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 Multiscale adaptive regression models for
 neuroimaging data

 Yimei Li, Hongtu Zhu, Dinggang Shen, Weili Lin, John H. Gilmore

 and Joseph G. Ibrahim

 University of North Carolina at Chapel Hill , USA

 [Received May 2009. Final revision November 2010]

 Summary. Neuroimaging studies aim to analyse imaging data with complex spatial patterns in
 a large number of locations (called voxels) on a two-dimensional surface or in a three-dimen-
 sional volume. Conventional analyses of imaging data include two sequential steps: spatially
 smoothing imaging data and then independently fitting a statistical model at each voxel. How-
 ever, conventional analyses suffer from the same amount of smoothing throughout the whole
 image, the arbitrary choice of extent of smoothing and low statistical power in detecting spa-
 tial patterns. We propose a multiscale adaptive regression model to integrate the propagation-
 separation approach with statistical modelling at each voxel for spatial and adaptive analysis of
 neuroimaging data from multiple subjects. The multiscale adaptive regression model has three
 features: being spatial, being hierarchical and being adaptive. We use a multiscale adaptive
 estimation and testing procedure to utilize imaging observations from the neighbouring voxels
 of the current voxel to calculate parameter estimates and test statistics adaptively. Theoreti-
 cally, we establish consistency and asymptotic normality of the adaptive parameter estimates
 and the asymptotic distribution of the adaptive test statistics. Our simulation studies and real
 data analysis confirm that the multiscale adaptive regression model significantly outperforms
 conventional analyses of imaging data.

 Keywords: Kernel; Multiscale adaptive regression; Neuroimaging data; Propagation-
 separation; Smoothing; Sphere; Test statistics

 1. Introduction

 Many large neuroimaging studies have been or are being widely conducted to collect neuro-
 imaging data including anatomical and functional images from multiple subjects to understand
 better the neural development of neuropsychiatric and neurodegenerative disorders and normal
 brains. By using anatomical images, various morphometrical measures of the morphology of
 the cortical and subcortical structures (e.g. the hippocampus) are extracted for understanding
 neuroanatomical differences in brain structure across different populations (Thompson and
 Toga, 2002; Chung et al., 2005). By using diffusion tensor images, various diffusion properties
 (e.g. fractional anisotropy) and fibre tracts are extracted for quantitatively assessing the integ-
 rity of anatomical white matter connectivity in a single subject and across different populations
 (Basser et al , 1994; Zhu et al , 2007b). Functional imaging, including functional magnetic reso-
 nance imaging (FMRI), has been widely used to understand functional integration of different
 brain regions in a single subject and across different populations (Friston, 2007; Huettel et al ,
 2004).
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 Following spatial normalization, imaging observations for each subject are observed in a large
 number of locations (called voxels), that number in the thousands to millions, on a common two-
 dimensional surface or in a common three-dimensional volume. Conventional analyses of high
 dimensional imaging data are often executed in two sequential steps: spatially smoothing the
 imaging data and then independently fitting a statistical model, such as a general linear model, at
 each voxel, which is called a voxelwise method. Most smoothing methods are independent of the
 imaging data and apply the same amount of smoothness throughout the whole image. See, for
 example, Yue et al. (20 1 0) for overviews of smoothing methods that are used in the neuroimaging
 literature. As shown in Polzehl and Spokoiny (2000, 2006), Qiu (2005, 2007) and Tabelow et al.
 (2006, 2008a, b, c), these smoothing methods can be very problematic near the edges of the signifi-
 cant regions. Polzehl and Spokoiny (2000, 2006) proposed a powerful propagation-separation
 (PS) approach to smooth images from a single subject adaptively and spatially. Tabelow et al.
 (2006, 2008a, b,c) used the original PS idea to develop a multiscale adaptive linear model to
 denoise FMRI and diffusion tensor images from a single subject adaptively and spatially.

 The existing voxelwise methods for analysing high dimensional data involve fitting a statistical
 model, such as a linear model, to neuroimaging data from all subjects at each voxel, and then
 generating a statistical parametric map of test statistics and /^-values (Lazar, 2008; Worsley
 et al , 2004). These voxelwise methods have some obvious limitations for the analysis of
 neuroimaging data, which underscore the great need for further methodological development.
 As shown in Hecke et al (2009) and Jones et al (2005), voxelwise methods can suffer from the
 arbitrary choice of smoothing extent in the initial smoothing step and thus dramatically increase
 the number of false positive and false negative results. Furthermore, as pointed out by Worsley
 (2003) and Tabelow et al (2006), voxelwise methods treat all voxels as independent units and do
 not employ the fact that the significant regions of interest have a spatial extent. Neuroimaging
 data, however, are spatially dependent in nature, where we often observe spatially contiguous
 effect regions with rather sharp edges in many neuroimaging studies.

 Spatially modelling neuroimaging data in the three-dimensional volume (or two-dimensional
 surface) represents both computational and theoretical challenges. It is common to use condi-
 tional auto-regressive, Markov random-field and other spatial correlation priors to character-
 ize spatial dependence between spatially connected voxels (Besag, 1986; Banerjee et al , 2004).
 However, calculating the normalizing factor of Markov random fields and estimating spatial
 correlation for a large number of voxels in the three-dimensional volume (or two-dimensional
 surface) are computationally prohibitive (Zhu et al , 2007a; Bowman, 2007). Moreover, it can
 be restrictive to assume a specific type of correlation structure, such as conditional auto-regres-
 sive and Markov random field, for the whole three-dimensional volume (or two-dimensional
 surface).

 The goal of this paper is to develop a multiscale adaptive regression model (MARM) for the
 spatial and adaptive analysis of neuroimaging data. The MARM integrates the PS approach
 and voxelwise methods and thus it is a generalization of the PS approach (Polzehl and Spokoiny,
 2000, 2006) to neuroimaging data from multiple subjects. The MARM has three features: being
 spatial, being hierarchical and being adaptive. It can efficiently combine all observations with
 adaptive weights in the voxels within the sphere of the current voxel to increase the precision of
 parameter estimates and the power of test statistics in detecting subtle changes of brain structure
 and function. Owing to its hierarchical and adaptive nature, the MARM can efficiently learn
 the shape of activation areas, use the adaptive weights to capture shape information and then
 preserve the edges of activation areas.

 The MARM provides a general probability framework for adaptively carrying out statistical
 inference on neuroimaging data obtained from multiple subjects. We establish consistency and
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 Multiscale Adaptive Regression Models 561

 asymptotic normality of the adaptive estimator and the asymptotic distribution of the adaptive
 test statistic for the MARM as the number of subjects (or images) increases to oo. The covariance
 estimate of the adaptive estimator in the MARM has a simple form. Our new theoretical results
 show that, in the MARM, the adaptive weighting idea of the novel PS approach is valid without
 imposing the propagation condition. Our results show that it is critical to choose appropriate
 parameters in constructing adaptive weights in order to have simple asymptotic results to carry
 out statistical inference including hypothesis testing.

 To motivate the methodology proposed, we consider fractional anisotropy (FA) imaging data
 acquired at 2 weeks, year 1 and year 2 from 38 subjects in a neonatal project on early brain
 development, which is discussed in more detail in Section 4. The primary interest here was to
 identify the spatial patterns of white matter maturation. We smoothed FA imaging data with
 two levels of smoothness. Then, at each voxel, we fitted a multivariate linear model with age and
 age2 as covariates and calculated the Wald statistics and their associated /?-values for testing
 an age-dependent effect. Inspecting Figs l(a)-l(c) reveals that the size of significant regions

 Pig. l . Results trorn tne neonatal project on Drain development: (a) bonterroni-correctea - iog10(p) values
 of l/l^(flf,/70) from a selected slice and a selected voxel in the red circle in the ventricle; (b) Bonferroni-
 corrected -log10(p) values of M^(c/,/710) from the same selected slice; (c) Bonferroni-corrected -log10(p)
 values of the Wald test statistics obtained from the Gaussian-kernel-smoothed FA images for the same
 selected slice; (d) longitudinal trajectories of unsmoothed FA values in the red voxel identified in (a);
 (e) estimated ^(dth^0)' (f) estimated /?2(Oio); (9) estimated /33(</,/710); (h) longitudinal trajectories of
 the Gaussian-kernal-smoothed FA values in the red voxel in panel (a); (i)-(k) anatomical images with eight
 labelled regions of interest including the genu , splenium (Sple), internal capsule (IC), external capsule (EC),
 ventricle, grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and corpus callosum body (Body);
 (I) growth patterns from the regions of interest located in the splenium , genu and body of corpus callosum ,
 internal capsule and external capsule for FA
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 and degree of significance that are associated with the age-dependent effect strongly depend on
 the size of smoothness, which agrees with the findings in Jones et al. (2005). We also analysed
 the same FA data set using the MARM and tested the age-dependent effect across all voxels.
 The MARM can preserve the edges of significant regions compared with the results from the
 smoothed images (Figs 1(b) and 1(c)). In contrast, the significant regions based on the smoothed
 images even spread over cerebrospinal fluid areas (Fig. 1(c)), in which FA values should be close
 to 0 and have no age-dependent effect. In Section 4, we shall revisit this data set.

 Section 2 of this paper presents the MARM and establishes the associated theoretical prop-
 erties. We establish consistency and asymptotic normality of the adaptive estimator and the
 asymptotic distribution of the adaptive test statistic for the MARM. In Section 3, we conduct
 simulation studies with the known ground truth to examine the finite sample performance of
 the adaptive estimates and test statistics in the MARM. Section 4 illustrates an application
 of the proposed methods in a real neuroimaging data set. We present concluding remarks in
 Section 5.

 The programs that were used to analyse the data can be obtained from

 http : / /www. blackwellpublishing . com/rss

 2. Multiscale adaptive regression model

 2. 1 . Model formulation

 We consider imaging measurements in the three-dimensional volume (or on the two-dimen-
 sional surface) and clinical variables from n subjects. Without loss of generality, we focus on the
 three-dimensional volume. Let V and d respectively represent a three-dimensional volume and
 a voxel in V, m be an integer and N(V) equal the number of voxels in D. For the /th subject, we
 observe an m x 1 vector of imaging measures Yi(d) at voxel d , which leads to an mN(V) x 1 vec-
 tor of measurements across V , which is denoted by Y i%v = {Yi(d)'de V }, and a p' x 1 vector of
 clinical variables x, . In neuroimaging studies, imaging measurements can include the shape rep-
 resentation of the surfaces of cortical or subcortical structures, FMRI signals, diffusion tensors,
 and so on (Ashburner and Friston, 2000; Thompson and Toga, 2002). Clinical variables often
 include pedigree information, time, demographic characteristics (e.g. age, gender and height)
 and diagnostic status among others.

 Statistically, our primary interest is to build the conditional distribution of Yp = { Y^p : i =
 1, . . . ,n} given X = {x/ : / = 1, . . . i.e. p( Yp|X). For a cross-sectional design, it is natural to
 assume that data from different subjects are independent, i.e.

 P^v'X)=f'p('LV'Xi).
 i= l

 Thus, we only need to specify p(Y/ ,p|X/) for each /. However, the number of voxels in each
 brain region can be more than 500000 voxels and, at each voxel, the dimension of Yi(d) can
 be univariate or multivariate, thus totalling a billion or more data points in an entire study. In
 addition, imaging data Y/ ^> are spatially dependent in nature, and thus, given the large number
 of voxels on each brain structure, it is statistically challenging to model the spatial relationships
 between all pairs of points simultaneously.

 The voxelwise approach essentially assumes that

 MY/,p|Xl-)= n p{y/(d)|x;,e(d)}, (1)
 deV

 where p{Yi(d)'xi, 0(d)} is the marginal density of p(Y^v'Xi) at voxel d and 0(d) = (9' (d), . . . ,
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 0P(d))T is a p x 1 vector in an open subset 0 of Rp, in which p is an integer. Moreover, the
 voxelwise approach makes a strong perfect registration assumption, i.e., after an image warping
 procedure, the location of a voxel in the images of one person is assumed to be in precisely
 the same location as the voxel identified in another person. Owing to possible model misspe-
 cification, p{Yi(d)'Xi,0(d)} is only a 'pseudo'-density function for Yi(d). Model (1) is suffi-
 ciently general to comprise most statistical models including linear models in the neuroimaging
 literature. However, since the voxelwise approach does not account for the spatial nature of
 neuroimaging data, which often shows effects in spatially contiguous regions with rather sharp
 edges, it may lead to a loss of power in detecting statistical significance in the analysis of
 neuroimaging data.

 To utilize the spatial nature of neuroimaging data, the M ARM is developed as follows. In many
 neuroimaging studies, our primary interest is to make statistical inference about 0(d) at each
 voxel deV. Instead of solely using the data in voxel d, it would be more efficient to utilize
 all the data in the neighbouring voxels of d to estimate 0(d). Similarly to standard kernel
 smoothing methods (Qiu, 2005), we consider a spherical neighbourhood of d with a radius
 (or bandwidth) ro, which is denoted by B(d,ro). By assuming spatial independence between
 {Yi(df) : d' e B(d , ro)}, we construct a weighted likelihood to estimate 0(d) , which is denoted by
 pw{Yi(d'):df e B(d,ro)'xi,0(d )}, as follows:

 pyf{Yi(d') : d' e B{d, ro)|x,-, 6(d)} = ft p{Yi(d')'xi,0(d)}M'">' (2)
 d'eB(d,r0)

 where u(d , df ; h) characterizes the similarity between the data in voxels d' and d with uj(d, d;h) =
 l.lfu>(d,d';h)^0, then p{Yi(d,)'Xi,0(d)}uj(d'd;ro) is close to 1 and thus the observations in voxel
 dr do not provide information on 0(d). Therefore, u(d, d'' ro) can prevent incorporation of vox-
 els whose data do not contain information on 0(d) and preserve the edges of significant regions.
 In neuroimaging data, voxels which are not on the boundary of regions of significance (Fig. 2(c))
 often have a neighbourhood in which 0(d) is nearly constant. In this case, u(d, d'' h) for voxel d'
 in the neighbourhood of voxel d is greater than 0 and thus pw {0(d) ' Yi (df) : d' e B(d , ro) } allows
 borrowing 'good' information from these neighbouring voxels. Furthermore, we assume that
 u( d, d!' h) is independent of i just for notational simplicity.

 Fig. 2. Illustration of the key features in the MARM: for a relatively large radius rQ (a) shows the overlap-
 ping spherical neighbourhoods B(d, r0) of multiple points (or voxels) d on the cortical surface, (b) shows the
 spherical neighbourhoods with four different bandwidths h of the six selected points d on the cortical surface
 and (c) shows the spherical neighbourhoods B( d, r0) of three selected voxels in a three-dimensional volume,
 in which voxels A and C are inside the activated regions, whereas voxel B is on the boundary of an activated
 region
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 Let u = {uj(d, d';ro) : deV,df e B(d,ro)} and 0 = {9(d) : deV}. Finally, by assuming spatial
 independence between imaging data, we take the product of pw{Yi(d') 'd' e B(d,ro)'xi,0(d)}
 for all d e V and then obtain a weighted likelihood function of the MARM for given by

 pw(YlVZ>|X/,0,u;)= n [ n p{Yi(d')'^,e{d)r(dJ'n)' (3)
 deT> Ld'eB(d,ro)

 When ro = 0, B(d,ro) and model (3) respectively reduce to d and model (1) for the voxelwise
 method.

 2.2. Examples
 The MARM can be applied to the analysis of neuroimaging data from multiple subjects and
 those from a single subject. For the case of a single subject, the MARM reduces to the PS
 approach. For illustration, we consider the following three examples.

 2.2.1. Example 1
 We consider a multivariate non-linear model at each voxel given by

 Y, (d) =[i{x,,(3(d)} + el (d) (4)

 for i = 1, . . . , n and d € T>, where n(-, •) is a known m x 1 vector of non-linear functions, /3(d)
 is a p2 x 1 vector representing unknown regression coefficients and £,(//) is an m x 1 random
 vector with mean 0 and covariance matrix E (d). In this case, 6(d) contains all parameters in 13(d)
 and T,(d). If we use the density of the Gaussian distribution to approximate /){K,W)|x,, 6(d)}
 and assume spatial independence between imaging data, then log{/?w(Y;, -p|X,, 6, u)} based on
 model (4) is given by

 - E E 0.5w(d,d';r0)['og'i:(d)' + (Yi(d')-ij,{xi,f3(d)})TT,(dTl(Yi(d')-n{xi,l3(d)})].
 deVd'eB(d,ro)

 (5)

 If n{xi,(3(d)} - Xif3(d), where X, is an m x p2 covariate matrix of x(, then model (4) reduces to
 the multiscale adaptive multivariate linear model for analysis of neuroimaging data (Tabelow
 et al., 2006, 2008a, b,c).

 2.2.2. Example 2
 We consider a generalized linear model for the conditional distribution of Yi(d) given x,
 (McCullagh and Nelder, 1989). Specifically, for i = 1

 exponential family

 exp{r ( d) ( Yi (d) Vi {13(d)}- b[rn {/3(d)}]) + c{Yi(d),T(d)}}, (6)

 where b(- ) and c(-, •) are known functions. Moreover, r)i {/3(d)} =r)[g{xj /3(d)}] for /= 1, . . . ,n,
 where g(-) is a known and monotonic link function and /3(d) is a (p - 1) x 1 vector of regression
 coefficients. In this case, 9(d) = (/3(d), r(d)) and the weighted quasi-likelihood function of the
 MARM under spatial independence is given by

 EE E ^(d,d';r0){T(d)(Yi(d')i1i{/3(d)}-blr]i{/3(d)}]) + c{Yi(d'),T(d)}. (7)
 1=1 deVd'eB(d,r0)

 2.2.3. Example 3
 In an FMRI session, n FMRI volumes are acquired at acquisition times t',...,tn while a sub-
 ject performs a cognitive or behavioural task. At each voxel, we consider a regression model
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 Multiscale Adaptive Regression Models 565

 Yi(d) = //{x;, /3(d)} + Si(d), where £i(d) denotes measurement errors with mean 0 and variance
 1 /r(d) and x/ may include responses to differing types of stimulus, the rest status and vari-
 ous reference functions (Lazar, 2008; Tabelow et al ., 2006, 2008a, c). The measurement errors
 £i(d) may include noise from stochastic variation, numerous physiological processes, eddy cur-
 rents, artefacts from the differing magnetic field susceptibilities of neighbouring tissues, non-
 rigid motion and preprocessing methods (registration or normalization) among many others
 (Huettel et al , 2004; Lazar, 2008). By performing a prewhitening procedure, we may assume
 that {ei(d):i=l,...,n} have zero mean and are approximately uncorrelated. If we use the den-
 sity of the Gaussian distribution to approximate p{Yi(d)'xi,6(d)}, where 6(d) = ((3(d), r(d)),
 then the weighted quasi-likelihood function of the MARM for FMRI is given by

 E E E 0.5w(d,rf';rx,)(log{r(d)}-T(d)[I'i(rf')-Ai{xi./?('0}]2)-
 i='deVd'eB(d,r0)

 2.3. Multiscale adaptive estimation and testing procedure
 We use a multiscale adaptive estimation and testing (M AET) procedure to determine estimate
 6(d) and calculate its associated test statistic across all voxels. The MAET procedure uses the
 same multiscale adaptive strategy from the PS approach (Polzehl and Spokoiny, 2000, 2006),
 and thus it can be regarded as a generalization of the PS approach to neuroimaging data with
 multiple subjects. The MAET procedure starts with building a sequence of nested spheres with
 increasing radii ho = 0 < h' < . . . < hs = ro ranging from the smallest scale ho = 0 to the largest
 scale hs = r0 at each deV (Fig. 2(b)). By setting uj(d , d'' ho) = l, we can estimate 0(d) at scale
 ho, which is denoted by 6(d'ho), and construct a test statistic W^(d,ho). Then, on the basis
 of the information that is contained in { 6(d ; ho) : d e V }, we use methods as detailed below to
 calculate weights uo( d, df;h') at scale h i for all deV. In this way, we can sequentially determine
 c u(d, d'' hs) and adaptively update 6(d' hs) and W^(d, hs), which are defined in equations (9) and
 (12) respectively, as the radius ranges from ho = 0 to hs = ro.

 Specifically, for a given radius, we consider maximum weighted likelihood estimates of 6(d)
 across all voxels deV given the current fixed weights { uo(d , df' h) : d, dr e V}. Let

 Q(dJ'h)=uj(dJ'h) / £ u(d9d';h).
 / d'eB(d,h )

 For the sphere with radius h of the voxel d , on the basis of model (3), we consider a normalized
 weighted quasi-likelihood function ln{6(d);h, £}, which is given by

 ln{6(d);h,u>} = u(d,df'h) 'og[p{Yi(d')'Xi,6(d)}]. (8)
 i='d'eB(d,h)

 The ln{6(d); h, u>} utilizes all the data in {Yi(df) : d ' e B(d , h)} and normalized weights { u(d , d''
 h):df e B(d, h)}. The maximum weighted quasi-likelihood estimate of 0(d) , which is denoted
 by 6(d , h ), is defined by

 6(d, h) = arg max[n_1/n {6(d); h, £}]. (9)
 0(d)

 Numerically, we use various optimization algorithms, such as a Newton-Raphson-type algo-
 rithm, to estimate 6(d,h). After convergence, co v{6(d,h)} can be approximated by

 CO v{0(d, h)}*En {e{d, h)} = Zn,i{0(d, h)}~1 S„,2{0(d, A)}EB, , {0(d, h)}~' (10)

 where i:nA{0(d)} = -dl(d)ln{0(d);h,u>} and
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 n / '

 ^nAO(d)} = E £ O(d,d,',h)de(d)'og[p{Yi(df)'xi,0(d)}]) ,
 /=1 'd'eB(d,h) J

 in which a02 = aaT for any vector a.
 Our choice of which hypotheses to test is motivated by either a comparison of brain structure

 (or function) across diagnostic groups or the detection of a change in brain structure (or func-
 tion) across time (Chung et al. , 2005; Lazar, 2008; Thompson and Toga, 2002). These questions
 of interest usually can be formulated as testing hypotheses about 0(d) as follows:

 H0^:R{O(d)} = b0 versus : R{0(d)} /b0, (11)

 where R{0(d)} is an r x 1 vector function of 0(d) with p ^ r and bo is an r x 1 specified vector,
 such as an r x 1 vector of 0s. We test the null hypothesis //o,M by using the Wald test statistic
 W^(d,h), which is given by

 w^d,h)^(R{e(d;h)}-^)T{d0(d)R{e{d-h)}^n{d(^h)}de(d)R{kd'h)}J}-'R{d{d'h)}-bo}.
 (12)

 A path diagram of the MAET procedure is given below:

 Lj(d,df;ho) uj(d,d''h') ••• uj(d,df'hs = ro )
 4 / 4 / ••• / 4 (13)

 0(d; h0) 0(d ; h i ) ... ( 0(d ; hs), W^d; hs))

 At each iteration, the computations involved for the MARM are of the same order as that for
 the voxelwise approach. Thus, this multiscale adaptive method provides an efficient method for
 flexibly exploring the neighbouring areas of each voxel. Since the MARM sequentially includes
 more data at each iteration, it will adaptively increase the statistical efficiency in estimating 0(d)
 in a homogeneous region and decrease the variation of the weights uj(d,d''h).

 The MAET procedure consists of five key steps:

 (a) initialization,
 (b) weights adaptation,
 (c) estimation,
 (d) stop checking and
 (e) inference.

 In the initialization step (a), we fix a geometric series {hs = csh : 5 = 1 , . . . , 5} of radii with ho = 0,
 where Ch > 1, say Ch = 1.10. The parameter csh plays the same role as the bandwidth of local
 kernel methods. A small value of Ch only allows incorporating the closest neighbouring voxels
 and thus it can prevent oversmoothing 0(d) at the beginning of the MAET procedure, whereas
 a small Ch leads to increased computational effort. At each voxel d , let uo(d , d'' ho) = 1 (d = d '), in
 which 1( ) is an indicator function. Then, we calculate the maximum weighted quasi-likelihood
 estimate 0(d, ho), which is defined in equation (9) at each voxel deV. The 0(d , ho) are the same
 as those from the voxelwise approach. We then set s= 1 and h'-ch.

 In the weight adaptation step (b), we compute the similarity between voxels d and d' which
 is denoted by Dg(d,dr;hs-'), and the adaptive weights uj(d,df;hs), which are respectively
 defined as

 Da(d,d';hs-i) = (d(d,hs-i)-e{d',hs-l)?Xn{0{d;hs-l)}-lmd,hs-l)-0{d',hs-x)), (14)

 co(d,d';hs) = K]oc(''d -d'''2/hs) Kst{De(d,d'-,hs^)/Cn}, (15)
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 Multiscale Adaptive Regression Models 567

 where K'oc(u) and Kst(u) are two non-negative kernel functions with compact support such that
 all of them decrease to 0 as u increases, Cn is a number, which may be associated with n , and
 || || 2 denotes the Euclidean norm of a vector (or a matrix). The weights K'oc(''d - df''2/hs) give
 less weight to the voxel d' e B(d , hs), whose location is far from the voxel d. The weights Kst(u)
 downweight the voxels d' with large De(d,df'hs- 1), which indicates a large difference between
 0(d',hs-') and 6(d,hs-').

 In the estimation step (c), for the radius hs, we substitute uj(d,d';hs) into equation (9) to
 calculate 0(d , hs) and then compute W^d, hs) according to equation (12) at each voxel d e V.

 In the stop checking step (d), after the Soth iteration, we calculate a stopping criterion based
 on a normalized distance between 0(d ; hs0 ) and 0(d ; hs) for 5 > So, which is given by

 D{9(d ; hSo), 0(d; hs)} = {6{d, hSo ) - 0(d, hs))rlln{0(d; hs,)}'1 (0(d, hSo ) - 0(d, hs)). (16)

 Then, we check whether 0(d;hs) is in an a confidence ellipsoid of 0(d;hso) given by {0 :
 D{0(d; hSo ), 0(d)} ^ C = x2(p)a}, where xHp)b is the upper (1 - b) -percentile of the x2(/?) dis-
 tribution. To prevent a large D{6(d;hs0),O(d;hs )}, we set a = 80% in the paper. If D{d(d;hs0 ),
 0(d' hs)} > C, then we set 6(d , hs ) = 0(d , hs-' ), WM(J, /is) = ^(d, /z^_i ) and 5 = S. If 5 = S, we
 go to the inference step (e). If s ^ So or D{O(d;hs0),O(d;hs)} ^ C for S- 1 ^s> So, then we set
 hs+' =Chhs , increase s by 1 and continue with the weight adaptation step (b).

 In the inference step (e), when s = S, we report the final 0(d,hs ), compute the /7-values for

 W^d, h 5), correct for multiple comparisons by using either the Bonferroni correction, the false
 discovery rate method (Benjamini and Hochberg, 1995) or random-field theory (Worsley et al .,
 2004; Nichols and Hayasaka, 2003), and then stop the algorithm.

 2.3.1. Example 4
 As an illustration, we consider the multiscale adaptive multivariate linear model that was de-
 scribed in example 1 and present the key components of the four steps of the MAET procedure
 as follows. In the initialization step (a), at each voxel d , by setting E(d,/zo)(0) = Im, an mxm
 identity matrix, we iteratively update

 0id,ho){,+l)= 'ibxJ{±(d,ho)(t)}-lx] j2xJ{t(d,h0)^}-lYi(d ), (17)
 .1=1 J 1 = 1

 t(d,h0){,+V) = (n - pi)~l f2{Yi(d) - XiP(d,h0)(t+l)}®2
 i= 1

 until convergence. Since, in most neuroimaging applications, (3 is the primary parameter of
 interest, we fix £(d) at E(d, ho) at each d. Then, we compute

 cov{/3 (d, h0) } « E„ {M A0)} = { E Xj t(d, h0)~l Xi J .
 In the weight adaption step (b), compute

 Df)(d,d''hs-') - 0 (d, hs- 1 ) - 0 (d', hs- 1 ))TS„ 0(d; hs_ , ) } ~ 1 {/§ (d, ft ,_ , ) - (3(d', hs^)}

 and

 u}(d,d';hs) = Kloc(''d-d'''2/hs)Kst{D0(d,d';hs-i)/Cn}.

 In the estimation step (c), for the radius hs, let

 A(d,hs,u>-,X) = ZXJ £ w(d,d'-hs)t{d'M)-xXi,
 1=1 d'eB(d,hs )
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 compute

 /3(d,hs) = A(d,hs,u>;X)-*(itxJ £ u(d,d,;hs)t(.d',h0rlYi(d')'
 I *=1 d'eB(d,hs) J

 and

 E„{/3(d,hs)} = A(d,hs,ut;X)-1 xj£i(d;u,hs)92x^ Md,hs,u;X)-'
 where

 £i(d;u,hs)= £ w(d,d';hs)±(d'Mrl{Yi(d')-Xip(d',hs)}.
 d'eB(d ,hs)

 In the stop checking step (d), we compute

 D{0(d ; hSo), fcd- A,)} = (/3 (d, hSo) - 0 (d, hs))T £„ { /§(</; hSo)}~ 1 0(d,hSo) - $(d, hs))

 for s> So-

 2.4. Parameters of the multiscale adaptive estimation testing procedure
 The performance of the MAET procedure depends on specifying its following parameters: c/,,
 Cm K'oc (w), Kst(u ), So and S. We have tested different combinations of these parameters of the
 MAET procedure in both simulated and real imaging data. According to our experience, the
 performance of the MAET procedure is quite robust to moderate changes to these parameters.

 We suggest choosing a relatively small c/, . The Ch is essentially the bandwidth of local kernel
 methods. When voxel d is near or on the edge of regions with distinct features, B(d,Ch) for a
 large Ch may include voxels from these distinct regions, which can cause oversmoothing of the
 parameter estimates image. In contrast, even when voxel d is near, but not on the edge of, dis-
 tinct regions, B(d, ch) for small ch includes only the closest neighbouring voxels d' whose data
 are similar to those of voxel d , and thus it can improve the accuracy of parameter estimation
 in the first few iterations. Subsequently, when combined with the stop checking step, small ch
 can improve the robustness of the MAET procedure and the accuracy of parameter estimation
 across all voxels.

 The Cn is used to penalize the similarity between any two voxels d and dr . If there is moderate
 similarity between the voxels d and df, a large Cn leads to small D{d,d''hs)/Cn and thus it
 decreases the sensitivity of the MAET procedure in separating such voxels. Thus, a large Cn can
 increase the estimation error near the boundary of two regions with distinct features, when the
 difference between the two regions is moderate. In contrast, when voxels d and d ' are similar
 to each other with a small D(d,d''hs), a small Cn may lead to a relative large D(d,d''hs)/Cn
 and thus it may decrease the specificity of the MAET procedure in combining such similar
 voxels. Thus, a small Cn can decrease the accuracy of parameter estimation in the interior
 of a homogeneous region. Therefore, a good Cn should balance between the sensitivity and
 specificity of the MAET procedure. So far, we have tested various values of Cn by using simu-
 lation studies, among which n0Ax2(p)0'95 and log (n)x2(p)0'95 perform equally well. Without
 loss of generality, we set log (n)x2(p)0'95- However, to account for the variability in estimating
 E n{0(d,hs)}9 it may be more suitable to use the quantiles of the F-distribution instead of the
 X2-distribution.

 The ATioc(m) is a regular kernel function for further smoothing curves or surfaces based on the
 Euclidean distance between voxels. Some common choices of K'oc(u ) include the Epanechnikov
 kernel (Tabelow et al.9 2006, 2008a, b,c; Polzehl and Spokoiny, 2000, 2006). Because the MAET
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 procedure mainly uses the similarity information between any pairs of voxels, the specification
 of K'oc(u) is not critical for it. We use K'oc(u) = (1 - w)+.

 We set Kst(u) =exp(- u) in our simulated and real imaging data. Theoretically, as shown
 later, exp(- u) gives an exponential decay rate of n. Although different choices of Kst(-) have
 been suggested in the original PS approach (Polzehl and Spokoiny, 2000, 2006; Tabelow et al. ,
 2006, 2008a, b,c), we have tested these kernel functions and found that Kst(u) = exp(- u) per-
 forms reasonably well. Another good choice of Kst(u) is min(l,2(l - «))+, which has better
 performance in spatially and adaptively smoothing FMRI and diffusion tensor images from a
 single subject (Polzehl and Tabelow, 2007).

 We suggest not to set So as 0 or a large integer. If So = 0, then only the data in voxel d are
 included and the accuracy of 0(d,ho) may be low. For large So , since the number of voxels in

 B(d , hs0) is large, it easily leads to both heavy computation and oversmoothing when voxel d is
 either on the boundary of significant regions or in some regions in which the parameters change
 slowly with voxel location. After the Soth iteration, the stop checking step starts to compute
 the stopping criterion and to check whether further iteration is needed in this voxel. Since csh
 plays the same role as the bandwidth in the local kernel method, the stop checking step is essen-
 tially a bandwidth selection procedure. This step is to compare consecutive parameter estimates
 to prevent bad data from neighbouring voxels and oversmoothing the parameter estimates
 image. We have found that So = 3 coupled with a small ch = 1 . 1 performs very well in numerous
 simulations.

 As the maximal iteration S increases, the number of neighbouring voxels in B(d,hs = csh)
 increases exponentially. Moreover, a large S also increases the probability of oversmoothing
 0(d) when the current voxel d is near the edge of distinct regions and the parameters change
 slowly with other locations. In practice, we suggest the maximal step S to be between 10 and 20.

 Setting the starting value of 0(d , hs){0) as 0(d , hs _ i ) for each 5 > 0 is an efficient way of selecting
 the initial value in the Newton-Raphson algorithm. Since the MAET procedure always down-
 weights voxel d' G B(d,h) in ln{0(d);h,u>} when the value of Dg(d,d';hs-') is large, 0(d,hs-')
 and 0(d , hs) should be close to each other. By starting from 0(d , /i5)(0) = 0{d , hs- 1), the Newton-
 Raphson algorithm converges very fast. The additional computational time for the MARM is
 moderate compared with the voxelwise approach, since the MARM involves only some addi-
 tional operation for locally averaging over all voxels in B(d , hs) at each voxel d.

 2. 5. Theoretical properties
 We establish the asymptotic properties of adaptive estimators and test statistics for the MAET
 procedure with stochastic adaptive weights. A critical question is what kinds of stochastic
 weights can automatically incorporate 'good' information and prevent 'bad' information from
 neighbouring voxels? By appropriately utilizing information from neighbouring voxels, the
 MAET procedure can dramatically increase the accuracy and efficiency in estimating the true
 value 0*(d) in each voxel. Another important question is whether the stochastic weights that
 are chosen can ensure consistency and asymptotic normality of 0(d , h) at each fixed scale h. To
 have a better understanding of the MAET procedure, we focus on the asymptotic behaviour of

 the adaptive weight when s= 1 and then discuss the scenario when s > 1 . ^
 Throughout the paper, we consider only the asymptotic properties of 0(d,hs) and W^(d,hs)

 for a finite number of iterations and bounded ro for the MAET procedure, since a brain vol-
 ume is always bounded. We assume that the number of voxels in the brain volume does not
 increase with the sample size, since the resolution of a given imaging data set is always fixed.
 We obtain the following theorems, whose detailed assumptions and proofs can be found in the
 supplementary report Li et al. (2010).
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 Theorem 1. If assumptions (C1)-(C7) in Li et al. (2010) are true, then we have

 (a) 0(d,hq) converges to 0*(d) in probability,
 (b) EA2,2{^W^o)}~1/2^,i{0(^^o)}{^W^o) - 0*(d)} -»L N(09Ip)9 where ->L denotes

 convergence in distribution,
 (c) Do(d,df;ho) and Kst{De(d,d';ho)C~1} can be respectively approximated by

 D0(d,d'iho) = l{&*(d,d')=O} Op[log{N(D)}] + l{A*(d,d')^0}nW£*(d)-V2(&*(d,d')

 + 0PW['og{N(V)}/n])''22,
 t , (lo)

 Kst{D0(d,d'-ho)C-]} t = i{A^d,d')^O}Kst{C-lnOp(l)} , + l{Am(d,d') = O}

 xKst['og{N(.V)}C~{ Op(l)],

 where A *(d,d') = d*(d) - 6*(d') and E*(d) = Ei*(cO_iE2*(c/)Si*(c?)-1, in which
 £ I * (d) = ~E(d2e(d) log[/>{ Y(d) |x, 0* (d) }]) and £2* (d) = E{ (d6{d) log[p{ Y(d) |x, 0* (d) }])®2 },
 and

 (d) for any s0 > 0, limn_> 00 ( P[| Kst { D0(d, d''ho)/C„}- 1{A* (d, d') = 0} | > £0]) = 0.

 Theorem 1, parts (a) and (b), characterize the asymptotic behaviour of D$(d,d';ho) and
 Kst{Do(d,d';ho)/C„}. Theorem 1, parts (c) and (d), show that, if the two voxels d and d' have
 the same true values, then Kst{D0(d,d';ho)/Cn} and u>(d,d'-,h0) converge to 1 and tf|oc(||rf-
 d'h/h') respectively. However, if the two voxels d and d' substantially differ from each other,
 then Kst{D$(d,d';h())/Cn} imposes a decreasing weight on the voxel d' . As an example, when
 Ksi(u) = exp(-u) and HirWooIC-' log{7V(X>)}] = lim„^oo(C„//j) = 0, Ksi{Dg(d,d';h0)/C„}
 converges to 0 at rate exp(-C~'n) when d*(d) ^d*(d'), whereas it converges to 1 at rate
 log{A^(P)}C~' otherwise. In the interior of a non-homogeneous region, Kst{Dg(d,d'-,ho)/C„}
 automatically puts small weight on the voxels d' with 0*(</) #0*(d'), and thus, in the esti-
 mation step (b), the contribution of these voxels d' to the estimation of d*(d) is negligi-
 ble. Thus, if lim„^.00{A'st(M)} = 0 and lim„^o{^rst(«)} = c, where c>0 is a fixed scalar, then
 Kst { Dg(d, d'' ho)/ C„ } can efficiently incorporate information from good voxels, whereas it pre-
 vents incorporating information from bad voxels. In contrast, other kernels with lim,,-,.^ Kst (m)}
 > 0 do not have these features.

 For h > 0, we can also establish important theoretical results to characterize the attractive
 behaviour of 6(d,h) and Wfl(d,h) from the MARM as follows.

 Theorem 2. Suppose that assumptions (C1)-(C7) in the supplementary report are true. As
 h > 0, we have the following results for the MARM:

 (a) 9(d,h) converges to d*(d) in probability;
 (b) E„,2{«(</, A)}"i/2E«.i{®(</, *)}{»(</, A) -»•(</)} -»>LmiP);
 (c) if /?{0*(ef)} = bo is true and d0(d)R{Q*(d)} is of full rank, then the statistic W^(d,h) is
 asymptotically distributed as a ' 2 -distribution with r degrees of freedom.

 Theorem 2 shows that the MAET procedure has several remarkable features. Theorem 2, part
 (a), ensures that 6(d, h) is a consistent estimate of 0* (d) for the adaptive weights in equation ( 1 5)
 for any h > 0. Theorem 2, part (b), ensures that 6(d,h) is a root n estimate of 0*(d). Theorem 2,
 part (c), ensures that the Wald test statistic Wfl (d, hs ) is asymptotically x2(r) distributed under the
 null hypothesis R{&* (*/)} = bo- However, for small sample sizes n, it would be better to adjust for
 sample uncertainty in estimating the covariance matrix of 9(d,h). Following Hotelling's r2-test,
 we suggest calibrating Wp(d, h) with a critical value of r(n - ' )F}~'±r/(n - r), where F}~1r is the
 upper a-percen tile of the -distribution, i.e. we reject H^''iW^(d,h)^r(n - 1 )F}~"r/(n-r),
 and do not reject Hq otherwise.
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 Multiscale Adaptive Regression Models 571

 We can characterize the asymptotic behaviour of 6(d,h) and W^(d,h) even when Cn is
 bounded. Our results show the unpleasant behaviour of 0(d , h) and W^(d, h) when h > 0.

 Corollary 1. Suppose that assumptions (C1)-(C6) in the supplementary report are true,
 limn^oo['og{N(V)}/n] = 0 and Cn = 0(1). Then we have the following results:

 (a) 0( d, h i ) converges to 0* (d) in probability;
 (b) if there is a d' e B(d,h')/{d } such that 0*(d) = 0*(d'), then 0(d,h') may not be asymp-

 totically normal and the statistic W^(d, h') is not asymptotically distributed as x2(r) even
 though /?{0*(d)} = bo is true.

 Corollary 1 , part (a), ensures that the PS approach based on a bounded Cn is valid for imaging
 construction, since 6(d, h i ) is a consistent estimate of 0* (d) . However, corollary 1 , part (b), also
 shows that a bounded Cn can lead to several unpleasant consequences for carrying out statistical
 inference on 6(d). Although a bounded Cn has been proposed in the PS approach to smooth
 the parameter estimates from linear models, we have established here the consistency of 0(d , h)
 as an estimate of 0*(d) under a general set-up. Moreover, if there is a voxel dr e B(d,h')/{d }
 such that 0* (d) = 0* (, dr ), corollary 1 , part (b), shows that 0(d , h ' ) is not asymptotically normal

 and the Wald test statistic W^(d,h') is not asymptotically x2W distributed under the null
 hypothesis /?{0*(d)} =bo. Thus, we cannot directly calibrate W^(d, h') using the critical values
 ofx20)-

 Finally, we focus on a multiscale adaptive linear model. Assume that Yi(d) =x( (3(d) + £/(<i),
 where £i(d)^ N{0, r(d)~1}. Let

 ujT(d,df;h) = r(df)uj(d,df;h) / r(d')uj(d, d!'h)'
 / d'eB{d,h )

 we have

 f3(d,h)=(Y^x?2) Y^xiYi(d'<*>T,h),

 -l „ =1 „ -l (19)
 cov{/3 (d, h)} xf 2) -l £ „ xf 2£« (^; wr, h)2 „ xf »

 where Yi(d; u>T,h) = T,d'eB(d,h) uT(d, d'' h) Yi(d') and

 Si(d;u>T,h)= £ (jAd,d';h){Yi(d')-xj0(d',h )}.
 d'eB(d,h)

 Although Tabelow et al. (2006) have obtained the same (3(d, h) as in expression (19), the MARM
 that is developed here has several advantages. We shall show below that j3(d,h) based on the
 adaptive weights in the PS approach may not be asymptotically normal. The covariance estimate
 of /3 {d, h) in expression (19) has a simple form. We obtain the following results for the multiscale
 adaptive linear model. For simplicity, we assume that all r(d) are known.

 Theorem 3.

 (a) If assumptions (CI), (C2), (C6) and (C7) in the supplementary report are true, E(||x ni><
 oo and E[maxrf6£>{|e(</)|2 x ||x|||}] < oo, then nl/2{(3(d,h) -/3#} is asymptotically equiv-
 alent to

 Ai(d;h)= £ C(d,d'-h)T(d')E(x^2r]n-^2f:^i(d')/{ £ C(d,d'-,h)T(d')'
 d'eB(d,h) i= 1 / ld>eB(d,h) J

 (20)
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 where C(d, d''h) = l{A*(d,df) =0}ATioc(|| d - df''2/h). The A'(d;h) converges in distri-
 bution to

 £ C(d,d'-,h)T(d')E('®2)-x/2Z(d') / { £ C(d,d';h)T(d')', (21) d'eB(d,h) / ldfeB(d,h) J

 where {Z(d') 'd' e B(d,h)} is a Gaussian vector with mean 0 and covariance structure
 cov{Z(d)} = r(d)~llpi and co '{Z(d), Z(df)} = E{sx (d)ex (d')}lpx .

 (b) If assumptions (CI), (C2) and (C6) in the supplementary report are true, Cn = 0( 1) and
 'imn-+oo['og{N(D)}/n] = 0, then n 1/2 {/3(d, h') - /3*} is asymptotically equivalent to

 J] C(d, d'' h i ) Kst {£n (d, d!) } r(d') E(x®2)' 1 n ~ 1 /2 E x; £/ (dr)
 Ai A (J.u ' d'*B(dM) 1 = 1
 Ai A (J.u (d , h') ' -

 £ C(d,d''hx)KsX{£n(d9d')}T{d')
 d'eB(d,h')

 where

 £„ ( d, d') = T(d) tr([£(x®2 ) " 1 /2n~ 1 /2 £ x,- {«,• (d) - e,- (</')}]®2).
 /=l

 As n -> oo, A2(^;/zi) converges in distribution to a random vector given by

 £ C(d, d';h')Ksl ( r(d ) tr[{ Z(d) - Z(</') }®2]) r(J') £(x®2)- '/2 Z(J')
 d'eB(d,h)

 £ C(d,df;hl)Kst(r(d)tr[{Z(d)-Z(d)}®2])r(d)
 d'eB(d,h)

 Theorem 3 gives a theoretical justification of the multiscale adaptive linear model. Theo-
 rem 3, parts (a) and (b), formally characterize the key differences between a bounded and
 unbounded Cn in the linear model. Theorem 3, part (a), shows that, for certain unbounded
 Cn , the asymptotic distributions of /3(d, h ) are always normally distributed. For a bounded Cn ,
 however, theorem 3, part (b), only gives the asymptotic distribution of 0(d,h'), which may not
 be normally distributed when there is a voxel d' € B(d,h') whose data are close to those of the
 voxel d.

 3. Simulation studies

 We conducted three sets of Monte Carlo simulations to examine the finite sample performance
 of f3(d,h) and W^d.h) with respect to different scales h and compare the MARM with the
 voxelwise method. For brevity, we only present some results based on a 64 x 64 phantom image
 with four known effect regions and put additional simulation results in the supplementary
 document.

 We simulated data at all m = 4096 pixels on the 64 x 64 phantom image for n subjects. At
 a given pixel d in D, Yi(d) was simulated according to Yi(d) = xj /3(d) + 8i(d) for i = 1, . . . , n,
 where 13(d) = ((3'(d),f3 2(d) , fi^d))1 and xz = (l,.x/2,*/3)T- Errors £i(d) were first independently
 generated from N(0, 1) and x2(3) - 3 distributions and then they were smoothed by using heat
 kernel smoothing with four iterations, which gave an effective smoothness of about two pixels
 (Chung et al. , 2005). The '20) ~ 3 distribution is a very skewed distribution. We set n = 60
 and n = 80. We generated xt2 independently from a Bernoulli distribution, with probability of
 success 0.5, and generated x/3 independently from the uniform distribution on [1, 2]. The x-a
 and x/3 were chosen to represent group identity and scaled age respectively. Furthermore, we set
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 0' (d) = fh (d) = 0 across all pixels d. For ih(d). we divided the 64 x 64 phantom image into five
 different regions of interest (ROIs) with different shapes and then varied lh(d) as 0, 0.2, 0.4, 0.6
 and 0.8 across these five ROIs. Different 02(d) values, which represent different signal-to-noise
 ratios, were chosen to examine the performance of our method at different signal-to-noise ratios
 and also to test whether the MARM can perform well for different shapes. The true 02(d) was
 displayed for all ROIs with black, blue, red, yellow and white colours representing 02(d) = 0,
 0.2, 0.4, 0.6, 0.8 (Fig. 3(k)).

 Table 1. Average bias (x10-3), RMS, SD, RE and MVR of /32(c/) parameters in the five ROIs at three
 different scales (h0, h5, l?10), two different distributions (A/(0, 1) and '2(3) - 3 distributions) and two different
 sample sizes (n = 60, 80)f

 Parameter Results for '2( 3 ) - 3 Results for N(0, I)

 n = 60 n = 80 n=60 n = 80

 ho h$ h'Q ho hs h'o ho h$ h'o ho h$ h'o

 02(d) = 0.0
 BIAS 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 RMS 0.48 0.35 0.26 0.41 0.31 0.22 0.20 0.15 0.11 0.17 0.13 0.09
 SD 0.47 0.34 0.24 0.41 0.30 0.21 0.19 0.14 0.10 0.17 0.12 0.09
 RE 1.03 1.05 1.06 1.02 1.03 1.04 1.03 1.05 1.06 1.02 1.03 1.04
 MVR 1.00 0.59 0.44 1.00 0.61 0.46 1.00 0.63 0.46 1.00 0.64 0.47

 02 (d)=0.2
 BIAS 0.00 -0.03 -0.07 0.01 -0.02 -0.06 0.00 -0.03 -0.05 0.00 -0.02 -0.05
 RMS 0.46 0.34 0.24 0.39 0.29 0.21 0.19 0.14 0.11 0.16 0.12 0.09
 SD 0.46 0.33 0.24 0.40 0.29 0.21 0.19 0.14 0.10 0.16 0.12 0.09
 RE 1.01 1.01 1.01 0.99 1.00 1.01 1.02 1.04 1.06 1.02 1.02 1.03
 MVR 1.00 0.70 0.50 1.00 0.71 0.51 1.00 0.72 0.52 1.00 0.73 0.52

 02(d) =0.4
 BIAS -0.01 -0.05 -0.09 0.01 -0.02 -0.06 0.00 0.00 -0.01 0.00 0.00 0.00
 RMS 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.15 0.12 0.16 0.13 0.10
 SD 0.46 0.33 0.24 0.40 0.29 0.21 0.19 0.14 0.11 0.16 0.12 0.09
 RE 1.01 1.02 1.03 1.01 1.02 1.03 1.03 1.05 1.07 1.00 1.01 1.02
 MVR 1.00 0.70 0.50 1.00 0.70 0.51 1.00 0.71 0.52 1.00 0.72 0.52

 ()2(d) =0.6
 BIAS 0.00 -0.05 -0.09 0.00 -0.04 -0.07 0.00 0.01 0.02 0.00 0.00 0.01
 RMS 0.46 0.35 0.26 0.40 0.30 0.23 0.19 0.15 0.12 0.16 0.13 0.10
 SD 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.14 0.11 0.16 0.13 0.10
 RE 1.01 1.03 1.04 1.01 1.02 1.03 1.02 1.04 1.06 1.01 1.03 1.04
 VMR 1.00 0.70 0.50 1.00 0.71 0.52 1.00 0.71 0.52 1.00 0.72 0.52

 02(d) =0.8
 BIAS 0.00 -0.04 -0.06 0.00 -0.02 -0.05 0.00 -0.01 -0.02 0.00 0.00 -0.01
 RMS 0.47 0.35 0.26 0.40 0.30 0.23 0.19 0.15 0.11 0.17 0.13 0.10
 SD 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.14 0.11 0.16 0.12 0.09
 RE 1.02 1.03 1.04 1.01 1.02 1.03 1.02 1.04 1.05 1.03 1.05 1.06
 VMR 1.00 0.71 0.51 1.00 0.71 0.51 1.00 0.71 0.51 1.00 0.73 0.52

 tBIAS denotes the bias of the mean of estimates; RMS denotes the root-mean-square error; SD denotes the mean
 of the standard deviation estimates; RE denotes the ratio of RMS over SD; MVR denotes the maximum achievable
 variance reduction. For each case, 1000 simulated data sets were used.
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 Multiscale Adaptive Regression Models 575

 We fitted the linear model Yt ( d) = x J /3(d) + e,- (d) , where £/ (d) ~ TV {0, r( J) ~ 1 }, and then applied
 the MAET procedure that was described in example 4 to calculate adaptive parameter estimates
 across all pixels at 11 different scales. Next, for /32(d) , we calculated the bias, the empirical
 standard error RMS, the mean of the standard error estimates SD, the ratio of RMS over SD,
 RE, and the achievable variance reduction VR, which is defined as var{/32 ( d , hs) }/ var{/?2 (d, ho) } ,

 at each pixel of all five ROIs based on the results obtained from the 1000 simulated data sets.
 For brevity, we present only the results for /32(d,/io) an<i $2(d,h'o) obtained from N( 0, 1)-
 distributed data with n = 60 in Fig. 3. We also calculated the average bias, RMS, SD, RE and
 maximum VR, MVR, in each of the five ROIs and present them in Table 1 . The biases are slightly
 increased from ho to h'o (Figs 3(b) and 3(g) and Table 1), whereas RMS and SD at hs and h io
 are much smaller than those at ho (Figs 3(c), 3(d), 3(h) and 3(i) and Table 1). In addition, RMS
 and its corresponding SD are relatively close to each other at all scales for both the normally and
 the x2 -distributed data (Table 1 and Figs 3(e) and 3(j)). Moreover, the average SDs and MVRs
 in ROIs with 02(d) > 0 are larger than those in ROIs with 02(d) = 0 (Figs 3(i) and Table 1),
 because the interior of the ROI with 02(d) = 0 contains more pixels (Fig. 3(k)). The biases,
 SDs and RMSs of /?2( d) are smaller in the normally distributed data than in the x2 -distributed
 data (Table 1), because the signal-to-noise ratios in the normally distributed data are 2.45 times
 bigger than the signal-to-noise ratios in the x2 -distributed data. Increasing the sample size and
 signal-to-noise ratio decreases the bias, RMS and SD of the parameter estimates (Table 1).

 We then tested the hypotheses H0 : 02(d) = 0 and H':02(d)^O across all pixels to assess both
 type I and type II error rates at the pixel level. We applied the same MAET procedure and com-
 puted the /^-values of W^d.h) at each scale. The 1000 replications were used to calculate the
 estimates and standard errors of rates of rejection at a = 5% significance level. For VJ^(d,/z),
 the type I error rates in the ROI with (32 (d) =0 were relatively accurate for all scales, whereas
 the statistical power for rejecting the null hypothesis in ROIs with (32(d) ^0 was significantly
 increased with radius h and signal-to-noise ratio (Table 2).

 Table 2. Simulation study for W^(d, /i)f

 Pl(d) hs Results for N(0, 1) Results for '2 (3) -3

 n - 60 n=80 n = 60 n = 80

 Estimate Standard Estimate Standard Estimate Standard Estimate Standard
 error error error error

 0.2 h0 0.20 0.066 0.24 0.070 0.08 0.038 0.08 0.037
 h] 0 0.30 0.126 0.38 0.121 0.10 0.069 0.18 0.081

 0.4 h0 0.56 0.090 0.67 0.079 0.15 0.065 0.18 0.070
 hl0 0.93 0.051 0.98 0.030 0.26 0.129 0.35 0.159

 0.6 h0 0.88 0.039 0.95 0.024 0.27 0.057 0.33 0.050
 h io 1.00 0.004 1.00 0.004 0.51 0.091 0.63 0.083

 0.8 h0 0.99 0.015 1.00 0.005 0.43 0.080 0.52 0.080
 /j10 0.99 0.010 0.99 0.011 0.78 0.099 0.90 0.006

 0.0 h0 0.07 0.006 0.07 0.006 0.06 0.007 0.07 0.006
 hw 0.08 0.011 0.07 0.011 0.07 0.012 0.08 0.012

 fEstimates and standard errors of rates of rejection for pixels inside the five ROIs were reported at two different
 scales (ho,h'o), two different distributions (N(0, 1) and x20) ~ 3) and two different sample sizes (n = 60 and
 n = 80) at a = 5%. For each case, 1000 simulated data sets were used.
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 4. Real data analysis

 Understanding white matter development in the human brain in vivo is critical to the under-
 standing of the functional formation of the central nervous system. An important feature of
 diffusion tensor imaging is its ability to reveal the white matter maturation process in the human
 brain by using a set of water-diffusion-related parameters, such as FA and radial diffusivity. For
 instance, FA is a measure representing the inhomogeneous extent of local barriers to water diffu-
 sion. FA has been widely used to investigate early brain development from identifying transient
 brain structures such as ganglionic eminence and cortical subpliate to estimating the correla-
 tion of white matter maturation with functional development measures such as intelligence and
 working memory.

 We considered 38 subjects from the neonatal project on early brain development that was led
 by Dr Gilmore at the University of North Carolina at Chapel Hill. For each subject, diffusion-
 weighted images were acquired at 2 weeks, year 1 and year 2. The diffusion tensor acquisition
 scheme includes 18 repeated measures of six non-collinear directions ((1,0,1), (-1,0,1), (0,1,1),
 (0,1,-1), (1,1,0) and (-1,1,0)) at a lvalue of 1000 s mm-2 and a i = 0 reference scan. 46
 contiguous slices with a slice thickness of 2 mm covered a field of view of 256x256 mm2 with
 an isotropic voxel size of 2 x 2 x 2 mm3. High resolution T1 -weighted images were acquired
 by using a three-dimensional MP-RAGE sequence. Then, a weighted least squares estimation
 method was used to construct the diffusion tensors (Basser et al. , 1994; Zhu et al , 2007b).
 All diffusion tensor images (38 subjects, three time points each) were registered to a randomly
 selected brain diffusion tensor image of a 2-year-old subject by using tensor image morphing
 for elastic registration (Yap et al , 2009).

 FA calculated from diffusion tensor images is widely used as a measurement to assess direc-
 tional organization of the brain, which is greatly influenced by the magnitude and orientation of
 white matter tracts. We used FA images to identify the spatial patterns of white matter matura-

 tion and then considered a multivariate linear model ( d) = (3'(d) + ttj (d) + t}j /% (d) + ( d)
 for i = 1 , . . . , 38 and j = 1 , 2, 3, at each voxel of the template, where tij denotes the yth scan time
 for the zth subject, ei(d) = (£/i(d),£/2(d),£/3(tfO)T ^ N{0, D(d)} and £(d) is a 3 x 3 unstructured
 covariance matrix. The MAET procedure that was described in example 4 with Ch = 1.15 and
 S= 10 was used to carry out statistical analysis. We tested Ho : f32(d) = fo(d) = 0 for age-depen-
 dent effects across all voxels d and calculated the corrected /^-values by using the Bonferroni
 correction with overall level of significance 1%. As S increases from 0 to 10, the MARM shows a
 clear advantage in detecting more significant and smoothed significant areas as well as preserving
 the edges of grey matter, white matter and cerebrospinal fluid areas (Figs l(a)-l(d) and 1(h)).
 We also smoothed FA imaging data by using an isotropic Gaussian kernel with full width at half
 maximum 6 mm and then analysed the data by using the voxelwise approach. The results based
 on the smoothed FA images show the obvious oversmoothing in cerebrospinal fluid and the
 grey matter areas, such as the ventricle (Figs l(a)-l(c)). Furthermore, we identified a voxel in
 the red circle in the ventricle, whose location is near the boundary of the white matter and cere-

 brospinal fluid (see the red circle in Fig. 1(a)). Its corrected /^-values of h0) and W^d, h'0)
 are much higher than 0.01 . Inspecting raw FA values in the red voxel of Fig. 1(a) does not reveal
 any growth patterns, which agrees with the fact that the ventricle contains cerebrospinal fluid in
 the brain (Fig. 1(d)). However, after being smoothed with the Gaussian kernel, smoothed FA
 values gradually increase with age (Fig. 1(h)). This indicates that the data in the red voxel were
 oversmoothed because its neighbouring voxels contain white matter.

 The parameters (d), faid) and /% (d) represent the FA value at birth (age =0) and the speed
 and acceleration of the change of FA respectively (Figs 1(e)- 1(g)). Major white matter structures
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 Multiscale Adaptive Regression Models 577

 are already presented in FA at birth (Fig. 1(e)). Within the central brain region, different devel-
 oping patterns were observed for the genu , splenium and body of corpus callosum , internal and
 external capsules (Figs l(i)- 1(1)). In FA, the genu and splenium have a similar FA value at birth
 and the genu's FA gradually increases higher than the splenium' s. The corpus callosum body has
 a slightly lower FA compared with the internal capsule at birth, but gradually surpasses the
 internal capsule. The external capsule, having the lowest FA value among these white matter
 regions at birth, demonstrates a slow linear-like changing pattern.

 5. Discussion

 This paper studies the idea of using an MARM for the spatial and adaptive analysis of neuro-
 imaging data. The MARM integrates the PS approach with the voxelwise method for neuro-
 imaging data from multiple subjects. There are three features in the MARM: being spatial, being
 hierarchical and being adaptive. The MARM builds a sphere with a given radius at all voxels and
 then uses these consecutively overlapping spheres to capture local and global spatial dependence
 between different voxels. Thus, the MARM explicitly utilizes the spatial information to carry
 out statistical inference. The MARM also builds hierarchically nested spheres by increasing the
 radius of a spherical neighbourhood around each voxel and utilizes information in each of the
 nested spheres across all voxels. Finally, the MARM combines all observations with adaptive
 weights in the voxels within the sphere of the current voxel to calculate parameter estimates and
 test statistics adaptively. Without imposing any spatial correlation patterns, we have derived the
 asymptotic properties of the parameter estimates and test statistics for the MARM when the
 logarithm of the number of voxels is relatively small compared with the number of subjects. We
 also investigated the issue of selecting appropriate values of various parameters in the MAET
 procedure.

 Many issues still merit further research. The three key features of the MARM can be easily
 adapted to more complex data structures (e.g. longitudinal, twin and family) and other para-
 metric and semiparametric models. For instance, for longitudinal neuroimaging data, we can
 develop a multiscale adaptive method for generalized estimating equations. It is also feasible
 to consider statistical models with non-parametric components. More research is needed for
 optimizing the choices of parameters in the MAET procedure and weakening regularity assump-
 tions. For instance, by assuming spatial smoothness in the neuroimaging data, the assumption
 log{N(V)} <&Cn<£n can be weakened. Another interesting issue is to develop adaptive neigh-
 bourhood methods to determine multiscale neighbourhoods that adapt to the pattern of imag-
 ing data at each voxel. An important issue is that the voxelwise approach and the MARM are
 also based on the perfect registration assumption, which is demonstrably false. We may need
 to integrate the registration method, smoothing method and voxelwise approach into a uni-
 fied framework so that we can appropriately account for registration errors in the statistical
 analysis.
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