, (v) =cos([[vll)g +sin([[v])v/|Iv]l. (Here, sin(0) /0
=1.) If ¢ and ¢’ are not antipodal, the Riemannian logarithmic map is given by Logq(q/ )=
cos~!(¢"¢')v/IIvll, where v=¢' — (¢"¢)q #0.

The special orthogonal group G =SO(k + 1) is a group of isometries on S* and acts transitively
on S¥ via the left matrix multiplication. Specifically, the two-dimensional rotation matrixR,, , €
SO(k + 1) which rotates g to ¢’ € S¥, along the great circle passing through ¢ and ¢/, is given by

. ~ ~ T /T o~
Ry.y =1 +sin(Wy, (@G —Gq' ) +{cos(@y ) — 1}(dq" +di"),

where §={q— (¢7¢)q'}/ /{1 — (¢"¢)*}. Thus, ¢’ = R, sqand R, ,veT, Sk, for any ve T,Sk.
Moreover, (—m,m) 3t cg 4(1) - ¢’ is the unique geodesic curve in S* joining ¢’ with g, where
cq.q(0) takes the form ¢, ,(f) =Ix 11 +sin(?) (c]q’T —¢qH+ {cos(®) — 1} (¢ q’T +4qh).

Suppose that we observe {(y;,x;):i=1,...,n}, where y; € Sk for all i. We introduce the three
key components of our intrinsic regression model for S¥-valued responses. First, we consider
several examples of the general link function p(x;, 8). Specifically, without loss of generality,
we fix the ‘north pole’ p=(0,...,0, )T e RF1 as a base point. Let e; be the (k+1) x 1 vector
with a 1 at the jth component and a 0 otherwise for j=1,...,k. Let g € S* be the ‘centre’, and
we consider two link functions as follows:

k
n(xi,q.8)=Exp, | 3 f(xi, ) jcp.q{cos  (pTg)}e) |,
j=1

(i g, B) =c_pg{cos™ (=p P} T L {(fxi. BT, = D', @)
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where Ty, _p is the stereographic projection mapping from S*\ {p} onto the d-dimensional
hyperplane R* x {—1} and f(x,3) is a function mapping from R%* x R% to R with £(0,.)=
f(-,0)=0. A simple example of f(-,-) is f(x;, 3) = Bx;, where B is a k X dx matrix of regression
coefficients and 3 includes all components of B.

Second, we define residuals for our intrinsic regression model. The residual in model (4)
requires that y; is not antipodal to u(x;, 0). In this case, the residual for the ith subject is given
by Log,, ;.0 (i) =cos{pu(x;, 0)Tyi }vi/[Ivill, where v; = y; — {p(x;, 0) T yi} pu(xi, 6). However,
when y; = —pu(x;, 0) holds, there is an infinite number of geodesics connecting p(x;, 8) and y;.
In this case, Log,,(y; ¢)(i) is not uniquely defined, whereas their geodesic distance is unique.
However, Log,,x, 4,8 (i) 1s well defined almost surely for any finite measure with no point
masses.

Third, we transport all the residuals, separately, to a common space, say T,,Sk. The rotated
residual is given by

(i, xi;0) =Log,,(¢p uix;.0)[— cos™ { pT p(xi, 0) }yo). ®)

Our intrinsic regression model is defined by the zero conditional mean assumption in model (6)
on the above rotated residuals (8). A graphic illustration of the stereographic link functions in
expression (7), rotated residual and parallel transport is given in Fig. 2.

Alternatively, we may consider some parametric spherical regression models for spherical
responses. As an illustration, we consider the von Mises—Fisher regression model. Specifically,
itis assumed that y;|x; ~ VMF{u(x;, 0), x} or, equivalently, R,,(x,.6), pyilXi ~VMF(p, k), for i =
1,...,n, where k is a positive concentration parameter and is assumed to be known for simplicity.
Calculating the maximum likelihood estimate of @ is equivalent to solving a score equation given
by 2, yf g pu(x;,0) =0, where dg=3/30. Since [p(x;,0)[ =1 and (Fgp(x;,0) T p(x;,0) =0
for all subcomponents of 8, we have

VI ={p(x;,0) Ty}
cos— {pu(x;,0)Ty;}

which is a linear combination of the rotated residual.

i dpp(xi,0) = /2 (Rux:.0). pd0be(Xi, )T E(vi, X1 0), )

e R .
Tsr;(o,o,—l)’ ((Lrl,’,"{*_"

(a) (b)

Fig. 2. Graphical illustration of (a) stereographic projection and (b) rotated residual and parallel transport:
in (a), N and O denote the north pole (0, 0, 1) and the origin (0, 0, 0) respectively; in (b), y, u = p(x,q,3),
ep= Logu(y), (v, x;q,B) and p respectively represent an observation, the conditional mean, the residual,
the rotated residual and the base point
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4. Estimation and test procedures

4.1. Generalized method-of-moment estimators

We consider the generalized method-of-moment (GMM) estimator to estimate the unknown
parameters in model (6) (Hansen, 1982; Newey, 1993; Korsholm, 1999). We may view the
T, M-valued function € as a function with values in RIM_ Let h(x;q,3) be an s x d 4 matrix of
functions of (x, g, 3) with s >da +dg and W,, be a random sequence of positive definite s x s
weight matrices. It follows from equation (6) that

E[h(Xi; qx, Bx)E[E (yi, Xi5 qx. B4) 1Xi]] =0. (10)

We define Q,(q,8) = (Pu{h(x;q.8) £, x:q. BN Wi (Pr{h(x:q.8) E(y.X;:¢.3)}), where
P.{ s x) } =n"! = J(yisXi) for a real-vector-valued function f(y,x). The GMM estimator
Gg-» ﬁG), or simply (q ,6) of (¢, B) associated with (h(-, -,-), W,) is defined as

(GG-Bg)= argmin  Q,(¢, ). (11
(q.B)eMx RS

Under some conditions detailed below, we can show the first-order asymptotic properties of
Gg.» BG) including consistency and asymptotic normality of GMM estimators. We introduce
some notation. Let || - || denote the Euclidean norm of a vector or a matrix; 8 f(t, 3)/d(t, 3)' =
BI(L 8 f(t,B) fori=1,...;a®* =aal for any matrix or vector a;

V=var{h(x;qx, B:)E(y, X; g, B };

I, is the identity matrix; —9 and —P respectively denote convergence in distribution and in
probability. We obtain the following results, whose detailed proofs can be found in the on-line
supplementary document.

Theorem 1. Assume that (y;,x;), i=1,...,n, are independently and identically distributed
random variables in M x R%. Let (g4, 3,) be the exact value of the parameters satisfying
model (6). Let {W,, }, be a random sequence of s x s symmetric positive semidefinite matrices
with s > d g +dg.

(a) Under assumptions (C1)—(C5) in the on-line supplementary document, (4G, BG) in equa-
tion (11) is consistent in probability as n — oo.

(b) Under assumptions (C1)—(C4) and (C6)—(C10) in the supplementary document, for any
local chart (U, ¢) on M near g as n — 0o, we have

' 21(666) " BT — (6@ T, BT Nayias (0.55), (12)

where 34 = (GT WGy~ 1GTWVWG@(GTWGQ/)) ! in which G is defined in assumption
(C9). Moreover for any other chart (U, ¢') near g, we have

Yy =diag(J(¢/ og! )(f)(q*)rldg)zdﬁdiag(J(¢ op~ )d)(q*)5ldg)Ts (13)
where J(-)¢ denotes the Jacobian matrix evaluated at t.

Theorem 1 establishes the first-order asymptotic properties of (g, BG) for the intrinsic
regression model (6). Theorem 1, part (a), establishes the consistency of (4G, BG). The consis-
tency result does not depend on the local chart. Theorem 1, part (b), establishes the asymptotic
normality of (¢(4g), BG) for a specific chart (U, ¢) and the relationship between the asymptotic
covariances X and Xy for two different charts. It follows from the lower right dg x dg subma-
trix of ¥ that the asymptotic covariance matrix of 3 does not depend on the chart. However,
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the asymptotic normality of g5 does depend on a specific chart. A consistent estimator of the
asymptotic covariance matrix ¥4 is given by

ATo o AT o s AT s
(GyWaGy) ' Gy Wy VW, G y(G W, Gy)™!
with
9

Al A A =Ly A
G¢—I’l i; h(X;,q,ﬂ)a(t,ﬁ)g{)’uXu(b (t)a/B}

t=¢(9) ]
and

V=n"1S{h(xi:4. 8) E(yinxi:G. )},
i=1

This estimator is also compatible with the manifold structure of M.

We consider the relationship between the GMM estimator and the intrinsic least squares
estimator of (g, 3), which is denoted by (g, Bl). The (4, BI) minimizes the total residual sum
of squares G , (g, 3) as follows:

% . . n.
(G.Bp) = argmin Gr,(¢.8)= argmin 3 dista{yi, w(xi,q.3)}>. (14)
(¢.8)eM xR’ (@.B)eMx RBI=]

According to equation (2), the intrinsic least squares estimator is closely related to the intrinsic
mean gy of y1,..., ¥, € M, which is defined as
n n
giv =argmin Y- distaq (i ¢)° =argmin Y- distu{yi, p(0,9,8)}.
qeM =1 qeM =1
Recall that (0, ¢, 3) is independent of 3.

The (ql,BI) can be regarded as a special case of the GMM estimator when we set W, =
Ly +d; and ks rows hj(X,q,3) = (LC(I;XJ%B)*]_*(B,J.;L{X, ¢! (t),,B}ltz(/)(q)))T for j=1,...,dnm,
and hy,,4;(X,q,03) = (Lc(l;x,q,ﬂ)*l.* (05, (X, q, BT forj=1,... ,dg, where (U, ¢) is a chart on
M and each row of h(x, g, 8) is in R'¥9M via the identification TpM= RM corresponding to
(U, ¢). It follows from theorem 1 that, under model (6), (¢, @I) enjoys the first-order asymptotic
properties as well.

4.2. Efficient generalized method-of-moment estimator
We investigate the most efficient estimator in the class of GMM estimators. For a fixed &(-; -, -),
the optimal choice of W is WOPt = V—1, and the use of W, = W°P! leads to the most efficient
estimator in the class of all GMM estimators obtained by using the same %(-) function (Hansen,
1982). Its asymptotic covariance is given by (G V~1G,)~!. An interesting question is what the
optimal choice of h°P(.) is.

We first introduce some notation. For a chart (U, ¢) on M near gy, let

Dy (x) = E[d¢, {7, X; ¢~ (1), By Himo(qn) IX1", h%(x)=Dy(x)Qx) ",
W = E[Dy(x) Q(x) "' Dy(x) "], Qx) =var{&(y, X; gx, Bx) X},

Let (4%, B*) be the GMM estimator of (¢, 3) based on h;(x) and W;‘. Generally, we obtain
an optimal result of 2°P!(-), which generalizes an existing result for Euclidean-valued responses
and covariates (Newey, 1993), as follows.

Theorem 2. Suppose that assumptions (C2)—(C8) and (C10)—(C12) in the on-line supplemen-
tary document hold for h;“ (x) and W(Z‘. We have the following results.
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(a) (@* ﬁ*) is asymptotically normally distributed with mean 0 and covariance W*
(b) (G* 5*) is optimal among all GMM estimators for model (6);
(c) (¢*,B") is independent of the chart.

Theorem 2 characterizes the optlmahty of % (x) and W”< among regular GMM estimators
for model (6). Geometrically, (¢* ﬂ ) is 1ndependent of the chart. Specifically, for any other
chart (U, ¢') near gx, we have

Dy (x) =diag(J(¢ o qb—l);(‘q > 1a) "Dy (%),
hi (%) =diag(J(¢ 0 ¢~ ), Idﬂ)Th*(xx
W3 =diag(J(¢' 0 ¢~ g(q,)» Lag) W] diag(J(¢ 0 6™ g, Tas) -

Thus, the quadratic form in equation (11) associated with h; (x) and W% is the same as that
which is associated with h;(x) and Wq’f It indicates that the GMM estimator (G* ﬁ )¢ based
on h*(x) and W} is independent of the chart (U, ).

The next challenglng issue is the estimation of Dy(x) and Q(X) We may proceed in two steps.
The first step is to calculate a \/n-consistent estimator (qr» [)'I) of (g, ), such as the intrinsic
least squares es‘umator The second step is to plug (ql,,BI) into the functions &; (ql,BI) and
e, 3)1E Vi Xis ¢~ L), 51)}|t_¢(q ) foralli and then to use them to construct the non-parametric
estimates of D (x) and Q(x) (Newey, 1993). Specifically, let K(-) be a dx-dimensional kernel func-
tion of the lpth order satisfying [ K(u1,...,ug)du;...dug =1, [ulK(uy,... ug)du;...dugs =
0 for any s=1,...,dyx and 1 <I<ly, and [ulK(uy,... ug)du;...dug #0. Let K, ) =7""x
K(u/T), where 7 >0 is a bandwidth. Then, a non-parametric estimator of Dy(x) can be written
as

Dy =Y wix; 7,3 E {yin X307 (0), B Hizowp» (15)
i=1

where w; (X;7) = K7 (x —x;)/X}_; K- (x — X;). Although we may construct a non-parametric es-
timator of Q(x) that is similar to equation (15), we have found that, even for moderate dy, such
an estimator is numerically unstable. Instead, we approximate

Q(Xi) =Var{5()’a X, q*aﬁ*)lx =Xi}
by its mean Vgs = var{€(y, X; gx, B) }. In this case, h; (x) and W;‘ respectively reduce to

h} (X)) =Dy(x) Vg,

Wi ;= (E[Ds(0) V! Q) VE! Dy )~ (16)

For any local chart (U, ¢) with g; € U, we construct the estimators of 7, E.o and WE » as follows.
Let V(q’ /8) = Pn{g(ys X:q, /8)}®2 we have

hi (X)) = Dy (xi)V (1, By,
WE,o=[Pul{hEs(OE(y,x; 41 B}

Then, we substitute A E,¢ and We .6 into equation (11) and then calculate the GMM estimator
of (¢,3), which is denoted by (G, 5 £). Similarly to (§* 5 ), it can be shown that (G, ,6 £) 18
independent of the chart (U, ¢) on M near g5 with g; € U. For sufficiently large n, dist o4 (Gy, gx)
can be made sufficiently small and any maximal normal chart on M centred at ¢; contains the
true value g+ with probability approaching 1. 5

We calculate a one-step linearized estimator of (g, 3), which is denoted by (¢, Bf), to approx-

a7)
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imate (G, B g). Computationally, the linearized estimator does not require iteration, whereas,
theoretically, it shares the first-order asymptotic properties with (G, B¢) as shown below. Specif-
ically, in the chart (U, ¢) near g, we have

(.00 BE.0) " — @G BT A A
=(=Pulhe,¢(X) 31,8 E{y. X; o), 51}|t=¢(41)])_1 PuihEes(X)E(,X;41, 8D} (18)

Furthermore, if (U’, ¢') is another chart on M near gy, then we have
T =T o AT
(g5 Be) — (@ @". BT
J@ o Vysn 0 T =T T AT
— ( ((b o ¢0 )(/)((Il) ]dﬂ ) {(tE,Q’l@E,¢)T _ ((b(QI)TaﬂI )T}

Thus, 8 £, 1s independent of the chart ¢ and {tg. ¢ —®(gp|¢ is a chart on M} defines a unique
tangent vector to M at §;. Moreover, 1f ¢ and ¢’ are maximal normal charts centred at g,
then vy (1) =¢~ Lirt E,6) and vy (1) =¢'~ (Tt E,¢) are two geodesic curves on M starting from
the same point gy with the same initial velocity vector, and thus these two geodesics coincide.
Therefore, ¢~ (t E,¢) 1s independent of the normal chart ¢ centred at g;. Finally, we can establish
the first-order asymptotic properties of (¢, J¢] g) as follows.

Theorem 3. Assume that assumptions (C2)—(C11) and (C13)—(C18) in the on-line supple-
mentary document are valid. As n — oo, we have the following results:

20T, BT = @(g0 T BDTYS Niwiras 0,5k.0), (19)

where ¥ 3 = (G, i, Wi ¢G¢, 0, ) . In addition, X 4 is invariant under the change of co-

ordinates in M and the asymptotlc distribution of 3 g does not depend on the chart (U, ¢).
Also, if we set

Sro=n""Pu{ Do) V(@1 B0 ' Dy}
X [Pu{Dy(x) V(cil,@o—lay, X, 41 B VG, B Dy ()T}
< [Pa{De(x) V(G B 'Dy(x)T 117, (20)

then nﬁ)E,(b is a consistent estimator of Xg 4, i.e. niE,¢—> PYE,¢. This estimator is also
compatible with the manifold structure of M.

Theorem 3 establishes the first-order asymptotic properties of (g E,[S’ g) If Qx)=Q for a
constant matrix (2, then it follows from theorems 2 and 3 that (g, Bg) is optimal. If Q(x)
does not vary dramatically as a function of x, then (¢, 3 g) 1s nearly optimal. If (x) varies
dramatlcally as a function of x, we can replace V(ql, 61) in express1on (17) by Q(x;) to obtain
he(x)=Dy(x)Qx) ™! and Wg 5 =[Py {£,6(X) £, x: 41, B }22] 1, where Q(x;) is a consis-
tent estimator of Q2(x;) for all i; then the optimality of (G, B) still holds. We have the following
theorem.

Theorem 4. Assume that assumptions (C2)—(C17) and (C19) are valid. Then, as n — oo, we
have

24T BT — (a0 BDTYS Nuyiray 0,53), @n

in which E* is given in theorem 2. If we set ZE p=n e, {D¢(X)Q(x) 1D¢(X)T} —1 then
ny E¢plisa cons1stent estimator of E*
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4.3. Computational algorithm

Computationally, an annealing evolutionary stochastic approximation Monte Carlo algorithm
(Liang et al., 2010) is developed to compute (4, 61) and (G, B £)- See the on-line supplementary
document for details. Although some gradient-based optimization methods, such as the quasi-
Newton method, have been used to optimize Q,(g,3) (Kim et al., 2014; Fletcher, 2013), we
have found that these methods strongly depend on the starting value of (g, 3). Specifically,
when £(y,X; g, B) takes a relatively complicated form, Q, (¢, 3) is generally not convex and can
easily converge to local minima. Moreover, we have found that it can be statistically misleading
to carry out statistical inference, such as the estimated standard errors of (G, B g), at those
local minima. The annealing evolutionary stochastic approximation Monte Carlo algorithm
converges fast and is distinguished from many gradient-based algorithms, since it has a nice
feature in that the moves are self-adjustable and thus not likely to become trapped by local
energy minima. The annealing evolutionary stochastic approximation Monte Carlo algorithm
(Liang et al., 2010) represents a further improvement of stochastic approximation Monte Carlo
methods for optimization problems by incorporating some features of simulated annealing and
the genetic algorithm in its search process.

4.4. Hypotheses testing

Many scientific questions involve the comparison of the M-valued data across groups and
subjects and the detection of the change in the M-valued data over time. Such questions usually
can be formulated as testing the hypotheses of ¢ and 3. We consider two types of hypotheses as
follows:

H(gl) :CoB=bgy versus Hl(l) :CoBB#by, (22)
2 2
Hé )ig=qo versus Hl( ) g4 qo, (23)

where Cy is an r x dg matrix of full row rank and ¢ and b are specified in M and R respectively.
Further extensions of these hypotheses are definitely interesting and possible. For instance,
for the multicentre link function, we may be interested in testing whether all intercepts are
independent of the discrete covariate class.

We develop several test statistics for testing the hypotheses given in expression (22) and (23).
First, we consider the Wald test statistic for testing Hél) against Hl( in expression (22), which
is given by

1 ~ A _ -
Wil = (CoBg —b0) T (CoSE.4:22C3) " (CoBE —bo),

where E,¢ 1s given in theorem 3 or theorem 4, and Yk 622 1s its lower right dg x dg submatrix.
Since 3 £ and its asymptotic covariance matrix are independent of the chart on M, the test
statistic W, SN » 1s independent of the chart.

Second, we consider the Wald test statistic for testing the hypotheses that are given in expres-
sion (23) when there is a local chart (U, ¢) on M containing both g and gg. Specifically, the
Wald test statistic for testing hypothesis (23) is defined by

W) = (6(G5) — (q0) {Uap, OX.6Uap 0T} (6G5) — d(q0)).-

Third, we develop an intrinsic Wald test statistic, that is independent of the chart, for testing
the hypotheses that are given in expression (23). We consider the asymptotic covariance estimator
Se .¢ based on g and its upper left daq x dpq submatrix N E,g;11. Since both are compatible
with the manifold structure of M, % 11 defines a unique non-degenerate linear map p) E11()
from the tangent space T3, M of M at g onto itself, which is independent of the chart (U, ¢).
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In a maximal normal chart centred at g, then, in any such normal chart, the Wald test statistic
for testing hypotheses (23) is given by

2 B _
W =mg{(Se1 " Logg, (qo). Logg, (40)}.
We obtain the asymptotic null distributions of W,Elj), W(z) and W(z) as follows.

Theorem 5. Let (U, ¢) be alocal chart on M so that g, g« € U. Assume that all the conditions
in theorem 3 hold. Under the corresponding null hypothesis, we have the following results:

(a) W(l) and W(z) are asymptotically distributed as X, and x2 d respectively;
(b) W(l(§> is 1ndependent of the chart (U, ¢);

(c) W( ? W(z) —i—op(l) for any other local chart (U, ¢') with G5 and g in U;
d) w, i W M ,» for any normal chart (U, ¢) centred at g.

Theorem 5 has several 1m{;)ortant i 21))hcat10ns Theorem 5, part (a), charactenzes the asymp-
totic null distributions of W, and W . Theorem 5, part (b), shows that W ) does not depend
on the choice of the chart (U ¢) on M Theorem 5, part (c), shows that W( ;), and W( » are
asymptotically equivalent for any two local charts. Theorem 5, part (d), shows that W( 35/ can
be used to construct an intrinsic test statistic.

We consider a local alternative framework for expressions (22) and (23) as follows:

H" :CoB=by versus Hi,:CoB=bo+5/n+o(1/\/n), (24)

H(2> qg=gqo Vversus Hl(n g=Exp,{v//n+o(l/y/n)}, (25)

where ¢ and v are specified (and fixed) in R’ and T,, M respectively, and we establish the

asymptotic distributions of Wn s W(Z) and W M under these local alternatives.

Theorem 6. Let (U, ¢) be a local chart on M so that g, g« € U. Assume that all conditions
in theorem 3 hold. Under the local alternatives (24) and (25), we have the following results.

(a) Under Hl(lrz, W(l(?i is asymptotlcally distributed as non-central Xr with non-centrality
parameter 67 (CoX g 6 22C0) Lg.

(b) Under Hl(zz, W( ; is asymptotlcally distributed as non-central x?3 2 ..» with non-centrality
parameter J(¢ o Equo)o(V) = Eé:11)” L(po EquO)o(V) The non- centrahty parameter
does not depend on the choice of the co-ordinate system at gg. Here, J(f), denotes the
Jacobian matrix of map f at a.

(¢) Under Hl( 2, w /\2,? is asymptotically distributed as non-central y?3 de with non-centrality

parameter mg, {(Z E:11)" 1J(Logq )go V), J(Logq )0 (v)}. The non-centrality parameter
does not depend on the choice of ‘the co-ordinate systems at g and gg respectively.

We consider another scenario that there are no local charts on M containing both gy and
qo. In this case, we restate hypotheses H0 ) and H1 as follows:

Hé ). distpq(g,q0) =0 versus HI(Z) :dist o (g, q0) #0. (26)
We propose a geodesic test statistic given by
Waise = distam (G, g0)°, @7

which is independent of the chart (U, ¢). Theoretically, we can establish the asymptotic distri-
bution of Wy;s; under both the null and the alternative hypotheses as follows.
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Theorem 7. Assume that all conditions in theorem 5 hold.

(a) Under Héz), nWyis is asymptotically weighted x2(\i,..., \g ) distributed, where the
weights Aq,..., Ag,, are the eigenvalues of the matrix ¥ Log,, 11> which is the upper left
dam X d g submatrlx of the asymptotic covariance matrix X g, Log,, of G inanormal chart
centred at go. Moreover, the weights are independent, up to a permutatlon of the choice
of the normal chart centred at gs.

(b) Under the alternative hypothesis, Wy;s; is asymptotically normally distributed and we
have

. d
n'2{ Waist — distar (g, 90)°} = Napg (0, D Sk Log,, 11 Daist)s

where Dy 1s the column vector representation of gradq*{dist(-,qo)z} with respect to
the orthonormal basis of T, M associated with the normal chart used to represent the
asymptotic covariance of g as the matrix X E.Log,, In particular, when ¢ is sufficiently
close to g, then

. d
'/ { Wit — distar (g, 90)°} = Nany {0,410, (90)" Sk Log, 11102, (90)}-

Theorem 7 establishes the asymptotic distribution of Wy;s; when g and gg do not belong to the
same chart of M. In practice, the covariance matrix X g, Log,,.11 is not available, since X g Log,, 1 is
not known; it also depends on the unknown true value 3, SO we may use the estimate Yk Log, s
defined in theorems 3 and 4. Therefore, under the null hypothe51s the asymptotic distribution
of Wgist can be approximated by the weighted X2 distribution x ()\1, c N )» in which the
weights Y ' are the eigenvalues of the covarlance matrix (X Lquo)l 1/n.

Finally, we develop a score test statistic for testing Ho 2 against H,”. An advantage of using
the score test statlstlc is that it avoids the calculation of an estlmator under the alternative
hypothesis HE ) ). For notational simplicity, we consider only the mtrmsm least squares estimator
of (g, 3), which is denoted by (g, ,81), under the null hypothesis H ). For any chart (U, ¢) on
M with gg € U, we define

Foi=(Fj; 1, i) T =0 o distmlf{xi 67 0, 85 38l
(U Up\_&p2 o o 2 )
U¢_(Uﬁt Uﬁﬂ>_,§8(t’ﬁ)dIStM[f i 07O, BE il ki)

where the subcomponents Fy; 1 and Fy; » correspond to t and 3 respectively. It can be shown
that the score test Wsc,4 reduces to

n T ~_1 n
Wsc.p= ( > Fyi, 1) Y44 ( > Foi, 1>, (28)
i=1 i=1
where
~ n o
Bp.q= Udpgs = UtﬁUE,é){ > (Foi— F¢)®2}(1dM, —UiUgp)"
i=1

in which Fy= n_lZ;’zl Fy;. Theoretically, we can establish the asymptotic distribution of Wsc ¢4
under the null hypothesis.

Theorem 8. Assume that all conditions in theorem 5 hold. We have the following results.
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(a) For any suitable local chart (U, ¢), the score test statistic Wsc,4 is asymptotically dis-
tributed as X d, under the null hypothesis H; @),
(b) Under Ho , for any other local chart (U, ¢) w1th qo € U, we have

Wsc,or = Wsc,o-

5. Real data example

5.1. Alzheimer’s disease neuroimaging initiative corpus callosum shape data
Alzheimer’s disease (AD) is a disorder of cognitive and behavioural impairment that markedly
interferes with social and occupational functioning. It is an irreversible, progressive brain disease
that slowly destroys memory and thinking skills, and eventually even the ability to carry out the
simplest tasks. AD affects almost 50% of those over the age of 85 years and is the sixth leading
cause of death in the USA.

The CC, as the largest white matter structure in the brain, connects the left and right cerebral
hemispheres and facilitates homotopic and heterotopic interhemispheric communication. It has
been a structure of high interest in many neuroimaging studies of neurodevelopmental pathology.
Individual differences in the CC and their possible implications regarding interhemispheric
connectivity have been investigated over the last several decades (Paul et al., 2007).

We consider the CC contour data obtained from the ADNI study. For each subject in the
ADNI data set, the segmentation of the T1-weighted magnetic resonance images and the calcu-
lation of the intracranial volume were done in the FreeSurfer package (http://surfer.nmr.
mgh.harvard.edu/) (Dale et al., 1999), whereas the midsagittal CC area was calculated in
the CCseg package, which was measured by using subdivisions in Witelson (1989) motivated by
neurohistological studies. Finally, each T1-weighted magnetic resonance image and tissue seg-
mentation were used as the input files of the CCSeg package to extract the planar CC shape data.

5.2. Intrinsic regression models

We are interested in characterizing the change of the CC contour shape as a function of three
covariates including gender, age and AD diagnosis. We focused on n =409 subjects with 223
healthy controls and 186 AD patients at baseline of the ADNI ADNI1 database. We observed
a CC planar contour ¥; with 32 landmarks and three clinical variables including gender x; 1 (0,
female; 1, male), age x; » and diagnosis x; 3 (0, control; 1, AD)fori=1,...,409. The demographic
information is presented in Table 1.

We treat the CC planar contour Y; as an RSS-valued response in the Kendall planar shape
space 232. The geometric structure of E’E for k> 2 is included in the on-line supplementary
document. Each Y; is specified as a 32 x 2 real matrix, whose rows represent the planar co-
ordinates of 32 landmarks on ¥;. Moreover, ¥; = (¥;1Y;2) can be represented as a complex
vector z; =Y; 1 +]Y;2 in C32, where j= J/(=1) and C is the standard complex space. After

Table 1. Demographic information for the processed ADNI CC
shape data set including disease status, age and gender

Disease status Number Range of age Females/males
(years)(mean)

Healthy control 223 62-90 (76.25) 107/116
AD 186 55-92(75.42) 88/98
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removing the translations and normalizing to the unit 2-norm, each contour Y; can be viewed as
anelementz; e D2 ={z=(z',...,7?)Te C32|Efnzzlzm =0and |z||=1}. Then, after removing
the two-dimensional rotations, we obtain an element y; =[z;] in Kendall’s planar shape space,
23230: D32/S!, which has dimension 30 and is identified with the complex projective space
CP

To use our intrinsic regression model, we determined the base point p and an orthonormal
basis{Zy,..., Z3} for TPES2 as follows. We initially set po=[zo] withzo= (1, — 1,0, ---,0)T//2
and an orthonormal basis {Z1,.. ., Z30} in T, 237, where

Zi=(,...,1, =(1+1,0,...,00 T/ {U+ DI +2)}.

Then, we projected all y;s onto T}, Egz and calculated Log,, (y;) for alli. Finally, we set the base
point p as Exp,, {rf1 ¥ Log po(y")} and then used the parallel transport to rotate the initial
basis {Z1,...,Z30} to obtain a new orthonormal basis {Z, ..., Z3} at p.

We consider an intrinsic regression model with y; € 232 as a response vector and a vector
of four covariates including gender, age, diagnosis and the interaction agexdiagnosis, i.e. X; =
(X1, %02, Xi 3, xi,4)T with x; 4 =x; 2x; 3. We used a single-centre link function with model parame-
ters (¢, 3) € 232 x R?% as follows. The intercept g is specified by ¢ = qb;l (t)=Exp p{Z;’EI (tr—1+
i) Z;}, where t=(t1,.. ., 160)T € R®. The regression coefficient vector 3 includes four 60 x 1
subvectors including 8¢, 8@, 39 and B8, which correspond to gender x;1, age x;», di-
agnosis x;3 and interaction agexdiagnosis, x;4, respectively. Therefore, there are 300 unknown
parameters in (tT, ﬁT;T. We define a 30 x 4 complex matrix as B= B, +jBe, with B, = (,Bf)g) ,Bga)
BY Bad), B, = (B¥ @ g gady ¢ RI0x4 where 3 and B are the subvectors of 3
formed by the odd-indexed and even-indexed components respectively, and a link function
by p(xi, ¢, 3) =Exp{(Up,gZ1, .., Up,gZ30) BXi} € 537, Ugy g,V =Uy, -z v, With g1 =[zg)], g2 =
[z4,), 25, = exp(j0*)z4, the optimal rotational alignment of zg4, to z4, given by 7, z4 =
exp(jo™) |z‘32 24, |, and Uy, -, € SU(k), the unique special unitary map in the subspace generated
by z1 and z; that maps z; onto z», given by

Ui v =y = G2~ (B VB HE 2 E Y V- F PG
HVI - 2@ v+ @)@ Vi,

vecdk, in which 23 ={z2 - (iTZz)Zl}/\/(l —zi¥22]?), for z1,z2 € D*2. Finally, our intrinsic
model is defined by E[Logp(Up’u(xi,qﬂ)y,-)|x,-] =0, fori=1,...,409. Here, U is the matrix of
complex conjugate entries of U.

5.3. Results . ~
We first calculated (4, BI) = (qﬁljl (€, @I) in equation (14) and (¢, Bg) = (qﬁljl (tg), B g) inequa-
tion (18). The intercept estimates gy and g are very close to each other with disty32 (G, G g) <
0.0005. Second, we compared the efficiency gain in the estimates of 3. The estimates B and B
of regression coefficients and their standard deviations are displayed in Figs 3(a) and 3(b). The
efficiency gain in stage II is measured by the relative reduction in the variances of 3 £ relative
to those of BI, which is shown in Fig. 3(c). There is an average variance relative reduction of
about 16.77% across all parameters in 3. There is an average variance relative reduction of
about 12.25% for parameters in B whereas there is an average relative reduction of 19.98%
for parameters in 3.

Third, we assessed whether there is an agexdiagnosis interaction effect on the shape of
the CC contour or not. We tested Hy: 3%Y =04 versus H, : 329 #060. The Wald test statistic
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T T
| | | | | | | | |
50 55 60 70 75 80 85 90 95
age (in years)
(@)
T T 1 f f f t f
I I
50 55 60 65 70 75 80 85 90 95
age (in years)
(b)
Fig. 4. Age trajectories of the intrinsic mean shapes by diagnosis within each gender group (stage Il, ADNI
data): (a) female group ( , normal; — - — -, AD); (b) male group ( , hormal; — - — -, AD)
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Fig. 5. Age trajectories of the intrinsic mean shapes by gender within each diagnosis group (stage Il, ADNI
data): (a) normal group (— - — -, female; — — —, male); (b) AD group (— - — -, female; — — —, male)
1 . . .
equals W( ;_ 98.20 with its p-value around 0.001. Thus, the data contain enough evidence to

reject Ho, 1nd1cat1ng that there is a strong age-dependent diagnosis effect on the shape of the
CC contours. The mean age-dependent CC trajectories for healthy controls and AD sufferers
within each gender group are shown in Fig. 4. It can be observed that there is a difference in
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shape along the inner side of the posterior splenium and isthmus subregions in both male and
female groups. The splenium seems to be less rounded and the isthmus is thinner in subjects
with AD than in healthy controls.

Fourth, we assessed whether there is a gender effect on the shape of the CC contour or not.
We tested Hy: 8® =04 versus H : 8® = 049. The Wald test statistic is W,EI; =73.34 with its
p-value 0.116. Thus, it is not significant at the 0.05 level of significance. It may indicate that there
is no gender effect on the shape of the CC contours. The mean age-dependent CC trajectories
for the female and male groups within each diagnosis group are shown in Fig. 5. We observed
similar shapes of CC contours in males and females.

6. Discussion

We have developed a general statistical framework for intrinsic regression models of responses
valued in an RSS in general, and Lie groups in particular, and their association with a set of
covariates in Euclidean space. The intrinsic regression models are based on the GMM estimator
and therefore the models avoid any parametric assumptions regarding the distribution of the
manifold-valued responses. We also proposed a large class of link functions to map Euclidean
covariates to the manifold of responses. Essentially, the covariates are first mapped to the tan-
gent bundle to the Riemannian manifold, and from there further mapped, via the manifold
exponential map, to the manifold itself. We have adapted an annealing evolutionary stochastic
algorithm to search for the intrinsic least squares estimator (gy, BI), of (¢,8), in stage I of the
estimation process, and a one-step procedure to search for the efficient estimator (G, Bg) in
stage I1. Our simulation study (included in the on-line supplementary document) and real data
analysis demonstrate that the relative efficiency of the stage Il estimator improves as the sample
size increases.
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