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ABSTRACT
The aim of this article is to develop a low-rank linear regression model to correlate a high-dimensional
response matrix with a high-dimensional vector of covariates when coefficient matrices have low-rank
structures. We propose a fast and efficient screening procedure based on the spectral norm of each
coefficient matrix to deal with the case when the number of covariates is extremely large. We develop an
efficient estimation procedure based on the trace norm regularization, which explicitly imposes the low
rank structure of coefficient matrices. When both the dimension of response matrix and that of covariate
vector diverge at the exponential order of the sample size, we investigate the sure independence screening
property under some mild conditions. We also systematically investigate some theoretical properties of
our estimation procedure including estimation consistency, rank consistency, and nonasymptotic error
bound under some mild conditions. We further establish a theoretical guarantee for the overall solution
of our two-step screening and estimation procedure. We examine the finite-sample performance of our
screening and estimation methods using simulations and a large-scale imaging genetic dataset collected by
the Philadelphia Neurodevelopmental Cohort study. Supplementary materials for this article are available
online.
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1. Introduction

Multivariate regression modeling with a matrix response Y ∈
R

p×q and a multivariate covariate x ∈ R
s is an important

statistical tool in modern high-dimensional inference, with
wide applications in various large-scale applications, such
as imaging genetic studies. Specifically, in imaging genetics,
matrix responses (Y) as phenotypic variables often represent
the weighted (or binary) adjacency matrix of a finite graph for
characterizing structural (or functional) connectivity pattern,
whereas covariates (x) include genetic markers (e.g., single-
nucleotide polymorphisms (SNPs)), age, and gender, among
others. The joint analysis of imaging and genetic data may ulti-
mately lead to discoveries of genes for many neuropsychiatric
and neurological disorders, such as schizophrenia (Scharinger
et al. 2010; Peper et al. 2007; Chiang et al. 2011; Thompson et al.
2013; Medland et al. 2014). This motivates us to systematically
investigate a statistical model with a multivariate response Y
and a multivariate covariate x.

Let {(xi, Yi) : 1 ≤ i ≤ n} denote iid observations, where
xi = (xi1, . . . , xis)T is a s × 1 vector of scalar covariates (e.g.,
clinical variables and genetic variants) and Yi is a p×q response
matrix. Without loss of generality, we assume that xil has mean
0 and variance 1 for every 1 ≤ l ≤ s, and Yi has mean 0.
Throughout the article, we consider a low-rank linear regression
model (L2RM), which is given by

Yi =
s∑

l=1
xil ∗ Bl + Ei, (1)
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where Bl is a p × q coefficient matrix characterizing the effect of
the lth covariate on Yi and Ei is a p × q matrix of random errors
with mean 0. The symbol “*” denotes the scalar multiplication.
Model (1) differs significantly from the existing matrix regres-
sion, which was developed for matrix covariates and univariate
responses (Leng and Tang 2012; Zhao and Leng 2014; Zhou
and Li 2014). Our goal is to discover a small set of important
covariates from x that strongly influence Y.

We focus on the most challenging setting that both the
dimension of Y (or pq) and that of x (or s) can diverge with
the sample size. Such a setting is general enough to cover high-
dimensional univariate and multivariate linear regression mod-
els in the literature (Negahban et al. 2012; Fan and Lv 2010;
Buhlmann and van de Geer 2011; Tibshirani 1997; Yuan et al.
2007; Candes and Tao 2007; Breiman and Friedman 1997; Cook,
Helland, and Su 2013; Park, Su, and Zhu 2017). In the literature,
there are two major categories of statistical methods for jointly
analyzing high-dimensional matrix Y and high-dimensional
vector x.

The first category is a set of mass univariate methods. Specifi-
cally, it fits a marginal linear regression to correlate each element
of Yi with each element of xi, leading to a total of pqs massive
univariate analyses and an expanded search space with pqs
elements. It is also called voxel-wise genome-wide association
analysis (VGAWS) in the imaging genetics literature (Hibar et al.
2011; Shen et al. 2010; Huang et al. 2015; Zhang et al. 2014;
Medland et al. 2014; Zhang et al. 2014; Thompson et al. 2014;
Liu and Calhoun 2014). For instance, Stein et al. (2010) used
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300 high performance CPU nodes to run approximately 27 hr to
carry out a VGWAS analysis on an imaging genetic dataset with
only 448,293 SNPs and 31,622 imaging measures for 740 sub-
jects. Such computational challenges are becoming more severe
as the field is rapidly advancing to the most challenging setting
with large pq and s. More seriously, for model (1), the massive
univariate method can miss some important components of x
that strongly influence Y due to the interaction among x.

The second category is to fit a model accommodating all (or
part of) covariates and responses (Vounou et al. 2010, 2012;
Zhu et al. 2014; Wang et al. 2012a, 2012b; Peng et al. 2010).
These methods use regularization methods, such as Lasso or
group Lasso, to select a set of covariate–response pairs. However,
when the product pqs is extremely large, it is very difficult to
allocate computer memory for such an array of size pqs to
accommodate all coefficient matrices Bl’s, rendering all these
regularization methods being intractable. Therefore, almost all
existing methods in this category have to use some dimension
reduction techniques (e.g., screening methods) to reduce both
the number of responses and that of covariates. Subsequently,
these methods fit a multivariate linear regression model with the
selected elements of Y as new responses and those of x as new
covariates. However, this approach can be unsatisfactory, since
it does not incorporate the matrix structural information.

The aim of this article is to develop a L2RM as a novel
extension of both VGAWS and regularization methods.
Specifically, instead of repeatedly fitting a univariate model
to each covariate–response pair, we consider all elements in
Yi as a high-dimensional matrix response and focus on the
coefficient matrix of each covariate, which is approximately
low-rank (Candès and Recht 2009). There is a literature on the
development of matrix variate regression (Ding and Cook 2014;
Fosdick and Hoff 2015; Zhou and Li 2014), but these papers
focus on the case when covariates have a matrix structure.
In contrast, there is a large literature on the development of
various function-on-scalar regression models that emphasize
the inherent functional structure of responses. See Ramsay
and Silverman (2005, chap. 13) for a comprehensive review on
this topic. Variable selection methods have been developed for
some function-on-scalar regression models (Wang, Chen, and
Li 2007; Chen, Goldsmith, and Ogden 2016), but these methods
focus on one-dimensional functional response rather than two-
dimensional matrix response. Recently, there has been some
literature considering matrix or tensor responses regression
(Ding and Cook 2018; Li and Zhang 2017; Raskutti, Yuan, and
Chen 2019; Rabusseau and Kadri 2016), but they only consider
the case when the dimension of the covariates is fixed or slowly
diverging with the sample size.

In this article, we aim at efficiently correlating matrix
responses with a high-dimensional vector of covariates. Four
major methodological contributions of this article are as
follows.

• We introduce a L2RM to fit high-dimensional matrix
responses with a high-dimensional vector of covariates, while
explicitly accounting for the low-rank structure of coefficient
matrices.

• We introduce a novel rank-one screening procedure based
on the spectral norm of the estimated coefficient matrix to

eliminate most “noisy” scalar covariates and show that our
screening procedure enjoys the sure independence screening
property (Fan and Lv 2008) with vanishing false selection
rate. The use of such spectral norm is critical for dealing with
a large number of noisy covariates.

• When the number of covariates is relatively small, we pro-
pose a low rank estimation procedure based on trace norm
regularization, which explicitly characterizes the low-rank
structure of coefficient matrices. An efficient algorithm for
solving the optimization problem is developed. We system-
atically investigate some theoretical properties of our estima-
tion procedure, including estimation and rank consistency
when both p and q are fixed and an nonasymptotic error
bound when both p and q are allowed to diverge.

• We investigate how incorrectly screening results can affect
the low-rank regression model estimation both numerically
and theoretically. We establish a theoretical guarantee for the
overall solution, while accounting for the randomness of the
first-step screening procedure.

The rest of this article is organized as follows. In Section 2, we
introduce a rank-one screening procedure to deal with a high-
dimensional vector of covariates and describe our estimation
procedure when the number of covariates is relatively small.
Section 3 investigates the theoretical properties of our method.
Simulations are conducted in Section 4 to evaluate the finite-
sample performance of the proposed two-step screening and
estimation procedure. Section 5 illustrates an application of
L2RM in the joint analysis of imaging and genetic data from
the Philadelphia Neurodevelopmental Cohort (PNC) study dis-
cussed above. We finally conclude with some discussions in
Section 6.

2. Methodology

Throughout the article, we focus on addressing three fundamen-
tal issues for L2RM as follows:

(I) The first one is to eliminate most “noisy” covariates
xil when the number of candidate covariates and that
of response matrix are much larger than n, that is,
min(s, pq) � n.

(II) The second one is to estimate the coefficient matrix Bl
when Bl does have a low-rank structure.

(III) The third one is to investigate some theoretical properties
of the screening and estimation methods.

2.1. Rank-One Screening Method

We consider the case that both pq and s diverge at an exponential
order of n, and we also denote s by sn. To address (I), it is
common to assume that most scalar covariates have no effects
on the matrix responses, that is, Bl0 = 0 for most 1 ≤ l ≤ sn,
where Bl0 is the true value for Bl. In this case, we define the true
model and its size as

M = {1 ≤ l ≤ sn : Bl0 �= 0} and s0 = |M| < n. (2)

Our aim is to estimate the set M and coefficient matrices
Bl. Simultaneously estimating M and Bl is difficult since it is
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computationally infeasible to fit a model when both sn and pq
are large. For example, in the PNC data, we have pq = 692 =
4,761 and sn ≈ 5 × 106. Therefore, it may be imperative to
employ a screening technique to reduce the model size. How-
ever, developing a screening technique for model (1) can be
more challenging than many existing screening methods, which
focus on univariate responses (Fan and Lv 2008; Fan and Song
2010) .

Similar to Fan and Lv (2008) and Fan and Song (2010), it is
assumed that all covariates have been standardized so that

E(xil) = 0 and E(x2
il) = 1 for l = 1, . . . , sn.

We also assume that every element of Yi = (Yi,jk) has been
standardized, that is,

E(Yi,jk) = 0 and E(Y2
i,jk) = 1

for j = 1, . . . , p and k = 1, . . . , q.

We propose to screen covariates based on the estimated
marginal ordinary least squares (OLS) coefficient matrix B̂M

l =
n−1 ∑n

i=1 xil ∗ Yi for l = 1, . . . , sn. Although the interpretations
and implications of the marginal models are biased from the
joint model, the nonsparse information about the joint model
can be passed along to the marginal model under a mild condi-
tion. Hence, it is suitable for the purpose of variable screening
(Fan and Song 2010). Specifically, we calculate the spectral norm
(operator norm or largest singular value) of B̂M

l , denoted as
‖B̂M

l ‖op, and define a submodel as

M̂γn = {1 ≤ l ≤ sn : ‖B̂M
l ‖op ≥ γn}, (3)

where γn is a prefixed threshold.
The key advantage of using ‖B̂M

l ‖op is that it explicitly
accounts for the low-rank structure of Bl0s for most noisy
covariates, while being robust to noise and more sensitive to
various signal patterns (e.g., sparsely strong signals and low
rank weak signals) in coefficient matrices. In our screening step,
we use the marginal OLS estimates of the coefficient matrices,
which can be regarded as the true coefficient matrices corrupted
with some noise. One may directly use some other summary
statistics of B̂M

l based on the component-wise information
of B̂M

l , such as ‖B̂M
l ‖1 (sum of the absolute value of all the

elements), ‖B̂M
l ‖F , or the global Wald-type statistic used in

Huang et al. (2015). It is well known that those summary
statistics are sensitive to noise and suffer from the curse of
dimensionality. This is further confirmed in our simulation
studies that our rank-one screening based on ‖B̂M

l ‖op is more
robust to noise and sensitive to small signal regions. Moreover,
the other advantage of using ‖B̂M

l ‖op is that it is computationally
efficient. In contrast, we may calculate some other regularized
estimates (e.g., Lasso or fused Lasso) for screening, but it is
computationally infeasible for L2RM when sn is much larger
than the sample size.

A difficult issue in (3) is how to properly select γn. As shown
in Section 3.1, when γn is chosen properly, our screening proce-
dure enjoys the sure independence property (Fan and Lv 2008).
However, it is difficult to precisely determine γn in practice since
it involves in two unknown positive constant terms C1 and α

as shown in Theorem 1, which cannot be easily determined for

finite sample. We propose to use random decoupling to select
γn, which is similar to that used in Barut, Fan, and Verhasselt
(2016). Let {x∗

i , i = 1, . . . , n} be a random permutation of
the original data {xi, i = 1, . . . , n}. We apply our screening
procedure on the random decoupling data {x∗

i , Yi}n
i=1. As the

original association between xi and Yi is destroyed by random
decoupling, when we perform screening using {x∗

i , Yi}n
i=1, it

mimics the null model, that is, the model when there is no
association. We obtain the estimated marginal coefficient matrix
(B̂M

l )∗, which is a statistical estimate of zero matrix, and the
corresponding operator norm ‖(B̂M

l )∗‖op for all 1 ≤ l ≤ sn.
Define νn = max1≤l≤sn ‖(B̂M

l )∗‖op, which is the minimum
thresholding parameter that makes no false positives. Since νn
depends on the realization of the permutation, we set the thresh-
old value γn as the median of these threshold values {ν(k)

n , 1 ≤
k ≤ K} from K different random permutations, where ν

(k)
n is the

threshold value for the kth permutation. We set K = 10 in this
paper.

2.2. Estimation Method

To address (II), we consider the estimation of B when the
true coefficient matrices Bl0’s truly have a low-rank structure.
The following refined estimation step can be applied after the
screening step when the number of covariates is relatively small.
For simplicity, we denote the set selected by the screening step
M̂γn by M̂. Suppose M̂ = {l1, . . . , l|M̂|}, where 1 ≤ l1 <

· · · < l|M̂| ≤ sn. Define B = [Bl, l ∈ M̂] = [Bl1 , . . . , Bl|M̂| ] ∈
R

p×q|M̂|.
Recently, the trace norm regularization ‖Bl‖∗ = ∑

k σk(Bl)
has been widely used to recover the low-rank structure of Bl due
to its computational efficiency, where σk(Bl) is the kth singular
value of Bl. For instance, the trace norm has been used for matrix
completion (Candès and Recht 2009), for matrix regression
models with matrix covariates and univariate responses (Zhou
and Li 2014), and for multivariate linear regression with vector
responses and scalar covariates (Yuan et al. 2007). Similarly, we
propose to calculate the regularized least squares estimator of B
by minimizing

Q(B) = 1
2n

n∑
i=1

∥∥∥∥∥∥Yi −
∑
l∈M̂

xil ∗ Bl

∥∥∥∥∥∥
2

F

+ λ
∑
l∈M̂

‖Bl‖∗, (4)

where ‖ · ‖F is the Frobenius norm of a matrix and λ is a tuning
parameter. The low rank structure can be regarded as a special
spatial structure, since it is very similar to functional principal
component analysis. We use the 5-fold cross-validation to select
the tuning parameter λ. Ideally, we may choose different tuning
parameters for different Bl, but it can dramatically increase
computational complexity.

We apply the Nesterov gradient method to solve problem
(4) even though Q(B) is nonsmooth (Nesterov 2004; Beck and
Teboulle 2009). The Nesterov gradient method uses the first-
order gradient of the objective function to obtain the next iterate
based on the current search point. Unlike the standard gradient
descent algorithm, the Nesterov gradient algorithm uses two
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previous iterates to generate the next search point by extrap-
olating, which can dramatically improve the convergence rate.
Before we introduce the Nesterov gradient algorithm, we first
state a singular value thresholding formula for the trace norm
(Cai, Candès, and Shen 2010).

Proposition 1. For a matrix A with {ak}1≤k≤r being its singular
values, the solution to

min
B

{
1
2
‖B − A‖2

F + λ‖B‖∗
}

(5)

shares the same singular vectors as A and its singular values are
bk = (ak − λ)+ for k = 1, . . . , r.

We present the Nesterov gradient algorithm for problem (4)
as follows. Denote R(B) = (2n)−1 ∑n

i=1 ‖Yi −∑
l∈M̂ xil ∗ Bl‖2

F
and J(B) = λ

∑
l∈M̂ ‖Bl‖∗. We also define

g(B|S(t), δ) = R(S(t))+ < ∇R(S(t)), B − S(t) > +(2δ)−1

× ‖B − S(t)‖2
F + J(B)

= (2δ)−1‖B − [S(t) − δ∇R(S(t))]‖2
F + J(B) + c(t),

where ∇R(S(t)) denotes the first-order gradient of R(S(t)) with
respect to S(t), S(t) is an interpolation between B(t) and B(t−1)

and will be defined below, c(t) denotes all terms that are irrel-
evant to B, and δ > 0 is a suitable step size. Given a previous
search point S(t), the next search point S(t+1) would be the
minimizer of g(B|S(t), δ). For the search point S(t), it can be
generated by linearly extrapolating two previous algorithmic
iterates. A key advantage of using the Nestrov gradient method
is that it has an explicit solution at each iteration. Specifically, let
Bld , S(t)

ld , and ∇R(S(t))ld be the (dq−q+1)th to the dqth columns
of the corresponding p × q|M̂| matrices B, S(t), and ∇R(S(t)),
respectively. Minimizing (2δ)−1‖B − [S(t) − δ∇R(S(t))]‖2

F +
λ
∑

l∈M̂ ‖Bl‖∗ is equivalent to solving |M̂| subproblems, each
of which minimizes (2δ)−1‖Bld − [S(t)

ld − δ∇R(S(t))ld ]‖2
F +

λ‖Bld‖∗ for d = 1, . . . , |M̂|, while each subproblem can be
exactly solved by using the singular value thresholding formula
given in Proposition 1.

Define XM̂ = (xil)1≤i≤n,l∈M̂ is an n × |M̂| matrix and
λmax(·) denotes the largest eigenvalue of a matrix. Our algo-
rithm can be stated as follows:

1. Initialize B(0) = B(1), α(0) = 0 and α(1) = 1, t = 1, and
δ = n/λmax{(XM̂)TXM̂}.

2. Repeat
S(t) = B(t) + (α(t)−1

α(t) )(B(t) − B(t−1));
for d = 1 : |M̂|,

i. (Atemp)ld = S(t)
ld − δ∇R(S(t))ld ;

ii. compute singular value decomposition (SVD)
(Atemp)ld = Uld diag(ald)VT

ld ;
iii. bld = ald − λδ ∗ 1;
iv. (Btemp)ld = Uld diag(bld)VT

ld ;
end

Combine {(Btemp)ld , 1 ≤ d ≤ |M̂|} submatrices and get
the entire matrix Btemp;

B(t+1) = Btemp;

α(t+1) = {1 + √
1 + (2α(t))2}/2;

t = t + 1;
3. Until objective function Q(B(t)) converges.

For the above p×q|M̂| matrices Atemp and Btemp, (Atemp)ld and
(Btemp)ld denote the (dq−q+1)th to the (dq)th columns of the
corresponding matrices, respectively.

A sufficient condition for the convergence of {B(t)}t≥1 is that
the step size δ should be smaller than or equal to 1/L(R), where
L(R) is the smallest Lipschitz constant of the function R(B)

(Beck and Teboulle 2009; Facchinei and Pang 2003). In our case,
L(R) is equal to n−1λmax{(XM̂)TXM̂}.

Remarks. For model (1), it is assumed that xil has mean 0 and
variance 1 for every 1 ≤ l ≤ s, and Yi has mean 0 throughout
the article. If these assumptions are not valid in practice, a
simple solution is to carry out a standardization step including
standardizing covariates and centering responses. We use this
approach in simulations and real data analysis. An alternative
approach is to introduce an intercept matrix term B0 in model
(1). Our screening procedure is invariant to such standardiza-
tion step if we calculate BM

l,jk, the (j, k)th element of Bl, as the
sample correlation between xil and Yi,jk. In the supplementary
materials, we present a modified algorithm of our estimation
procedure and evaluate the effects of the standardization step
on estimating Bl by using simulations. According to our experi-
ence, scaling covariates is necessary to ensure that all covariates
are at the same scale, whereas centering covariates and responses
is not critical.

3. Theoretical Properties

To address (III), we systematically investigate several key theo-
retical properties of the screening procedure and the regularized
estimation procedure as well as a theoretical guarantee of our
two-step estimator. First, we investigate the sure independence
screening property of the rank-one screening procedure when s
(also denoted by sn) diverges at an exponential rate of the sample
size. Second, we investigate the estimation and rank consistency
of our regularized estimator when both p and q are fixed. Third,
we derive the nonasymptotic error bound for our estimator
when both p and q are diverging. Finally, we establish an overall
theoretical guarantee for our two-step estimator. We state the
following theorems, whose detailed proofs can be found in
Appendix B.

3.1. Sure Screening Property

The following assumptions are used to facilitate the technical
details, even though they may not be the weakest conditions but
help to simplify the proof.

(A0) The covariates xi are iid from a distribution with mean
0 and covariance matrix �x. Define σ 2

l = (�x)ll. The vectorized
error matrices vec(Ei) are iid from a distribution with 0 and
covariance matrix �e, where vec(·) denotes the vectorization of
a matrix. Moreover, xi and Ei = (Ei,jk) are independent.
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(A1) There exist some constants C1 > 0, b > 0, and 0 < κ <

1/2 such that

min
l∈M

∥∥∥∥∥cov

(∑
l′∈M

xil′ ∗ Bl′0, xil

)∥∥∥∥∥
op

≥ C1(pq)1/2n−κ and

max
l∈M

‖Bl0‖∞ < b,

where cov(
∑

l′∈M xil′ ∗Bl′0, xil) is a p×q matrix with the (j, k)th
element being cov(

∑
l′∈M xil′ ∗ Bl′0,jk, xil), and ‖Bl0‖∞ =

max1≤j≤p,1≤k≤q |Bl0,jk|.
(A2) There exist positive constants C2 and C3 such that

max(E{exp(C2x2
il)}, E{exp(C2E2

i,jk)}) ≤ C3

for every 1 ≤ l ≤ sn, 1 ≤ j ≤ p and 1 ≤ k ≤ q.
(A3) There exists a constant C4 > 0 such that log(sn) = C4nξ

for ξ ∈ (0, 1 − 2κ).
(A4) There exist constants C5 > 0 and τ > 0 such that

λmax(�x) ≤ C5nτ .
(A5) We assume log(pq) = o(n1−2κ).

Remarks. Assumptions (A0)–(A5) are used to establish the
theory of our screening procedure when sn diverges to infinity.
Assumption (A1) is analogous to Condition 3 in Fan and Lv
(2008) and Equation (4) in Fan and Song (2010), in which
κ controls the rate of probability error in recovering the true
sparse model. Assumption (A2) is analogous to Condition (D)
in Fan and Song (2010) and Condition (E) in Fan, Feng, and
Song (2011). Assumption (A2) requires that xil and Ei,jk are sub-
Gaussian, which ensures the tail probability to be exponentially
light. Assumption (A3) allows the dimension sn to diverge at
an exponential rate of the sample size n, which is analogous to
Condition 1 in Fan and Lv (2008). Assumption (A4) is analogous
to Condition 4 in Fan and Lv (2008), which rules out the case of
strong collinearity. Assumption (A5) allows the product of the
row and column dimensions of the matrix pq to diverge at an
exponential rate of the sample size n.

The following theorems show the sure screening property of
the screening procedure. We allow p and q to be either fixed or
diverging with sample size n.

Theorem 1. Under Assumptions (A0)–(A3) and (A5), let γn =
αC1(pq)1/2n−κ with 0 < α < 1, then we have P(M ⊆
M̂γn) → 1 as n → ∞.

Theorem 1 shows that if γn is chosen properly, then our
rank-one screening procedure will not miss any significant vari-
ables with an overwhelming probability. Since the screening
procedure automatically includes all the significant covariates
for small values of γn, it is necessary to consider the size of M̂γn
when γn = αC1(pq)1/2n−κ holds.

Theorem 2. Under Assumptions (A0)–(A5), we have P(|M̂γn | =
O(n2κ+τ )) → 1 for γn = αC1(pq)1/2n−κ with 0 < α < 1 as
n → ∞.

Theorem 2 indicates that the selected model size with the
sure screening property is only at a polynomial order of n, even

though the original model size is at an exponential order of n.
Therefore, the false selection rate of our screening procedure
vanishes as n → ∞.

3.2. Theory for Estimation Procedure

From this subsection, we will denote M̂γn by M̂ for notation
simplicity. We first provide some theoretical results for our
estimation procedure. We assume that we can exactly select all
the important variables in M, that is, M̂ = M, and s0 = |M|
is fixed. The results are also applicable if our original s is fixed,
in which we only need to apply our estimation procedure.

We need more notations before we introduce more assump-
tions. Suppose the rank of Bl0 is rl. For every l = 1, . . . , sn,
we denote Ul0�l0VT

l0 as the SVD of Bl0 and use U⊥
l0 and V⊥

l0 to
denote the orthogonal complements of Ul0 and Vl0, respectively.
Define �M as the covariance matrix for xi,M, where xi,M =
(xil)l∈M ∈ R

|M|. We further define A = �M ⊗ Ipq×pq,
Kl = V⊥

l0 ⊗ U⊥
l0 and dl = −vec(Ul0VT

l0) for l ∈ M, where ⊗
denotes the Kronecker product. Let d = (dT

l1 , . . . , dT
l|M|)

T and
K = diag{Kl1 , . . . , Kl|M| }. We define l ∈ R

(p−rl)×(q−rl) for
l ∈ M such that vec() = (vec(l1)

T, . . . , vec(l|M|)
T)T =

(KTA−1K)−1KTA−1d. The l has some interesting interpre-
tation. For instance, it can be shown that it is the Lagrange
multiplier of an optimization problem. We include more inter-
pretation of l in Appendix C.

We then state additional assumptions that are needed to
establish the theory of our estimation procedure when both p
and q are assumed to be fixed.

The following assumptions (A6)–(A8) are needed.
(A6) The �M is nonsingular.
(A7) The maxl{rank(Bl0) : l ∈ M} < min(p, q) holds.
(A8) For every l ∈ M, we assume ‖l‖op < 1.

Remarks. Assumption (A6) is a regularity condition in the low-
dimensional context, which rules out the scenario when one
covariate is exactly a linear combination of other covariates.
Assumption (A7) is used for rank consistency. Assumption (A8)
can be regarded as the irrepresentable condition of Zhao and Yu
(2006) in the rank consistency context. A similar condition can
be found in Bach (2008).

Define B̂l the regularized low rank estimator of Bl for l ∈
M. We have the following consistent results when the tuning
parameter converges in different rates when both p and q are
fixed.

Theorem 3 (Estimation consistency). Under Assumptions (A0)
and (A6), we have

(i) if n1/2λ → ∞ and λ → 0, then λ−1(B̂l − Bl0) = Op(1) for
all l ∈ M;

(ii) if n1/2λ → ρ ∈ [0, ∞) and n → ∞, then n1/2(B̂l − Bl0) =
Op(1) for all l ∈ M.

Theorem 3 reveals an interesting phase-transition phe-
nomenon. When λ is relatively small or moderate, the con-
vergence rate of B̂l − Bl0 is of order n−1/2, whereas as λ gets
large, the convergence rate of B̂l − Bl0 can be approximated as
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the order of λ. Although we have established the consistency
of B̂l as λ → 0, the next question is whether the rank of B̂l is
consistent under the same set of conditions. It turns out that
such rank consistency only holds for relatively large λ, whose
convergence rate is slower than n−1/2.

Theorem 4 (Rank consistency). Under Assumptions (A0) and
(A6)–(A8), if λ → 0 and n1/2λ → ∞ hold, we have that
P(rank(B̂l) = rank(Bl0)) → 1 for all l ∈ M.

Theorem 4 establishes the rank consistency of our regular-
ized estimates. Theorems 3 and 4 reveal that both of the element
consistency and the rank consistency hold only for λ → 0
and n1/2λ → ∞. This phenomenon is similar to that for the
Lasso estimator. Specifically, although the Lasso estimator can
achieve model selection consistency, the convergence rate of the
Lasso estimator cannot achieve the rate of n−1/2 when selection
consistency is satisfied (Zou 2006).

We then consider the case when p and q are assumed to be
diverging. The following assumptions (A9)–(A12) are needed.

(A9) There exist positive constants CL and CM such that 0 <

CL ≤ λmin(�M) ≤ λmax(�M) ≤ CM < ∞.
(A10) We assume that xi,M are iid multivariate normal with

mean 0 and covariance matrix �M.
(A11) The vectorized error matrices vec(Ei) are iid N(0, �e),

where λmax(�e) ≤ C2
U < ∞.

(A12) We assume max(p, q) → ∞ and max(p, q) = o(n) as
n → ∞.

Remarks. Assumptions (A9)–(A12) are needed for our estima-
tion procedure when both p and q are diverging with the sample
size n. Assumption (A9) assumes the largest eigenvalue of �M
is bounded and the smallest eigenvalue of �M is greater than 0.
Assumption (A10) assumes that the covariates xils are Gaussian.
Assumption (A11) assumes that the largest eigenvalue of �e is
bounded. Assumption (A12) allows p and q to diverge slower
than n, but it does allow that pq > n.

We then show the following nonasymptotic bound for our
estimation procedure when both p and q are diverging.

Theorem 5 (Nonasymptotic bound when both p and q diverge).
Under Assumptions (A9)–(A12), when λ ≥ 4CUC1/2

M n−1/2

(p1/2 + q1/2), there exist some positive constants c1, c2, and c3
such that with probability at least 1 − c1 exp{−c2(p + q)} −
c3 exp(−n), we have

‖B̂ − B0‖2
F ≤ C

(∑
l∈M

rl

)
λ2C−2

L

for some constant C > 0.

Theorem 5 implies that when {rl, l ∈ M} and |M| are
fixed and λ � n−1/2(p1/2 + q1/2), the estimator B̂ would be
consistent with probability going to 1. The convergence rate of
the estimator in Theorem 5 coincides with that in Corollary 5 of
Negahban et al. (2009), where they studied the low-rank matrix
learning problem using the trace norm regularization. Although
considering different models, they also require the dimension of

the matrix max(p, q) = o(n). It differs significantly from the L1
regularized problem, where the dimension of the matrix may
diverge at the exponential order of the sample size. The result
in this theorem can also be regarded as a special case of the
result in Raskutti, Yuan, and Chen (2019), where they derived
nonasymptotic error bound in a class of tensor regression model
with sparse or low-rank penalties.

3.3. Theory for Two-Step Estimator

In this section, we give a unified theory for our two-step estima-
tor. In particular, we derive the nonasymptotic bound for our
final estimate. To begin with, we first introduce some notations.
For simplicity, we will use M̂ to denote M̂γn , which is the set
selected from the first step. Define BM̂ = [Bl, l ∈ M̂] ∈
R

p×q|M̂| and the true value of BM̂ as BM̂
0 = [Bl0, l ∈ M̂] ∈

R
p×q|M̂|. Define B̂M̂ = [̂Bl, l ∈ M̂] ∈ R

p×q|M̂| as the solution
of the regularized trace norm penalization problem given by

min
BM̂

Q(BM̂) = min
BM̂

⎧⎨⎩ 1
2n

n∑
i=1

∥∥∥∥∥∥Yi −
∑
l∈M̂

xil ∗ Bl

∥∥∥∥∥∥
2

F

+λ
∑
l∈M̂

‖Bl‖∗

⎫⎬⎭ . (6)

We need the following assumptions.
(A13) Assume 2κ + τ < 1. Define ιL := min‖δ‖0≤m,δ �=0 δT

(n−1 ∑n
i=1 xixT

i )δ/‖δ‖2
2 for any m = O(n2κ+τ ) and δ ∈ R

s. We
further assume ιL > 0.

(A14) Assume max(p, q)/ log(n) → ∞ and max(p, q) =
o(n1−2τ ) as n → ∞ with τ < 1/2.

Theorem 6 (Nonasymptotic bound for two-step estimator).
Under Assumptions (A0)–(A5), (A10), (A11), (A13), and
(A14), when λ ≥ 4C5nτ−1/2(p1/2 + q1/2), there exist some
positive constants c1, c2, c3, c4, c5 such that with probability
at least 1 − c1n2κ+τ exp{−c2(p + q)} − c3n2κ+τ exp(−n) −
c4 exp(−c5n1−2κ), we have

‖B̂M̂ − BM̂
0 ‖2

F ≤ C

(∑
l∈M

rl

)
λ2ι−2

L

for some constant C > 0.

Theorem 6 implies that when {rl : l ∈ M} and |M| are fixed
and ιL is fixed, the estimator B̂M̂ is consistent with probability
going to 1 when λ � nτ−1/2(p1/2 + q1/2). Theorem 6 gives an
overall theoretical guarantee for our two-step estimator by con-
sidering the random selection procedure in the first step. A key
fact that we use in the proof of Theorem 6 is that our first-step
screening procedure enjoys the sure independence screening
property. In this case, we only need to derive the nonasymptotic
bound for the case when we exactly select or over-select the
important variables as it holds with overwhelming probability.

4. Simulations

We conduct simulations to examine the finite sample perfor-
mance of the proposed estimation and screening procedures.
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Figure 1. The four 64 × 64 true coefficient matrices for the Simulation I: the cross shape for B10 in panel (a), the square shape for B20 in panel (b), the triangle shape of B30
in panel (c), and the butterfly shape for B40 in panel (d). The regression coefficient at each pixel is either 0 (blue) or 1 (yellow).

Table 1. Simulation I results: the means of PEs and MSEs for regularized low-rank (RLR), OLS, Lasso, fused Lasso (Fused), and tensor envelope (Envelope) estimates and
their associated SEs in the parentheses.

(n, σ 2
e ) Method MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE

(100, 1) RLR 11.67(0.21) 9.96(0.22) 43.21(0.43) 44.88(0.52) 1.03(0.0002)
OLS 58.08(0.83) 72.38(1.08) 71.66(1.01) 58.00(0.92) 1.05(0.0004)

Lasso 42.96(0.79) 53.79(1.08) 53.21(0.98) 44.87(0.75) 1.04(0.0004)
Fused 11.85(0.20) 11.25(0.22) 13.61(0.23) 17.87(0.26) 1.02(0.0002)

Envelope 21.20(0.34) 24.95(0.36) 51.14(0.49) 55.62(0.67) 1.04(0.0002)
(200, 1) RLR 7.27(0.09) 6.73(0.10) 23.77(0.20) 23.08(0.23) 1.02(0.0001)

OLS 28.61(0.30) 34.88(0.36) 34.85(0.38) 28.11(0.32) 1.03(0.0001)
Lasso 19.29(0.38) 23.86(0.43) 23.73(0.41) 20.30(0.29) 1.02(0.0002)
Fused 5.93(0.09) 5.62(0.08) 6.59(0.10) 8.63(0.10) 1.01(0.0001)

Envelope 11.21(0.16) 13.13(0.14) 38.40(0.30) 43.33(0.35) 1.03(0.0001)
(500, 1) RLR 3.46(0.03) 3.53(0.03) 10.54(0.06) 9.75(0.06) 1.006(0.00003)

OLS 11.01(0.08) 13.87(0.10) 13.88(0.09) 11.04(0.07) 1.009(0.00003)
Lasso 5.93(0.17) 7.89(0.17) 7.78(0.18) 6.70(0.13) 1.007(0.00009)
Fused 2.36(0.03) 2.37(0.02) 2.73(0.03) 3.29(0.03) 1.004(0.00002)

Envelope 5.44(0.07) 6.60(0.07) 31.72(0.21) 38.29(0.30) 1.02(0.0001)

(100, 25) RLR 121.61(1.69) 119.58(2.37) 227.58(2.01) 263.90(2.77) 25.37(0.0027)
OLS 1451.95(20.64) 1809.40(27.01) 1791.53(25.36) 1450.10(23.10) 26.27(0.0099)

Lasso 1360.23(19.03) 1683.95(24.74) 1669.88(23.97) 1367.71(21.34) 26.22(0.0093)
Fused 238.87(3.04) 254.78(4.36) 290.50(4.47) 283.07(3.89) 25.42(0.0031)

Envelope 175.09(1.57) 139.95(2.71) 259.48(2.18) 286.98(1.81) 25.39(0.0023)
(200, 25) RLR 79.44(1.01) 71.27(1.25) 171.12(1.21) 201.43(1.63) 25.26(0.0013)

OLS 715.28(7.49) 872.02(8.93) 871.33(9.41) 702.70(8.00) 25.66(0.0037)
Lasso 657.54(7.19) 798.43(8.58) 798.01(9.04) 652.91(7.14) 25.62(0.0035)
Fused 156.75(2.00) 162.27(1.95) 174.79(2.34) 175.61(2.20) 25.27(0.0016)

Envelope 151.68(1.55) 105.18(1.61) 202.96(2.78) 230.24(2.63) 25.29(0.0016)
(500, 25) RLR 42.17(0.50) 39.70(0.59) 110.16(0.79) 125.08(0.75) 25.10(0.0005)

OLS 275.31(2.05) 346.69(2.54) 346.93(2.36) 276.05(1.83) 25.24(0.0008)
Lasso 238.43(2.33) 299.22(2.99) 298.81(2.90) 243.44(1.95) 25.22(0.0011)
Fused 80.31(0.84) 89.14(0.79) 93.22(0.90) 89.8(0.83) 25.10(0.0006)

Envelope 95.49(0.99) 75.41(0.99) 142.24(1.51) 171.34(1.31) 25.14(0.0008)

NOTE: For each case, 100 simulated datasets are used.

For the sake of space, we include additional simulation results
in the supplementary materials.

4.1. Regularized Low-Rank Estimate

In the first simulation, we simulate 64 × 64 matrix responses
according to model (1) with s = 4 covariates. We set the four
true coefficient matrices to be a cross shape (B10), a square shape
(B20), a triangle shape (B30), and a butterfly shape (B40). The
images of Bl0 are shown in Figure 1, and each of them consists
of a yellow region of interest (ROI) containing ones and a blue
ROI containing zeros.

We independently generate all scalar covariates xi from
N(0, �x), where �x = (σx,ll′) is a covariance matrix with
an autoregressive structure such that σx,ll′ = ρ

|l−l′|
1 holds for

1 ≤ l, l′ ≤ s with ρ1 = 0.5. We independently generate vec(Ei)
from N(0, �e). Specifically, we set the variances of all elements

in Ei to be σ 2
e and the correlation between Ei,jk and Ei,j′k′ to be

ρ
|j−j′|+|k−k′|
2 for 1 ≤ j, k, j′, k′ ≤ 64 with ρ2 = 0.5. We consider

three different sample sizes including n = 100, 200, and 500,
and set σ 2

e to be 1 and 25.
We use 100 replications to evaluate the finite sample perfor-

mance of our regularized low-rank (RLR) estimates B̂l defined
as ‖B̂l −Bl0‖2

F . To evaluate the estimation accuracy, we compute
the mean squared errors of B̂l, denoted by MSE(B̂l), for all
1 ≤ l ≤ 4. We also calculate the prediction errors (PEs) by
generating ntest = 500 independent test observations.

We compare our method with OLS, Lasso, fused Lasso, and
tensor envelope method (Li and Zhang 2017). For fair compar-
ison, we also use 5-fold cross-validation to select regularization
parameters of Lasso and fused Lasso and the envelope dimen-
sion of the tensor envelope method. The results are shown in
Table 1. We also plot the RLR, OLS, Lasso, fused Lasso, and
tensor envelope estimates of {B̂l, 1 ≤ l ≤ 4} obtained from
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Figure 2. Simulation I results: the RLR (panels (a)–(d)), OLS (panels (e)–(h)), Lasso (panels (i)–(l)), fused Lasso (panels (m)–(p)), and Envelope (panels (q)–(t)) estimates of
coefficient matrices from a randomly selected training dataset with n = 500, ρ1 = 0.5, ρ2 = 0.5, and σ 2 = 25: B̂1 (the first column); B̂2 (the second column); B̂3 (the third
column); and B̂4 (the fourth column).

a randomly selected dataset with n = 500 and σ 2
e = 25 in

Figure 2.
Inspecting Figure 2 and Table 1 reveals the following find-

ings. First, our method always outperforms OLS and envelope
method. Second, when the images are of low rank (cross and
square), our estimation method truly outperforms Lasso. Third,

our method outperforms fused Lasso when either the sam-
ple size is small or the noise variance is large, whereas fused
Lasso outperforms our method in other cases. Fourth, when the
images are not of low rank (triangle and butterfly), fused Lasso
performs best in most cases, whereas our method outperforms
Lasso when either noise level is high or sample size is small.
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Table 2. Simulation II results: the means of PEs and MSEs for regularized low-rank (RLR) OLS, Lasso, fused Lasso (Fused), and tensor envelope (Envelope) estimates and
their associated SEs in the parentheses.

(n, σ 2
e ) Method MSE(B1) MSE(B2) PE

(100, 1) RLR 21.86(0.33) 13.91(0.20) 1.02(0.0001)
OLS 41.85(0.16) 56.82(0.82) 1.03(0.0003)

Lasso 55.78(0.88) 54.40(0.73) 1.03(0.0002)
Fused 57.39(0.94) 56.61(0.77) 1.03(0.0002)

Envelope 41.46(0.15) 33.23(0.54) 1.02(0.0002)
(200, 1) RLR 10.84(0.12) 6.77(0.07) 1.011(0.00005)

OLS 20.75(0.07) 27.80(0.30) 1.018(0.0001)
Lasso 27.90(0.31) 27.03(0.29) 1.018(0.0001)
Fused 27.69(0.30) 27.29(0.29) 1.018(0.0001)

Envelope 20.68(0.07) 18.33(0.22) 1.014(0.00008)
(500, 1) RLR 4.19(0.05) 2.73(0.02) 1.004(0.00002)

OLS 8.22(0.03) 10.94(0.08) 1.006(0.00003)
Lasso 12.49(0.18) 12.18(0.17) 1.007(0.00006)
Fused 10.99(0.08) 10.91(0.09) 1.006(0.00003)

Envelope 8.26(0.03) 9.37(0.09) 1.006(0.00003)

(100, 25) RLR 391.95(5.50) 254.67(3.54) 25.37(0.0024)
OLS 1044(4.10) 1447(23.94) 25.77(0.0060)

Lasso 1378.32(22.99) 1360.95(18.52) 25.75(0.0059)
Fused 1232.31(17.74) 1042.72(12.13) 25.68(0.0055)

Envelope 1033.69(3.66) 626.57(7.71) 25.46(0.0027)
(200, 25) RLR 219.13(2.14) 136.41(1.33) 25.26(0.0011)

OLS 518.63(1.83) 694.98(7.47) 25.45(0.0025)
Lasso 657.39(7.19) 644.78(7.20) 25.44(0.0025)
Fused 637.01(6.45) 589.9(5.68) 25.43(0.0022)

Envelope 516.52(1.81) 395.64(3.67) 25.33(0.0015)
(500, 25) RLR 101.8(0.91) 64.19(0.57) 25.09(0.0005)

OLS 206.57(0.73) 275.3(2.05) 25.16(0.0008)
Lasso 259.2(1.95) 254.26(2.17) 25.16(0.0008)
Fused 265.44(1.89) 255.88(1.99) 25.16(0.0008)

Envelope 206.41(0.73) 226.94(1.54) 25.14(0.0006)

NOTE: For each case, 100 simulated datasets are used.

These findings are not surprising. First, in all settings, since
all the true coefficient matrices are piecewise sparse, the fused
Lasso method is expected to perform well. Second, Lasso works
reasonably well since it still imposes sparse structure. Third,
since our method is designed for low rank cases, it performs
well for the low rank cross and square cases, whereas it performs
relatively worse for the triangle and butterfly cases.

We then conduct the second simulation study when the
images only have low rank structure, but no sparse structure.
Specifically, we simulate 64 × 64 matrix responses according
to model (1) with s = 2 covariates. We set the two true
coefficient matrices as B10 = ∑10

j=1 λ1,ju1,jvT
1,j and B20 =∑5

j=1 λ2,ju2,jvT
2,j, where λ1 = (λ1,1, . . . , λ1,10)

T = (2, 1.8, 1.6,
1.4, 1.2, 1, 0.8, 0.6, 0.4, 0.2)T, λ2 = (λ2,1, λ2,2, λ2,3, λ2,4, λ2,5)

T =
(2, 1.6, 1.2, 0.8, 0.4)T, and u1,j, u2,j, v1,j, v1,j are column vectors
of dimension 64. For U1 = (u1,1, . . . , u1,10) and V1 =
(v1,1, . . . , v1,10), each of them is generated by orthogonalizing a
64 × 10 matrix with all elements being iid standard normal. For
U2 = (u2,1, . . . , u2,5) and V2 = (v2,1, . . . , v2,5), each of them is
generated by orthogonalizing a 64 × 5 matrix with all elements
being iid standard normal. For all other settings, they are the
same as those in Section 4.1. Table 2 summarizes the obtained
results. Our method outperforms all the comparison methods
when the true coefficient matrices are of low rank structure, but
of no sparse structure.

4.2. Rank-One Screening Using SNP Covariates

We generate 64 × 64 matrix responses according to model (1).
We use the same method as Section 4.1 to generate Ei with

ρ2 = 0.5 and σ 2
e = 1 or 25. We generate genetic covariates

by mimicking the SNP data used in Section 5. Specifically, we
use linkage disequilibrium (LD) blocks defined by the default
method (Gabriel et al. 2002) of Haploview (Barrett et al. 2005)
and PLINK (Purcell et al. 2007) to form SNP-sets. To calculate
LD blocks, n subjects are simulated by randomly combining
haplotypes of HapMap CEU subjects. We use PLINK to deter-
mine the LD blocks based on these subjects. We randomly select
sn/10 blocks, and combine haplotypes of HapMap CEU subjects
in each block to form genotype variables for these subjects. We
randomly select 10 SNPs in each block, and thus we have sn
SNPs for each subject. We set sn = 2000 and 5000 and choose
the first 20 SNPs as the significant SNPs. That is, we set the first
20 true coefficient matrices as nonzero matrices B1,0 = · · · =
B20,0 = Btrue, and the remaining coefficient matrices as zero. We
consider three types of coefficient matrices Btrue with different
significant regions, that is, (ps, qs) = (4, 4), (8, 8), and (16, 16),
where ps and qs denote the true size of the significant regions
of interest. Figure 3 presents the true images Btrue and each of
them contains a yellow ROI containing ones and a blue ROI
containing zeros.

In this subsection, we evaluate the effect of using different
γn on the finite sample performance of the screening procedure.
We will investigate the proposed random decoupling in the next
subsection. Specifically, by sorting the magnitude of ‖B̂M

l ‖op in
descending order, we define M̂k as

M̂k ={1 ≤ l ≤ sn : ‖B̂M
l ‖op is among the first k

largest of all covariates}. (7)
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Figure 3. Screening setting: panels (a)–(c) are the true coefficient images Btrue with regions of interest with different sizes: effective regions of interest (yellow ROI) and
noneffective regions of interest (blue ROI).

We apply our screening procedure to each simulated dataset and
then report the average true nonzero coverage proportion as k
varies from 1 to 200. In this case, M = {1, 2, . . . , 20} is the
set of all true nonzero indices, and M̂k is the selected index
set by using our screening method. The true nonzero coverage
proportion is defined as |M̂k ∩ M|/|M|. We consider three
different sample sizes including n = 100, 200, and 500. We run
100 Monte Carlo replications for each scenario.

We consider four screening methods including the rank-
one screening method, the L1 entrywise norm screening, the
Frobenius norm screening, and the global Wald test screening
proposed in Huang et al. (2015). The curves of percentage
of the average true nonzero coverage proportion for different
threshold values are presented for the case (σ 2

e , sn) = (1, 2000)

in Figure 4 and for the case (σ 2
e , sn) = (25, 2000) in Figure 5.

Inspecting Figures 4 and 5 reveals that the rank-one screen-
ing significantly outperforms all other three methods, followed
by the Frobenius norm screening. As expected, increasing the
sample size n and/or k increases the true nonzero coverage
proportion of all four methods. We also include additional
simulation results for the cases (σ 2

e , sn) = (1, 5000) in Figure
S1 and (σ 2

e , sn) = (25, 5000) in Figure S2 in the supplementary
materials. The findings are similar. Overall, the rank-one screen-
ing method is more robust to noise and signal region size.

4.3. Simulation Study for Two-Step Procedure

In this subsection, we perform a simulation study to evaluate our
two-step screening and estimation procedure. We simulate 64×
64 matrix responses according to model (1) with sn covariates.
We set the first four true coefficient matrices to be a cross shape
(B10), a square shape (B20), a triangle shape (B30), and a butterfly
shape (B40) shown in Figure 1. For the remaining coefficient
matrices {Bl0, 5 ≤ l ≤ sn}, we set them as zero matrices. We
consider sn = 2000 and 5000.

We independently generate all scalar covariates xi from
N(0, �x), where �x = (σx,ll′) is a covariance matrix with
an autoregressive structure such that σx,ll′ = ρ

|l−l′|
1 holds for

1 ≤ l, l′ ≤ s with ρ1 = 0.5. We independently generate vec(Ei)
from N(0, �e). Specifically, we set the variances of all elements
in Ei to be σ 2

e and the correlation between Ei,jk and Ei,j′k′ to be

ρ
|j−j′|+|k−k′|
2 for 1 ≤ j, k, j′, k′ ≤ 64 with ρ2 = 0.5. We consider

three different sample sizes including n = 100, 200, and 500,
and set σ 2

e to be 1 and 25.
First, we evaluate the finite sample performance of the ran-

dom decoupling. We perform our screening procedure based on
the random decoupling and then apply our regularized low rank
estimation procedure. We report the MSEs of B̂l (l = 1, 2, 3, 4),
model size, and PE based on 100 replications in Table 3. We
report the proportion of times that we exactly select the true
model M = {1, 2, 3, 4}, the proportion that we over-select
some variables, but include all the true ones, and the proportion
that we miss some of the important covariates in Table 4. The
proposed random decoupling works well in choosing γn, since
the selected covariate set based on γn includes the true covariates
with high probabilities in all scenarios.

Second, we consider over-selecting and/or missing some
covariates. For each of the three above cases, we report the
MSEs of B̂l (l = 1, 2, 3, 4) and the PE in Table 4. When
the screening procedure over-selects more irrelevant variables,
the MSEs of the true nonzero coefficient matrices and PE of
the fitted model are similar to those obtained from the model
with the correct set of covariates. In contrast, if the screening
procedure misses several important variables, then the estimates
corresponding to these missed variables completely fail since the
corresponding coefficient matrices are estimated zero. However,
according to the simulation results, the MSEs corresponding to
those important variables that have been selected, are similar to
those obtained from the model with the correct set of covariates.
The PE increases due to missing some important variables.

5. The Philadelphia Neurodevelopmental Cohort

5.1. Data Description and Preprocessing Pipeline

To motivate the proposed methodology, we consider a large
database with imaging, genetic, and clinical data collected by
the PNC study. This study was a collaboration between the
Center for Applied Genomics (CAG) at Children’s Hospital of
Philadelphia (CHOP) and the Brain Behavior Laboratory at the
University of Pennsylvania (Penn). The PNC cohort consists of



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 413

Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

(d)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

(g)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(h)
Threshold value

0 20 40 60 80 100 120 140 160 180 200

N
on

ze
ro

 C
ov

er
ag

e 
Pr

op
or

tio
ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i)

Figure 4. Screening simulation results for the case (σ 2
e , sn) = (1, 2000): the curves of percentage of the average true nonzero coverage proportion. The black solid, blue

dashed, red dotted, and purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise norm screening, the Frobenius norm screening, and the global
Wald test screening, respectively. Panels (a)–(i) correspond to (n, ps , qs) = (100, 4, 4), (200, 4, 4), (500, 4, 4), (100, 8, 8), (200, 8, 8), (500, 8, 8), (100, 16, 16), (200, 16, 16),
and (500, 16, 16), respectively.

youths aged 8–21 years in the CHOP network and volunteered
to participate in genomic studies of complex pediatric disor-
ders. All participants underwent clinical assessment and a neu-
roscience based computerized neurocognitive battery (CNB)
and a subsample underwent neuroimaging. We consider 814
subjects with 429 females and 385 males. The age range of the
814 participants is 8–21 (years) with mean value 14.36 (years)
and SD 3.48 (years). Specifically, each subject has a resting state
functional magnetic resonance imaging (rs-fMRI) connectivity
matrix, which is represented as a 69 × 69 matrix, and a large
genetic dataset with around 5,400,000 genotyped and imputed
SNPs on all of the 22 chromosomes. Other clinical variables
of interest include age and gender, among others. Our primary
question of interest is to identify novel genetic effects on the local
rs-fMRI connectivity changes.

We preprocess the resting state fMRI data using C-PAC
pipeline. First, we register the fMRI data to the standard MNI
2mm resolution level and perform segmentation using the C-
PAC default setting. Next, we do motion correction using the
Friston 24-parameter method. We also perform nuisance signal
correction by regressing out the following variables: top five
principle components in the noise regions of interest (ROIs),
cerebrospinal fluid (CSF), motion parameters, and the linear
trends in time series. Finally, we extract the ROI time series
by taking the average of voxel-wise time series in each ROI.
The atlases that we use are HarvardOxford Cortical Atlas (48
regions) and HarvardOxford Subcortical Atlas (21 regions),
which could be found in FSL. In total, we extract time series for
each of the 69 regions and each time series has 120 observations
after deleting the first and last three scans.
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Figure 5. Screening simulation results for the case (σ 2
e , sn) = (25, 2000): the curves of percentage of the average true nonzero coverage proportion. The black solid, blue

dashed, red dotted, and purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise norm screening, the Frobenius norm screening, and the global
Wald test screening, respectively. Panels (a)–(i) correspond to (n, ps , qs) = (100, 4, 4), (200, 4, 4), (500, 4, 4), (100, 8, 8), (200, 8, 8), (500, 8, 8), (100, 16, 16), (200, 16, 16),
and (500, 16, 16), respectively.

5.2. Analysis and Results

We first fit model (1) with the rs-fMRI connectivity matrices
from 814 subjects as 69 × 69 matrix responses and age and gen-
der as clinical covariates. We also include the first five principal
component scores based on the SNP data as covariates to correct
for population stratification. We first calculate the OLS estimates
of coefficient matrices and then compute the corresponding
residual matrices for the brain connectivity response matrix
after adjusting the effects of the clinical covariates and the SNP
principal component scores.

Second, we apply the rank-one screening procedure by using
the residual matrices as responses to select important SNPs from
the whole set of 5,354,265 SNPs that are highly associated with
the residual matrices. We use the random decoupling method

described in Section 2.1 to choose the thresholding value γn
and select all those indices whose ‖B̂l‖op is the larger than
γn. Finally, seven covariates are selected, where the names are
shown in Table 5. Among these seven SNPS, the first three ones
on Chromosome 5 have exactly the same genotypes for all the
subjects and the next four ones on Chromosome 10 have exactly
the same genotypes for all the subjects.

Finally, we examine the effects of these selected SNPs on our
matrix response. We first fit the OLS to these seven SNPs. Since
the first three ones have exactly the same genotypes and the next
four ones have exactly the same genotypes, we regress our matrix
response on the first selected SNP and the fourth selected SNP,
yielding two coefficient matrix estimates B̂ols

(1) and B̂ols
(2). The OLS

estimates for the seven SNPs are defined as B̂ols
1 = B̂ols

2 = B̂ols
3 =



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 415

Table 3. The means of predictor errors (PEs) and MSEs for our two-step procedure, and the average selected model size for our screening procedure.

(n, sn , σ 2
e ) MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE Model size

(100, 2000, 1) 15.87(3.22) 10.73(0.67) 43.52(0.46) 47.07(0.58) 1.05(0.001) 5.24(0.11)
(200, 2000, 1) 5.92(0.10) 5.10(0.11) 27.61(0.27) 28.23(0.31) 1.03(0.0003) 5.87(0.11)
(100, 5000, 1) 32.28(6.57) 12.60(1.08) 44.28(0.52) 47.14(0.65) 1.07(0.002) 5.03(0.10)
(200, 5000, 1) 5.92(0.09) 4.94(0.09) 28.03(0.29) 28.35(0.29) 1.03(0.0005) 5.83(0.13)

(100, 2000, 25) 126.17(1.84) 119.15(2.56) 227.86(1.96) 279.22(3.17) 25.99(0.027) 5.15(0.11)
(200, 2000, 25) 84.42(1.25) 73.69(1.41) 177.90(1.66) 214.67(2.15) 25.54(0.012) 5.82(0.11)
(100, 5000, 25) 136.27(3.45) 118.73(2.63) 228.65(2.19) 278.43(3.42) 26.04(0.024) 4.96(0.11)
(200, 5000, 25) 82.69(1.12) 73.53(1.37) 177.44(1.57) 211.25(2.12) 25.56(0.012) 5.75(0.13)

NOTE: Their associated SEs are in the parentheses. For each case, 100 simulated datasets are used.

Table 4. The means of PEs and MSEs for our two-step procedure in three scenarios: exact selection (“Exact”), over selection (“Over”), and missing variables (“Miss”).

(n, sn , σ 2
e ) Scenario MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE Proportion

(100, 2000, 1) Exact 11.61(0.18) 9.18(0.16) 43.22(0.38) 45.55(0.47) 1.06(0.001) 0.27
Over 11.17(0.17) 10.11(0.20) 43.6(0.46) 47.31(0.56) 1.05(0.001) 0.71
Miss 240(0) 53.49(1.68) 44.58(1.61) 59.11(1.18) 1.10(0.001) 0.02

(200, 2000, 1) Exact 7.09(0.08) 6.6(0.12) 23.97(0.16) 23.11(0.09) 1.03(0.0005) 0.04
Over 5.87(0.09) 5.03(0.11) 27.76(0.26) 28.44(0.30) 1.03(0.0003) 0.96
Miss NA NA NA NA NA 0

(100, 5000, 1) Exact 11.69(0.17) 9.74(0.19) 44.14(0.65) 45.79(0.41) 1.07(0.001) 0.27
Over 11.76(0.20) 9.75(0.19) 44.24(0.43) 46.60(0.54) 1.06(0.001) 0.64
Miss 240(0) 41.48(1.93) 44.96(0.65) 55.10(1.23) 1.12(0.001) 0.09

(200, 5000, 1) Exact 7.52(0.09) 6.69(0.11) 24.91(0.22) 24.24(0.08) 1.04(0.001) 0.05
Over 5.84(0.08) 4.84(0.08) 28.19(0.28) 28.57(0.28) 1.03(0.0005) 0.95
Miss NA NA NA NA NA 0

(100, 2000, 25) Exact 121.75(1.27) 114.12(2.19) 229.79(1.95) 270.16(3.47) 26.18(0.024) 0.29
Over 126.37(1.49) 121.47(2.69) 227.21(1.98) 283.29(3.00) 25.91(0.023) 0.70
Miss 240(NA) 102.16(NA) 217.49(NA) 256.52(NA) 26.45(NA) 0.01

(200, 2000, 25) Exact 79.26(0.80) 64.22(0.61) 177.62(0.86) 207.41(1.18) 25.54(0.017) 0.07
Over 84.81(1.27) 74.4(1.43) 177.92(1.71) 215.21(2.20) 25.54(0.012) 0.93
Miss NA NA NA NA NA 0

(100, 5000, 25) Exact 122.88(1.74) 114.5(2.49) 217.93(1.87) 260.99(2.64) 26.20(0.019) 0.34
Over 129.81(1.53) 122.59(2.63) 233.46(2.17) 286.15(3.34) 25.92(0.020) 0.58
Miss 240(0) 108.61(3.01) 239.31(2.06) 296.51(4.25) 26.23(0.022) 0.08

(200, 5000, 25) Exact 85.2(0.87) 72.92(1.48) 174.83(1.20) 206.34(2.32) 25.66(0.014) 0.06
Over 82.53(1.14) 73.57(1.37) 177.61(1.60) 211.56(2.12) 25.55(0.012) 0.94
Miss NA NA NA NA NA 0

NOTE: The proportion of times among 100 simulated datasets for each scenario is also reported. The “NA” denotes the values that are not applicable.

Table 5. PNC data analysis results: the top seven SNPs selected by our screening
procedure.

Ranking Chromosome SNP

1 5 rs72775042
2 5 rs6881067
3 5 rs72775059
4 10 rs200328746
5 10 rs75860012
6 10 rs200248696
7 10 rs78309702

B̂ols
(1)/3 and B̂ols

4 = B̂ols
5 = B̂ols

6 = B̂ols
7 = B̂ols

(2)/4. We then cal-
culate the singular values of these seven OLS estimates and plot
these singular values in decreasing order in Figure 6. Inspecting
Figure 6 reveals that these estimated coefficient matrices have
a clear low rank pattern since the first few singular values
dominate the remaining ones. This motivates us to apply our
RLR estimation procedure to estimate the coefficient matrices
corresponding to these seven SNP covariates. Figure 7(a)–(g)
presents the coefficient matrix estimates associated with these
SNPs. The coefficient matrices corresponding to the first three
selected SNPs are the same and the coefficient matrices corre-

sponding to next four selected SNPs are the same. The estimated
ranks of these seven coefficient matrices are given by 11, 11, 11,
8, 8, 8, and 8, respectively.

6. Discussion

Motivated from the analysis of imaging genetic data, we
have proposed a L2RM to correlate high-dimensional matrix
responses with a high-dimensional vector of covariates when
coefficient matrices are approximately low-rank. We have
developed a fast and efficient rank-one screening procedure,
which enjoys the sure independence screening property as
well as vanishing false selection rate, to reduce the covariate
space. We have developed a regularized estimate of coefficient
matrices based on the trace norm regularization, which
explicitly incorporates the low-rank structure of coefficient
matrices, and established its estimation consistency. We have
further established a theoretical guarantee for the overall
solution obtained from our two-step screening and estimation
procedure. We have demonstrated the efficiency of our methods
by using simulations and the analysis of PNC dataset.
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Figure 6. PNC data: panels (a)–(g) are the plots for the singular values of the OLS estimates corresponding to the seven SNPs selected by our screening step, with singular
values sorted from largest to smallest.

Appendix A: Auxiliary Lemmas

In this section, we include the auxiliary lemmas needed for the theo-
rems and their proofs.

Lemma 1 (Bernstein’s inequality). Let Z1, . . . , Zn be independent ran-
dom variables with zero mean such that E|Zi|m ≤ m!Mm−2vi/2 for
every m ≥ 2 (and all i) and some positive constants M and vi. Then
P(|Z1+· · ·+Zn| > x) ≤ 2 exp[−x2/{2(v+Mx)}] for v ≥ v1+· · ·+vn.

This lemma is Lemma 2.2.11 of van der Vaart and Wellner (2000), and
we omit the proof.

Lemma 2. Under Assumptions (A0)–(A2), for arbitrary t > 0 and
every l, l′, j, k, we have that

P

(∣∣∣∣∣
n∑

i=1
{xilxil′ − E(xilxil′)}

∣∣∣∣∣ ≥ t

)

≤ 2 exp

{
− t2

2(2nC2
2eC2 C3 + t/C2)

}
,

and

P

(∣∣∣∣∣
n∑

i=1
(xilEi,jk)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2

2(2nC2
2eC2 C3 + t/C2)

}
.

Proofs of Lemma 2. By Assumptions A1 and A2, we have

E
[

exp{C2|xilxil′ − E(xilxil′)|}
]

≤ eC2|E(xilxil′ )|E{eC2|xilxil′ |}

≤ eC2 E{eC2x2
il/2eC2x2

il′/2} ≤ eC2
[

E{eC2x2
il }E{eC2x2

il′ }
]1/2 ≤ eC2 C3.

For every m ≥ 2, one has

E{|xilxil′ − E(xilxil′)|m} ≤ m!C−m
2 E{exp(C2|xilxil′ − E(xilxil′)|)}

≤ m!C−m
2 eC2 C3.

It follows from Lemma 1 that we have

P

(∣∣∣∣∣
n∑

i=1
{xilxil′ − E(xilxil′)}

∣∣∣∣∣ ≥ t

)
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Figure 7. PNC data: panels (a)–(g) are the plots for our RLR estimates corresponding to the seven SNPs selected by our screening step.

≤ 2 exp

{
− t2

2(2nC2
2eC2 C3 + t/C2)

}
.

Similarly, we obtain

E
{

exp(C2|xilEi,jk|)
}

≤ eC2 E(eC2x2
il/2eC2E2

i,jk/2
)

≤ eC2
{

E(eC2x2
il )E(eC2E2

i,jk)
}1/2 ≤ eC2 C3.

For every m ≥ 2, we have E|xilEi,jk|m ≤ m!C−m
2 E{exp(C2|xilEi,jk|)} ≤

m!C−m
2 eC2 C3. Therefore, it follows from Lemma 1 that we have

P

(∣∣∣∣∣
n∑

i=1
(xilEi,jk)

∣∣∣∣∣ ≥ t

)

≤ 2 exp

{
− t2

2(2nC2
2eC2 C3 + t/C2)

}
.

This completes the proof of Lemma 2.

The next lemma is about the subdifferential and directional deriva-
tives of the trace norm. For more details about this lemma and its proof,
please refer to Recht, Fazel, and Parrilo (2010) and Borwein and Lewis
(2010).

Lemma 3. For an arbitrary matrix W, its SVD is denoted by W =
UDVT, where U ∈ R

p×m and V ∈ R
q×m have orthonormal columns,

D = diag(d1, . . . , dm), and d1 ≥ · · · ≥ dm > 0 are the singular
values of W. Then the trace norm of W is ‖W‖∗ = ∑m

i=1 di and its
subdifferential is equal to

∂‖W‖∗ = {UDVT + N, such that ‖N‖op ≤ 1, UTN = 0, NV = 0}.

The directional derivative at W is

lim
ε→0+

‖W + εϒ‖∗ − ‖W‖∗
ε

= tr(UTϒV) + ‖(U⊥)TϒV⊥‖∗,

where U⊥, V⊥ are the orthonormal complements of U and V.

The following lemma is a standard result called Gaussian compari-
son inequality (Anderson 1955).
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Lemma 4. Let X and Y be zero-mean vector Gaussian random vectors
with covariance matrix �X and �Y , respectively. If �X −�Y is positive
semidefinite, then for any convex symmetric set C, P(X ∈ C) ≤ P(Y ∈
C).

Appendix B: Proof of Theorems

Proof of Theorem 1. Recall that BM
l0 = cov(

∑
l′∈M xil′ ∗ Bl′0, xil). For

every 1 ≤ j ≤ p, 1 ≤ k ≤ q and 1 ≤ l ≤ sn, we have

B̂M
l,jk − BM

l0,jk = n−1
n∑

i=1
{xilYi,jk − E(xilYi,jk)}.

It follows from Assumptions (A0)–(A2) and Lemma 2 that for any t >

0, we have

P(|B̂M
l,jk − BM

l0,jk| ≥ t) = P

(∣∣∣∣∣
n∑

i=1
{xilYi,jk − E(xilYi,jk)}

∣∣∣∣∣ ≥ nt

)

= P

⎛⎝∣∣∣∣∣∣
∑

l′∈M

n∑
i=1

{xilxil′ − E(xilxil′)}Bl′0,jk +
n∑

i=1
xilEi,jk

∣∣∣∣∣∣ ≥ nt

⎞⎠
≤

∑
l′∈M

P

(∣∣∣∣∣
n∑

i=1
{xilxil′ − E(xilxil′)}

∣∣∣∣∣ ≥ nt
b(s0 + 1)

)

+ P

( n∑
i=1

|xilEi,jk| ≥ nt
(s0 + 1)

)

≤ 2s0 exp

{
− nt2b−2(s0 + 1)−2

2(2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1t)

}

+ 2 exp

{
− nt2(s0 + 1)−2

2(2C2
2eC2 C3 + C−1

2 (s0 + 1)−1t)

}
.

For every l ∈ M, we have

P(‖B̂M
l ‖op ≤ γn) ≤ P(‖B̂M

l − BM
l0 ‖op ≥ (pq)1/2(1 − α)C1n−κ )

≤ P(‖B̂M
l − BM

l0 ‖F ≥ (pq)1/2(1 − α)C1n−κ )

= P

⎛⎝∑
j,k

|B̂M
l,jk − BM

l0,jk|2 ≥ pq{(1 − α)C1n−κ }2

⎞⎠
≤

∑
j,k

P(|B̂M
l,jk − BM

l0,jk| ≥ (1 − α)C1n−κ )

≤ 2pq

(
s0 exp

{
− n1−2κ [(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1(1 − α)C1n−κ }

}

+ exp

{
− n1−2κ [(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 (s0 + 1)−1(1 − α)C1n−κ }

})

≤ 2pq

(
s0 exp

{
− n1−2κ [(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1(1 − α)C1}

}

+ exp

{
− n1−2κ [(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 (s0 + 1)−1(1 − α)C1}

})
.

Let c1 = 2pq(s0 + 1),

c2 = [(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1(1 − α)C1}
, and

c3 = [(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2 C3 + C−1

2 (s0 + 1)−1(1 − α)C1}
.

We have P(|̂BM
l | ≤ γn) ≤ 2pq(s0 + 1) exp(−c0n1−2κ ), where c0 =

min{c2, c3}. By Assumption (A5), one has

P(M ⊆ M̂γn) = P

⎛⎝ ⋂
l∈M

{|̂BM
l | > γn}

⎞⎠
= 1 − P

⎛⎝ ⋃
l∈M

{|̂BM
l | ≤ γn}

⎞⎠ ≥ 1 −
∑

l∈M
P(|̂BM

l | ≤ γn)

≥ 1 − s0c1 exp(−c0n1−2κ ) = 1 − 2pq(s0 + 1)s0 exp(−c0n1−2κ ) → 1.

This completes the proof of Theorem 1.

Proof of Theorem 2. The proof consists of two steps. In Step 1, we will
show that P(M̂γn ⊆ Mo) → 1, where Mo = {1 ≤ l ≤ sn :
‖BM

l0 ‖op ≥ γn/2}. It follows from the definition of M̂γn that we have

P(M̂γn ⊆ Mo) ≥ P

⎛⎝ ⋂
1≤l≤sn

{‖B̂M
l − BM

l0 ‖op ≤ γn/2}
⎞⎠ .

Moreover, we have

P

⎛⎝ ⋂
1≤l≤sn

{‖B̂M
l − BM

l0 ‖op ≤ γn/2}
⎞⎠

= 1 − P

⎛⎝ ⋃
1≤l≤sn

{‖B̂M
l − BM

l0 ‖op ≥ γn/2}
⎞⎠

≥ 1 −
∑

1≤l≤sn

P(‖B̂M
l − BM

l0 ‖op ≥ γn/2)

≥ 1 −
∑

1≤l≤sn

P(‖B̂M
l − BM

l0 ‖F ≥ γn/2)

≥ 1 −
∑

1≤l≤sn

∑
j,k

P(|B̂M
l,jk − BM

l0,jk| ≥ C1n−κ/2)

≥ 1 − 2snpq
[

s0 exp

{
− α2C2

1b−2(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1αC12−1)

}

+ exp

{
− α2C2

1(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 (s0 + 1)−1αC12−1n−κ )

}]

≥ 1 − 2snpq

[
s0 exp

{
− α2C2

1b−2(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1αC12−1)

}

+ exp

{
− α2C2

1(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 (s0 + 1)−1αC12−1)

}]

= 1 − 2pq exp(C4nξ )

[
s0 exp

{
− α2C2

1b−2(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 b−1(s0 + 1)−1αC12−1)

}

+ exp

{
− α2C2

1(s0 + 1)−22−2n1−2κ

2(2C2
2eC2 C3 + C−1

2 (s0 + 1)−1αC12−1)

}]
.

By Assumptions (A3) and (A5), one has P(
⋂

1≤l≤sn {‖B̂M
l − BM

l0 ‖op ≤
γn/2}) ≥ 1−c4 exp(−c5n1−2κ ) for some constants c4 > 0 and c5 > 0.
Therefore, we have P(M̂γn ⊆ Mo) → 1 by Assumption (A1).
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In Step 2, we will show that |Mo| = O(n2κ+τ ). Define M1 = {1 ≤
l ≤ sn : ‖BM

l0 ‖2
F ≥ γ 2

n /4}. As ‖BM
l0 ‖op ≤ ‖BM

l0 ‖F , we have Mo ⊆ M1.
By the definition of M1, we have

|M1|γ 2
n /4 ≤

sn∑
l=1

‖BM
l0 ‖2

F

=
∑
j,k

sn∑
l=1

(BM
l0,jk)

2 =
∑
j,k

sn∑
l=1

{E(xilYi,jk)}2

=
∑
j,k

‖E(xi ∗ Yi,jk)‖2.

Define B0,jk = (B10,jk, . . . , Bs0,jk)
T, we can write Yi,jk = xT

i B0,jk+Ei,jk.
Multiplying xi on both sides and taking expectations yield �xB0,jk =
E(xi ∗ Yi,jk). Therefore, we have

|M1|γ 2
n /4 ≤

∑
j,k

‖�xB0,jk‖2 ≤ λmax(�x)
∑
j,k

BT
0,jkB0,jk

= λmax(�x)
∑
j,k

{var(Yi,jk) − var(Yi,jk|xi)} ≤ pqλmax(�x).

By Assumption A4, we have |M1| ≤ 4pqλmax(�x)γ
−2
n = O(n2κ+τ ),

which implies that |M0| ≤ |M1| = O(n2κ+τ ).
Combining the results of above two steps leads to

P(|M̂γn | = O(n2κ+τ )) ≥ P(M̂γn ⊆ M0) → 1.

This completes the proof of Theorem 2.

Theorems 3–5 are theoretical results for our estimation procedure,
and we assume M̂ = M and |M̂| is fixed.

Proof of Theorem 3. Without loss of generality, for the proof of The-
orem 3, we assume M̂ = M = {1, . . . , s} with s fixed for notation
simplicity. We first prove Theorem 3 (i). We define

L(�1, . . . , �s) = λ−2{Q(λ�1 + B10, . . . , λ�s + Bs0)

− Q(B10, . . . , Bs0)}

= 2−1
s∑

l=1

s∑
l′=1

n−1
( n∑

i=1
xilxil′

)
tr(�T

l �l′)

− λ−1 ∑
l

tr

(
�T

l n−1
n∑

i=1
xilEi

)
+ λ−1 ∑

l
{‖Bl0 + λ�l‖∗ − ‖Bl0‖∗},

where �l = λ−1(Bl − Bl0) for l = 1, . . . , s. Therefore, we have

(�̂1, . . . , �̂s) = arg min{L(�1, . . . , �s)},

where �̂l = λ−1(B̂l − Bl0) for l = 1, . . . , s.
When λ → 0, n1/2λ → ∞, we have

n−1
n∑

i=1
xilxil′ →p �M,ll′ , for every 1 ≤ l, l′ ≤ s,

where �M,ll′ is the (l, l′)th element of �M for 1 ≤ l, l′ ≤ s. By the
central limit theorem, n−1/2 ∑n

i=1 xilEi converges in distribution to a
normally distributed matrix Dl with mean 0 and var(vec(Dl)) = mll�e
for every 1 ≤ l ≤ s. Hence,

λ−1n−1
n∑

i=1
xilEi = λ−1n−1/2Op(1) →p 0, for every 1 ≤ l ≤ s.

For every l = 1, . . . , s, recall that the SVD of Bl0 is Ul0�l0VT
l0, and U⊥

l0
and V⊥

l0 denote orthogonal complements of Ul0 and Vl0, respectively.
By Lemma 3, we have

λ−1 ∑
j

{‖Bl0 + λ�l‖∗ − ‖Bl0‖∗} →
s∑

l=1
tr(UT

l0�lVl0)

+
s∑

l=1
‖(U⊥

l0)T�lV⊥
l0‖∗.

Consequently, L(�1, . . . , �s) →p L0(�1, . . . , �s) for each �l ∈
Gl, l = 1, . . . , s with Gls compact sets in R

p×q, where

L0(�1, . . . , �s) = 2−1
s∑

l=1

s∑
l′=1

�M,ll′ tr(�T
l �l′)

+
s∑

l=1
tr(UT

l0�lVl0)

+
s∑

l=1
‖(U⊥

l0)T�lV⊥
l0‖∗

One can see that L0(�1, . . . , �s) is convex, hence, it has unique mini-
mum value point (�10, . . . , �s0). As L(�1, . . . , �s) is also convex, by
Knight and Fu (2000) we have �̂l →p �l0, l = 1, . . . , s. This implies
that λ−1(B̂l − Bl0) = Op(1), l = 1, . . . , s.

We second prove Theorem 3 (ii). We define

f (�1, . . . , �s) = n(Q(n−1/2�l + Bl0) − Q(Bl0))

= 2−1
s∑

l=1

s∑
l′=1

n−1
( n∑

i=1
xilxil′

)
tr(�T

l �l′)

−
∑

l
tr

(
�T

l n−1/2
n∑

i=1
xil ∗ Ei

)
+ λn

∑
l

{‖Bl0 + n−1/2�l‖∗ − ‖Bl0‖∗},

where �l = n1/2(Bl − Bl0) for l = 1, . . . , s. Let (�̂1, . . . , �̂s) =
arg min{f (�1, . . . , �s)}, then we have that �̂l = n1/2(B̂l − Bl0), l =
1, . . . , s. Under the Assumption (A6), and n1/2λ → ρ, we have
f (�1, . . . , �s) →d f 0(�1, . . . , �s), and

f 0(�1, . . . , �s) = 2−1
s∑

l=1

s∑
l′=1

�M,ll′ tr(�T
l �l′)

−
s∑

l=1
tr(�T

l Dl)

+ ρ

⎧⎨⎩
s∑

l=1
tr(UT

l0�lVl0) +
s∑

l=1
‖(U⊥

l0)T�lV⊥
l0‖∗

⎫⎬⎭ ,

where Dl is a random matrix, and vec(Dl) is normally distributed. One
can see that f 0(�1, . . . , �s) is convex, hence, it has unique minimum
value point (�10, . . . , �s0) with �l0 = Op(1) for l = 1, . . . , s.
Consequently, by Knight and Fu (2000), we have �̂l →d �l0 for l =
1, . . . , s, which indicates that n1/2(B̂l − Bl0) = Op(1) for l = 1, . . . , s.
This completes the proof of Theorem 3.

Proof of Theorem 4. Without loss of generality, for the proof of The-
orem 4, we assume M̂ = M = {1, . . . , s} with s fixed for notation
simplicity. It follows from Theorem 3(i) that λ−1(B̂l − Bl0) = Op(1)
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holds for every 1 ≤ l ≤ s. Since the rank function is lower semicontin-
uous, P(rank(B̂l) ≥ rank(Bl0)) → 1. We will then prove rank(B̂l) =
rank(Bl0) for every 1 ≤ l ≤ s with probability tending to one.

Denote the SVD of B̂l as B̂l = Ûl�̂lV̂T
l , where Ûl ∈ R

p×p and
V̂l ∈ R

q×q. Let Û⊥
l be the submatrix of Ûl without the first rl columns,

and V̂⊥
l is the submatrix of V̂l without the first rl columns, where rl is

the rank of Bl0. Denote the rank of B̂l by r̂l. We prove the theorem by
two steps.

Step 1. In this step, we will show if∥∥∥∥∥∥(Û⊥
l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ V̂⊥
l

∥∥∥∥∥∥
op

< λ,

then r̂l = rl. We will prove the statement by contradiction.
Let Ûl1 be the submatrix of Ûl corresponding to the first r̂l columns,

and V̂l1 be the submatrix of V̂l corresponding to the first r̂l columns. If
r̂l > rl, we can write Û⊥

l , V̂⊥
l as (Û⊥

l1, Û⊥
l2) and (V̂⊥

l1, V̂⊥
l2), respectively,

where Û⊥
l1 ∈ R

p×(r̂l−rl), Û⊥
l2 ∈ R

p×(p−r̂l), V̂⊥
l1 ∈ R

q×(r̂l−rl), and
V̂⊥

l2 ∈ R
p×(q−r̂l). By the definition of B̂l, we have

B̂l = arg min
Bl

1
2n

n∑
i=1

∥∥∥∥∥∥Yi −
∑
l′ �=l

xil′ B̂l − xilBl

∥∥∥∥∥∥
2

F

+ λ‖Bl‖∗.

Hence, by Lemma 3, we have⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ + λ(Ûl1V̂T
l1 + Nl) = 0,

with ÛT
l1Nl = 0, NlV̂l1 = 0 and ‖Nl‖op ≤ 1. Furthermore, we have

(Û⊥
l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ V̂⊥
l

= −λ(Û⊥
l )T(Ûl1V̂T

l1 + Nl)V̂⊥
l

= −λ(Û⊥
l1, Û⊥

l2)T{Û⊥
l1(V̂⊥

l1)T + Nl}(V̂⊥
l1, V̂⊥

l2)

= −λ

(
I(r̂l−rl)×(r̂l−rl) 0

0 (Û⊥
l2)TNlV̂⊥

l2

)
.

From the above formula, it follows that we have
‖(Û⊥

l )T{n−1 ∑n
i=1 xil[

∑s
l′=1 xil′ ∗ (B̂l′ − Bl′0) − Ei]}V̂⊥

l ‖op = λ as
long as r̂l > rl. Consequently,
if ‖(Û⊥

l )T{n−1 ∑n
i=1 xil[

∑s
l′=1 xil′ ∗ (B̂l′ −Bl′0)−Ei]}V̂⊥

l ‖op < λ, we
have r̂l = rl.

Step 2. In this step, we will prove that with probability tending to 1,
one has∥∥∥∥∥∥(Û⊥

l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ V̂⊥
l

∥∥∥∥∥∥
op

< λ.

We have

(Û⊥
l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ V̂⊥
l

= (Û⊥
l )T

⎧⎨⎩λ

s∑
l′=1

(�M,ll′ + o(1))�̂l − Op(n−1/2)

⎫⎬⎭ V̂⊥
l

= λ(Û⊥
l )T

s∑
l′=1

�M,ll′�̂lV̂⊥
l + op(λ).

Since B̂l is a consistent estimator of Bl0, we have Û⊥
l (Û⊥

l )T =
U⊥

l0(U⊥
l0)T +op(1) and V̂⊥

l (V̂⊥
l )T = V⊥

l0(V⊥
l0)T +op(1). Consequently,

we have∥∥∥∥∥∥(Û⊥
l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭ V̂⊥
l

∥∥∥∥∥∥
op

=
∥∥∥∥∥∥Û⊥

l (Û⊥
l )T

⎧⎨⎩n−1
n∑

i=1
xil

⎡⎣ s∑
l′=1

xil′ ∗ (B̂l′ − Bl′0) − Ei

⎤⎦⎫⎬⎭
× V̂⊥

l (V̂⊥
l )T

∥∥∥∥∥
op

= λ

∥∥∥∥∥∥Û⊥
l0(Û⊥

l0)T

⎛⎝ s∑
l′=1

�M,ll′�̂l′

⎞⎠ V̂⊥
l0(V̂⊥

l0)T

∥∥∥∥∥∥
op

+ op(λ)

= λ

∥∥∥∥∥∥U⊥
l0(U⊥

l0)T

⎛⎝ s∑
l′=1

�M,ll′�l′0

⎞⎠V⊥
l0(V⊥

l0)T(1 + op(1))

∥∥∥∥∥∥
op

+ op(λ)

= λ‖U⊥
l0L(V⊥

l0)T‖op + op(λ) = λ{‖l‖op + op(1)}.

As ‖l‖op < 1, we have ‖(Û⊥
l )T{n−1 ∑n

i=1 xil[
∑s

l′=1 xil′ ∗ (B̂l′ −
Bl′0)− Ei]}V̂⊥

l ‖op < λ. with probability 1. This completes the proof of
Theorem 4.

Proof of Theorem 5. Without loss of generality, for the proof of The-
orem 5, we assume M̂ = M = {1, . . . , s} with s fixed for notation
simplicity. To prove Theorem 5, we first introduce some notations and
definitions used in Negahban et al. (2012). Given a pair of subspaces
M ⊆ M, a norm based regularizer J is decomposable with respect to
(M, M⊥

) if

J(θ + γ ) = J(θ) + J(γ ) for all θ ∈ M and γ ∈ M⊥,

where M⊥ is the orthogonal complement of the space M defined as
M⊥ = {v|〈u, v〉 = 0 for all u ∈ M}.

We define the projection operator

�M(u) = argminv∈M‖u − v‖.

Similarly, we can define the projections �M⊥ , �M, and �M⊥ .
We then introduce the definition of the subspace compatibility

constant. For the subspace M, the subspace compatibility constant with
respect to the pair (J, || · ||) is given by

ψ(M) := sup
u∈M\{0}

J(u)

‖u‖ .

We introduce the definition of restricted strong convexity. For a loss
function L(θ), define δL(�, θ) = L(θ +�)−L(θ)−〈∇L(θ), �〉, where
∇L(θ) = dL(θ)

dθ
. The loss function satisfies a restricted strong convexity

condition with curvature κL > 0 and tolerance function τL if

δL(�, θ) ≥ κL‖�‖2 − τ2
L (θ) for all � ∈ C(M, M⊥, θ),

where C(M, M⊥, θ) = {�|J(�M⊥) ≤ 3J(�M) + 4J(θM⊥)}.
Now we begin to prove Theorem 5. We need to use the result in

Theorem 1 of Negahban et al. (2012). We first check the conditions of
the theorem under our context.

Recall that B = [B1, . . . , Bs] ∈ R
p×qs, and rl = rank(Bl0). Let us

consider the class of matrices �l ∈ R
p×q that have rank rl ≤ min{p, q}

and we define � = [�1, . . . , �s] ∈ R
p×qs. Let row(�l) ⊆ R

p and
col(�l) ⊆ R

q denote its row space and column space, respectively.
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Let Ul and Vl be a given pair of rl-dimensional subspaces Ul ⊆ R
p

and Vl ⊆ R
q. Define U = [U1, . . . , Ul] and V = [V1, . . . , Vl]. For a

given pair (U, V), we can define the subspaces M(U, V), M(U, V), and
M⊥

(U, V) of Rp×qs given by

M(U, V) = {� ∈ R
p×qs|row(�l) ⊆ Vl and col(�l) ⊆ Ul

for 1 ≤ l ≤ s},

M(U, V) = {� ∈ R
p×qs|row(�l) ⊆ Vl or col(�l) ⊆ Ul

for 1 ≤ l ≤ s},

and

M⊥
(U, V) = {� ∈ R

p×qs|row(�l) ⊆ V⊥
l and col(�l) ⊆ U⊥

l
for 1 ≤ l ≤ s},

where M⊥
(U, V) is the orthogonal complement of the space M(U, V).

For simplicity, we will use M, M, and M⊥ to denote M(U, V), M(U, V),
and M⊥

(U, V), respectively, in the following proof.
Define J(B) = ∑s

l=1 ‖Bl‖∗, and we can easily see J(B) is a norm.
It is easy to see that the norm J is decomposable with respect to the
subspace pair (M, M⊥

), where M ⊆ M. Therefore, the regularizer J
satisfies Condition (G1) in Negahban et al. (2012).

Under condition (A9), it is easy to see the loss function R is convex
and differentiable, and satisfies the restricted strong convexity with
curvature κL = CL and tolerance τL = 0, and therefore the Condition
(G2) in Negahban et al. (2012) holds.

After we check the conditions, we need to calculate ψ(M) and
R({B0}M⊥). It is easy to see R({B0}M⊥) = 0. For ψ(M), one has

ψ(M) = sup
u∈M\{0}

J(u)

‖u‖ = sup
Bl∈M\{0}

∑s
l=1 ‖Bl‖∗
‖B‖F

≤
∑s

l=1
√

2rl‖Bl‖F
‖B‖F

≤
√∑s

l=1(
√

2rl)2
√∑s

l=1 ‖Bl‖2
F

‖B‖F
≤
√√√√2

s∑
l=1

rl.

Therefore, by Theorem 1 in Negahban et al. (2012), when λ ≥
2J∗(∇R(B0)), one has ‖B̂ − B0‖2

F ≤ C(
∑s

l=1 rl)λ
2C−2

L for some
constant C > 0.

The term J∗(∇R(B0)) is actually a random quantity, and our next
step is to derive the order of this term.

Define J∗(·) as the dual norm of J(·). For any matrix A =
[A1, . . . , As] ∈ R

p×qs, we will first prove the following result

J∗(A) = sup
J(B)≤1

〈A, B〉 = max
1≤l≤s

‖Al‖op. (B.1)

To prove (B.1), we first show that J∗(A) ≥ max1≤l≤s ‖Al‖op. Let
B(l) = [B(l)

1 , . . . , B(l)
s ] with B(l)

k = 0 for any k �= l and ‖B(l)
l ‖ ≤ 1. One

has

J∗(A) ≥ sup
‖B(l)‖∗≤1

〈A, B(l)〉 = sup
‖B(l)

l ‖∗≤1
〈Al, B(l)

l 〉 = ‖Al‖op.

It is easy to see J∗(A) ≥ ‖Al‖op holds for any 1 ≤ l ≤ s. Consequently,
one has J∗(A) ≥ max1≤l≤s ‖Al‖op.

Our next step is to show that J∗(A) ≤ max1≤l≤s ‖Al‖op. Define the
SVD of Bl = Ul�lVT

l . One has

J∗(A) = sup
J(B)≤1

⎧⎨⎩
s∑

l=1
〈Ul�lVT

l , Al〉
⎫⎬⎭

= sup
J(B)≤1

⎧⎨⎩
s∑

l=1
Tr(Vl�lUT

l Al)

⎫⎬⎭ = sup
J(B)≤1

⎧⎨⎩
s∑

l=1
Tr(�lUT

l AlVl)

⎫⎬⎭

= sup
J(B)≤1

⎧⎨⎩
s∑

l=1
〈UT

l AlVl, �l〉
⎫⎬⎭

= sup
J(B)≤1

⎧⎨⎩
s∑

l=1

min{p,q}∑
k=1

θlk(UT
l AlVl)kk

⎫⎬⎭
= sup

J(B)≤1

⎧⎨⎩
s∑

l=1

min{p,q}∑
k=1

θlk((Ul)(k))
TAl(Vl)(k)

⎫⎬⎭
≤ sup

J(B)≤1

⎧⎨⎩
s∑

l=1

min{p,q}∑
k=1

θlk‖Al‖op

⎫⎬⎭
≤ sup

J(B)≤1

⎧⎨⎩
s∑

l=1

min{p,q}∑
k=1

θlk max
1≤l≤s

‖Al‖op

⎫⎬⎭ ≤ max
1≤l≤s

‖Al‖op,

where θlk is the kth diagonal element of the diagonal matrix �l,
(UT

l AlVl)kk is the kkth element of the matrix UT
l AlVl, (Ul)(k), and

(Vl)(k) are the kth column of the matrices Ul and Vl, respectively.
Combining the two inequalities, we show that J∗(A) =

max1≤l≤s ‖Al‖op.
Next we need to calculate J∗(∇R(B0)), where ∇R(B0) =

[D1, . . . , Ds] ∈ R
p×qs with Dl = −2n−1 ∑n

i=1 xil ∗ Ei. We first need
to calculate ‖Dl‖op. We know that operator norm is the dual norm of
the trace norm.

From the definition of J∗(·), one has

‖Dl‖op = 2 sup
‖A‖∗≤1

〈
A, n−1

n∑
i=1

xil ∗ Ei]
〉

.

To obtain a bound for ‖Dl‖op, we use similar technique as the one
used in Raskutti, Yuan, and Chen (2019). Let Wi be a p × q random
matrix with each entry iid standard normal. Assuming condition (A11)
and by Lemma 4, conditioning on xil, we get

P

{
sup

‖A‖∗≤1

〈
A, n−1

n∑
i=1

xil ∗ Ei

〉
> t

}

≤ P

{
sup

‖A‖∗≤1

〈
A, n−1

n∑
i=1

xil ∗ Wi

〉
>

t
CU

}
,

since �e � C2
U Ipq×pq.

As sup‖A‖∗≤1〈A, n−1 ∑n
i=1 xil ∗ Wi〉 = ‖n−1 ∑n

i=1 xil ∗ Wi‖op,
conditioning on Wi, each entry of the matrix n−1 ∑n

i=1 xil ∗ Wi is iid

N(0,
‖Xl‖2

op
n2 ), where Xl = (x1l, . . . , xnl)

T. Since
‖Xl‖2

op
σ 2

l
is a χ2 random

variable with n degrees of freedom, where σ 2
l = (�M)ll, one has

P

{‖Xl‖2
op

nσ 2
l

≥ 4

}
≤ exp(−n)

using the tail bounds of χ2. Then combining with the standard
random matrix theory, we know that ‖n−1 ∑n

i=1 xil ∗ Wi‖op ≤
2n−1/2σl(p1/2+q1/2) with probability at least 1−c∗1 exp{−c∗2(p+q)}−
exp(−n) where c∗1 and c∗2 are some positive constants. Therefore, under
conditions (A10) and (A12), there exist some positive constants c1, c2,
and c3 such that max1≤l≤s ‖Dl‖op ≤ 4CU n−1/2(max1≤l≤s σl)(p1/2 +
q1/2) holds with probability at least 1−c1 exp{−c2(p+q)}−c3 exp(−n).
Thus, when λ ≥ 4CU C1/2

M n−1/2(p1/2 + q1/2), λ ≥ J∗(∇R(B0)) with
probability at least 1 − c1 exp{−c2(p + q)} − c3 exp(−n).

Therefore, with probability 1 − c1 exp{−c2(p + q)} − c3 exp(−n),
one has ‖B̂ − B0‖2

F ≤ C(
∑

l∈M rl)λ
2C−2

L for some positive constant
C. This completes the proof of Theorem 5.
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Proof of Theorem 6. To prove the theorem, we consider the event
{M ⊆ M̂} as it holds with probability goes to 1. We will derive
the nonasymptotic error bound under the event {M ⊆ M̂}. Recall
that rl = rank(Bl0), one has rl = 0 for l /∈ M. Let us consider
the class of matrices �l ∈ R

p×q that have rank rl ≤ min{p, q} and
we define � = [�l, l ∈ M̂] ∈ R

p×q|M̂|. Let row(�l) ⊆ R
p and

col(�l) ⊆ R
q denote its row space and column space, respectively.

Let Ul and Vl be a given pair of rl-dimensional subspaces Ul ⊆ R
p

and Vl ⊆ R
q, respectively. Define U = [Ul, l ∈ M̂] ∈ R

p×q|M̂|
and V = [Vl, l ∈ M̂] ∈ R

p×q|M̂|. For a given pair (U, V), we can

define the subspaces M̂(U, V), M̂(U, V) ,and M̂
⊥

(U, V) of Rp×q|M̂|
as follows

M̂(U, V) = {� ∈ R
p×q|M̂||row(�l) ⊆ Vl and col(�l) ⊆ Ul

for l ∈ M̂},

M̂(U, V) = {� ∈ R
p×q|M̂||row(�l) ⊆ Vl or col(�l) ⊆ Ul

for l ∈ M̂},

M̂
⊥

(U, V) = {� ∈ R
p×q|M̂||row(�l) ⊆ V⊥

l and col(�l) ⊆ U⊥
l

for l ∈ M̂},

where M̂
⊥

(U, V) is the orthogonal complement of the space M̂(U, V).

For simplicity, we will use M̂, M̂, and M̂
⊥

to denote M̂(U, V), M̂(U, V),

and M̂
⊥

(U, V), respectively.

For the norm J(BM̂) = ∑
l∈M̂ ‖Bl‖∗, it is easy to see that the

norm J is decomposable with respect to the subspace pair (M̂, M̂
⊥

),
where M̂ ⊆ M̂. Therefore, the regularizer J satisfies Condition (G1) in
Negahban et al. (2012).

We need to calculate ψ(M̂) and R({BM̂
0 }

M̂
⊥). It is easy to see

R({BM̂
0 }

M̂
⊥) = 0. For ψ(M̂), since rl = 0 holds for l /∈ M, one has

ψ(M̂) = sup
u∈M̂\{0}

J(u)

‖u‖ = sup
Bl∈M̂\{0}

∑
l∈M̂ ‖Bl‖∗
‖BM̂‖F

≤
∑

l∈M
√

2rl‖Bl‖F√∑
l∈M̂ ‖Bl‖2

F

≤
√∑

l∈M(
√

2rl)2
√∑

l∈M ‖Bl‖2
F√∑

l∈M ‖Bl‖2
F

≤
√

2
∑

l∈M
rl.

For any � ∈ R
p×q|M̂|, we define F : Rp×q|M̂| → R as

F(�) := R(BM̂
0 + �) − R(BM̂

0 ) + λ{J(BM̂
0 + �) − J(BM̂

0 )}.

We will derive a lower bound on F(�). In particular, we have

F(�) = R(BM̂
0 + �) − R(BM̂

0 ) + λ{J(BM̂
0 + �) − J(BM̂

0 )}
≥ 〈∇R(BM̂

0 ), �〉 + ιL‖�‖2 + λ{J(BM̂
0 + �) − J(BM̂

0 )}
≥ 〈∇R(BM̂

0 ), �〉 + ιL‖�‖2 + λ{J(�
M̂

⊥) − J(�M̂)

−2J((BM̂
0 )M̂⊥)},

where the first inequality follows from condition (A13) and the second
inequality follows from Lemma 3 in Negahban et al. (2012) by applying

to the pair (M̂, M̂
⊥

).

By the Cauchy–Schwarz inequality applied to the regularizer J and
its dual J∗, we have |〈∇R(BM̂

0 ), �〉| ≤ J∗(∇R(BM̂
0 ))J(�). Since

λ ≥ 2J∗(∇R(BM̂
0 )) holds by assumption, one has |〈∇R(BM̂

0 ), �〉| ≤
0.5λJ(�) ≤ 0.5λ(J(�

M̂
⊥)+J(�M̂)), where the second inequality holds

due to the triangle inequality. Therefore, we have

F(�) ≥ − λ

2
{J(�

M̂
⊥) + J(�M̂)} + ιL‖�‖2

+ λ{J(�
M̂

⊥) − J(�M̂) − 2J((BM̂
0 )M̂⊥)}

= ιL‖�‖2 + λ{1
2

J(�
M̂

⊥) − 3
2

J(�M̂) − 2J((BM̂
0 )M̂⊥)}

≥ ιL‖�‖2 − 1
2
λ{3J(�M̂) + 4J((BM̂

0 )M̂⊥)}.

By the subspace compatibility, we have J(�M̂) ≤ ψ(M̂)‖�M̂‖. As the

projection is nonexpansive and 0 ∈ M̂, one has ‖�M̂‖ ≤ ‖�‖, and

thus J(�M̂) ≤ ψ(M̂)‖�‖. Substituting it into the previous inequality,

and noticing that J((BM̂
0 )M̂⊥) = 0, we obtain F(�) ≥ ιL‖�‖2 −

3
2 λψ(M̂)‖�‖. The right-hand side is a quadratic form of �, as long
as ‖�‖2 > 9λ2

4ι2L
ψ2(M̂), one has F(�) > 0. By Lemma 4 in Negahban

et al. (2012), we have ‖B̂M̂ − BM̂
0 ‖2

F ≤ C(
∑

l∈M rl)λ
2ι−2

L for some
positive constant C.

Next we need to calculate J∗(∇R(BM̂
0 )), where ∇R(BM̂

0 ) =
[Dl, l ∈ M̂] ∈ R

p×q|M̂| with Dl = −2n−1 ∑n
i=1 xil ∗ Ei.

By similar argument as the one in the proof of Theorem 5, one
has J∗(∇R(BM̂

0 )) = maxl∈M̂ ‖Dl‖op. To calculate ‖Dl‖op, by
the same argument as the one in proof of Theorem 5, one has
‖n−1 ∑n

i=1 xil ∗ Wi‖op ≤ 2n−1/2σl(p1/2 + q1/2) with probability
at least 1 − c∗1 exp{−c∗2(p + q)} − exp(−n), where c∗1 and c∗2
are some positive constants. Therefore, one has J∗(∇R(BM̂

0 )) =
maxl∈M̂ ‖Dl‖op ≤ 4n−1/2(maxl∈M̂ σl)(p1/2+q1/2) with probability
at least 1 − |M̂|c∗1 exp{−c∗2(p + q)} − |M̂| exp(−n). By condition
(A4), one has maxl∈M̂ σl ≤ λmax(�x) ≤ C5nτ . By the proof
of Theorem 2, one has |M̂| = O(n2κ+τ ) with probability at least
1 − c∗4 exp(−c∗5n1−2κ ) for some positive constants c∗4 and c∗5. Thus,
when λ ≥ 4C5nτ−1/2(p1/2 + q1/2), one has λ ≥ J∗(∇R(BM̂

0 )) with
probability at least 1−c1n2κ+τ exp{−c2(p+q)}−c3n2κ+τ exp(−n)−
c∗4 exp(−c∗5n1−2κ ) for some positive constants c1, c2, c3, c∗4, and c∗5.

By the proof of Theorem 1, the event {M ⊆ M̂} holds with proba-
bility goes to 1. In particular, P({M ⊆ M̂}) ≥ 1−c∗∗

4 exp(−c∗∗
5 n1−2κ )

for some positive constants c∗∗
4 and c∗∗

5 . Therefore, there exists some
positive constants c1, c2, c3, c4, and c5 such that with probability 1 −
c1n2κ+τ exp{−c2(p+q)}−c3n2κ+τ exp(−n)−c4 exp(−c5n1−2κ ), one
has ‖B̂M̂ − BM̂

0 ‖2
F ≤ C(

∑
l∈M rl)λ

2ι−2
L for some positive constant

C. When Assumptions (A5) and (A14) hold, with probability goes to
1, one has ‖B̂M̂ − BM̂

0 ‖2
F ≤ C(

∑
l∈M rl)λ

2ι−2
L . This completes the

proof of Theorem 6.

Appendix C: Interpretations of �l

In this section, we include some detailed interpretations of the defini-
tion �l. Without loss of generality, we assume M̂ = M = {1, . . . , s}
with s fixed for notation simplicity. We first give a necessary condition
for rank consistency presented in Theorem 4. By Proposition 18 of
Bach (2008), for any 1 ≤ l ≤ s, we have (U⊥

l0)T�̂lV⊥
l0 = op(1) if

rank(B̂l) = rank(Bl0) = rl. Since �̂l →p �l0 and �l0 is a nonrandom
quantity, we have (U⊥

l0)T�l0V⊥
l0 = 0. Recall that {�l0 : 1 ≤ l ≤ s} is
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the minimizer of l0(�1, . . . , �s), and thus {�l0 : 1 ≤ l ≤ s} is the
solution of the optimal problem

min l0(�) subject to (U⊥
l0)T�lV⊥

l0 = 0 for every 1 ≤ l ≤ s. (C.1)

Using Lagrange multiplier method, consider the minimizer of

L(�, 1, . . . , s) = 2−1vec(�)T�Mvec(�) +
s∑

l=1
tr(UT

l0�lVl0)

+
s∑

l=1
tr(T

l (U⊥
l0)T�lV⊥

l0),

where {l, l = 1, . . . , s} are Lagrange multipliers. Thus, for l = 1, . . . , s,
{�l0 : 1 ≤ l ≤ s} satisfies

∂L
∂�l

=
s∑

l′=1
�M,ll′�l0 + Ul0VT

l0 + U⊥
l0l(V⊥

l0)T = 0,

∂L
∂l

= (U⊥
l0)T�l0V⊥

l0 = 0.

Recall that A = �M ⊗ Ipq×pq, Kl = V⊥
l0 ⊗ U⊥

l0, and dl =
−vec(Ul0VT

l0) for l = 1, . . . , s, where ⊗ denotes the Kronecker product.
Let d = (dT

1, . . . , dT
s )T, K = diag{K1, . . . , Ks}, l ∈ R

(p−rl)×(q−rl) for
l = 1, . . . , s such that

vec() = (vec(1)T, . . . , vec(s)T)T = (KTA−1K)−1KTA−1d.

Then the Lagrange equation can be written as(
A K

KT 0

)(
vec(�)

vec()

)
=
(

d
0

)
.

It is easy to show that

vec(�) = A−1(d − Kvec()) and

vec() = (KTA−1K)−1KTA−1d.

From the above calculation, we can see that vec() =
(vec(1)T, . . . , vec(s)T)T is actually the Lagrange multiplier for the
optimization problem (C.1).

Supplementary Materials

Supplementary materials available online include modified algorithm for
our regularized low rank estimation procedure when response and covari-
ates are not centered and additional simulation results.
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