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A B S T R A C T

Advances in understanding the structural connectomes of human brain require improved approaches for the
construction, comparison and integration of high-dimensional whole-brain tractography data from a large number
of individuals. This article develops a population-based structural connectome (PSC) mapping framework to
address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and
across different subjects by registering different subjects’ brains based on coarse cortical parcellations, com-
pressing the bundles of each connection, and extracting novel connection weights. A robust tractography algo-
rithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting,
and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The
developed PSC framework can be used to reproducibly extract binary networks, weighted networks and
streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its
application in characterizing normal variations and heritability of structural connectomes in healthy subjects.
Introduction

With recent advances in imaging technologies, large biomedical
studies, such as the UK Biobank (Miller et al., 2016) and Human Con-
nectome Project (HCP) (Sotiropoulos et al., 2013; Van Essen et al.,
2013), have collected multimodal imaging data (e.g., structural magnetic
resonance imaging (sMRI) and diffusion MRI (dMRI)), and other asso-
ciated data, such as clinical and genetic information. Mapping the brain's
structural connectome on the system level is critically important for
understanding brain physiology, pathology and structural connectivity in
both clinical and research-oriented applications. The structural con-
nectome consists of grouped white matter (WM) trajectories that connect
different brain regions, representing a comprehensive diagram of neural
connections. To date, dMRI is the only noninvasive technique useful for
estimating WM trajectories and water diffusivity along these trajectories
in vivo. It has been widely used to quantify WM integrity and WM ab-
normalities associated with brain disorders.

At the population level, to quantify variations in the diffusion
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connectomes and local WM changes of healthy and diseased brains, there
are roughly three broad analytical methods: (i) standard region-based
analysis (Lee et al., 2009; Alexander et al., 2007), (ii) voxel-based anal-
ysis (Smith et al., 2006; Schwarz et al., 2014; Snook et al., 2007), and (iii)
tract-specific analysis (Fornito et al., 2013; Zhu et al., 2011; Yeatman et
al., 2012; Cousineau et al., 2017; Jin et al., 2014; Heiervang et al., 2006;
Ciccarelli et al., 2003; Wang et al., 2016a; Wassermann et al., 2010;
Garyfallidis et al., 2017; Olivetti et al., 2017; Sharmin et al., 2016). The
region-based method often parcellates the brain into regions of interest
(ROIs) that have anatomical meaning and studies the statistical proper-
ties of each region (Lee et al., 2009; Alexander et al., 2007). Although it is
convenient to focus on specific regions, it suffers from the difficulty in
identifying meaningful regions in WM, particularly among the long
curved structures common in fiber tracts. The voxel-based analysis
spatially normalizes brain images across subjects and performs statistical
analysis at each voxel. One of the most popular voxel-based methods is
the Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006), which is
based on the projection of fractional anisotropy (FA) maps of individual
Cancer Center, Houston, TX, USA.
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subjects onto a common mean FA tract skeleton. The voxel-based
methods are limited due to their reliance on existing registration
methods that lack the ability to explicitly model the underlying archi-
tecture of WM fibers, including the neural systems and circuits affected,
in the registration process (Zalesky et al., 2010; Yeatman et al., 2012).

Compared to the region- and voxel-based methods, tract-specific
analysis provides several desirable outputs. It can visualize specific
WM bundles, quantitatively analyze the geometry of WM bundles, and
analyze the diffusion properties along WM bundles. One of the most
challenging tasks in this approach is to efficiently use the whole-brain
tractography data to construct reproducible population-based structural
connectome maps, while effectively accounting for variation across
subjects within and between populations. The tract-specific approaches
can be naturally grouped into two categories: fiber clustering-based
(O'Donnell et al., 2013; Guevara et al., 2011, 2017; Jin et al., 2014;
Garyfallidis et al., 2017) WM analysis and parcellation-based connectome
analysis (O'Donnell et al., 2013; de Reus and van den Heuvel, 2013;
Zalesky et al., 2010). Although both method types perform segmentation
of the WM bundles, they have different goals.

The advantage of fiber clustering-based methods is that they can use
the shape, size and location of streamlines (also referred to as fiber curves
or fiber tracts) to identify anatomically defined WM tracts, and study the
WM integrity along these tracts (Jin et al., 2011, 2014; Kochunov et al.,
2015; O'Donnell et al., 2013). However, such methods heavily depend on
the choice of clustering method and that of the similarity metric for
comparing streamlines (Zhang et al., 2014). Also, they usually consider
only part of the whole-brain fiber curves and may result in the loss of
valuable information. In contrast, parcellation-based methods (O'Donnell
et al., 2013; de Reus and van den Heuvel, 2013) can utilize the
whole-brain fiber curves and produce an adjacency V � V matrix Ai,
where V is the number of ROIs and can vary from tens to hundreds ac-
cording to the cortical parcellation methods used in Desikan et al.
(2006), Destrieux et al. (2010), Glasser et al. (2016); Cammoun et al.
(2012). The ðu; vÞ�th element of Ai represents a measure of the strength
of connection between regions u and v (de Reus and van den Heuvel,
2013; Fornito et al., 2013; Durante et al., 2017; Durante and Dunson,
2016; Cheng et al., 2012a; Zalesky et al., 2010). For a specific pair of
ROIs, the most popular connectivity strength is an indicator (range of
Fig. 1. A systematic overview of the population-based structural connectome ma
interest, SCCS: streamline connectivity cell structure, PTCS: parcellation-based tra
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0–1) of whether there is any streamline connecting them so that standard
graph analysis may be applied. However, the use of such a binary con-
nectivity matrix leads to an enormous loss of information such that all
geometric and diffusivity information along the WM bundles is
discarded.

In this paper, we develop a hybrid method (O'Donnell et al., 2013;
Guevara et al., 2017) that can utilize the geometric information of
streamlines, including shape, size and location, for a better
parcellation-based connectome analysis. This approach allows us to in-
crease the robustness of extracted WM bundles between two ROIs and
extract discriminative and reproducible geometric features for
network-based connectome analysis. Such robustness and reproducibility
are critical for down-stream statistical analyses. Furthermore, we use a
newly defined reproducibility measure and a test-retest dataset to opti-
mize various tuning parameters in the construction of the structural
connectome. This optimization procedure and the proposed global
reproducibility measure distinguish this work from the existing repro-
ducibility studies (Bastiani et al., 2012; Cheng et al., 2012b; Buchanan et
al., 2014; Cousineau et al., 2017).

The comprehensive framework developed in this paper is termed
population-based structural connectome (PSC) mapping, which is designed
to reproducibly construct structural connectomes across subjects within
and between populations. Fig. 1 demonstrates a schematic overview of
the PSC framework. Five major methodological contributions of this
paper relative to the current approaches for analyzing tractograms are
summarized as follows.

� Most current techniques transform the full brain tractogram into a
simplified adjacency matrix for groupwise network analysis. In
contrast, the proposed PSC pipeline preserves the geometric infor-
mation, which is crucial for quantifying brain connectivity and un-
derstanding its variation across subjects. The PSC constructs
structural connectomes across three different levels, from simple to
complex, including the binary network, the weighted networks and
the streamline-based connectome. Such a multi-level representation
allows to perform brain network analysis at different levels of detail,
inspect the brain connectome from different perspectives, and vali-
date findings in the space of WM bundles.
pping framework. GM: gray matter, CM: connectivity matrix, ROI: region of
ctography common space, and PSC: population-based structural connectome.
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� One of our objectives is to increase the robustness and reproducibility
of reconstructed structural connectomes. A test-retest dataset is used
to select tuning parameters in the PSC to optimize its reproducibility
and preserve useful information in the connectome maps.

� We use a nonlinear spatial normalization method to decompose the
variation of WM tracts into different components. More specifically,
the shape component is separated from its confounding variables for
the analysis of the shapes of tracts. Such a decomposition minimizes
the variability across individual streamlines, while allowing us to
efficiently compress streamlines in each connection.

� We use the PSC framework to perform comprehensive analyses of 856
subjects with high-resolution dMRI and T1 images in the HCP dataset.
In contrast, as reviewed in Table 1 of Guevara et al. (2017), most
existing methods were applied to whole-brain tractography datasets
of fewer than 200 subjects.

� The open-source software and documentation for the PSC framework
will be freely available online at http://www.nitrc.org/and https://
github.com/BIG-S2.

Materials and methods

Overview

Let us focus on dMRI and sMRI data acquired for Q subjects. For each
subject, we can use one of the state-of-the-art tractography algorithms
(Girard et al., 2014; Smith et al., 2013) to reconstruct a tractography
dataset Fi for i ¼ 1;…;Q. Each Fi ¼ ffi;1;…; fi;Nig consists of Ni

three-dimensional (3D) streamlines, where each fi;j is represented by an

ordered sequence of 3D points fpi;j;k ¼ ðxi;j;k; yi;j;k; zi;j;kÞT 2 ℝ3 : k ¼
1;…;mi;jg for j ¼ 1;…;Ni. In most cases, to fully characterize the struc-
tural connectivity pattern of an individual human brain, Ni is larger than
one million and mi;j can be hundreds. Mathematically, each streamline
also can be represented as a parameterized curve in ℝ3 through spline
fitting or simply connecting the sequence of points using piecewise linear
functions. Let us denote this parameterized curve as fi;j : ½0; 1�→ℝ3, where

each fi;jðsÞ represents a point fi;jðsÞ ¼ ðxi;jðsÞ; yi;jðsÞ; zi;jðsÞÞT 2 ℝ3 for
s 2 ½0; 1�.

The proposed PSC framework has three major components, as illus-
trated in the three rightmost columns in Fig. 1. These are (i) reliable
construction of the structural connectome for the whole brain; (ii) low-
dimensional representation of streamlines in each connection; and (iii)
multi-level connectome analysis. In the following sections, we introduce
each of these modules in detail.
Reliable construction of the structural connectome

HARDI tractography with anatomical priors. One of the key steps
of the PSC framework is to reliably reconstruct the whole-brain structural
connectome through state-of-the-art tractography algorithms. A reliable
reconstruction of the structural connectome is challenging because of the
various positions, shapes, sizes, and lengths of the WM bundles (Fornito
et al., 2013; Girard et al., 2014; Yeh et al., 2013; Basser et al., 2000; Smith
et al., 2012, 2013). For instance, homogeneously initiating streamlines in
Table 1
ICC scores of selected topological features on the test-retest dataset.

Scale Density Characteristic
Path Length

Local
Efficiency

Clustering
Coefficient

V ¼ 68; θr ¼ 10 0.925 0.745 0.789 0.800
V ¼ 68; θr ¼ 20 0.890 0.814 0.802 0.791
V ¼ 68; θr ¼ 50 0.877 0.679 0.791 0.793

V ¼ 148; θr ¼ 10 0.933 0.911 0.887 0.803
V ¼ 148; θr ¼ 20 0.908 0.874 0.908 0.767
V ¼ 148; θr ¼ 50 0.893 0.759 0.861 0.824
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theWM induces over-reconstruction for long streamlines, yet this was the
most commonly used seeding strategy. It is crucial to carefully design the
seeding procedure, stopping and masking criteria, and optimal parame-
ters for tractography to reduce bias in the reconstruction of streamlines.

In this paper, we use the tractography algorithm presented by Girard
et al. (2014). This method has reduced bias in streamline reconstruction
because it borrows anatomical information from high-resolution
T1-weighted image. The T1-weighted image is first softly segmented
into different parts based on the tissue type, e.g., WM, gray matter (GM),
and cerebrospinal fluid. This segmentation assigns a probability for each
voxel being a certain type of tissue and thus provides a soft criterion for
guiding the growth and termination of streamlines. For instance, WM
bundles are expected to stop in the GM region and should not reach the
cerebrospinal fluid. Moreover, streamlines are initialized from the
interface between GM and WM to compensate for the streamline density
bias that may be caused by the length of fiber bundles. Starting from
these regions, in-house implementation of a state-of-the-art probabilistic
algorithm based on the fiber orientation distribution function (Desco-
teaux et al., 2009; Tournier et al., 2012) is used to propagate the
streamlines. Also, a technique called particle filtering tractography is
adapted (Girard et al., 2014) to reduce the number of streamlines that
prematurely stop in the WM or cerebrospinal fluid. This technique stops
most of the streamlines in the GM and at the GM-WM interface which, in
turn, significantly improves the percentage of valid streamlines in the
reconstruction. The parameters in our tractography algorithm, such as
the maximum deviation angle, fiber orientation distribution function
(ODF) threshold, and parameters for particle filtering, are carefully
selected based on the evaluation of the global connectivity metrics in the
Tractometer (Girard et al., 2014; Côt�e et al., 2013).

In our analysis of real data, on average, 1:15� 105ð�12;219Þ voxels
were identified as the seeding region (about 14 � 15% of the total brain
volume) for each individual in the HCP dataset (with isotropic voxel size
of 1.25 mm). The final tractography dataset for each subject contains
approximately one million streamlines, and each streamline has a step
size of 0.2 mm.

Coarse brain parcellation and connectome extraction. We use an
atlas with known parcellation to define nodes of the structural connec-
tivity network. Here, we consider two popular parcellation atlases, the
Desikan-Killiany (Desikan et al., 2006) and Destrieux (Destrieux et al.,
2010) atlases. The Desikan-Killiany parcellation has 68 cortical surface
regions with 34 nodes in each hemisphere, whereas Destrieux has 148
cortical regions with 74 nodes in each hemisphere. In addition, we
include 17 subcortical regions, such as the hippocampus, caudate, pu-
tamen, pallidum, amygdala, nucleus accumbens, and brainstem, among
others. Freesurfer (Fischl, 2012) is used to perform the brain parcellation.

Given the parcellation of an individual brain, the streamline data are
then grouped according to the regions that they connect. We process the
T1-weighted image, the dMRI image and the tractography dataset using
the following three steps to extract streamlines connecting any pair of
regions: (i) Co-register the T1-weighted image to the b0 and FA images. A
linear registration obtained using FLIRT (Jenkinson et al., 2002) is first
applied and a non-linear registration using advanced normalization tools
(ANTs) (Avants et al., 2011) is used to refine the registration. (ii) Warp
Desikan-Killiany (or Destrieux) parcellation to an individual T1-weighted
image using Freesurfer. (iii) Group each tractography dataset Fi into
different bundles depending on the regions that each streamline
connects.

Step iii is not as frequently used in the current literature as are steps i
and ii. Most existing approaches use the endpoints of a streamline to
identify the regions that it connects (Hagmann et al., 2008; Zalesky et al.,
2010). However, the tractography algorithm may prematurely stop
streamlines in WM (Girard et al., 2014). Moreover, streamlines can pass
through multiple ROIs, especially for the subcortical regions. These is-
sues can result in incomplete and false connections, leading to bias in the
subsequent analysis. To overcome these issues, we develop three pro-
cedures in the PSC framework, cortex surface dilation, streamline cutting,

http://www.nitrc.org/
https://github.com/BIG-S2
https://github.com/BIG-S2
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and outlier streamline removing. The third column in Fig. 1 illustrates these
procedures.

Cortical surface dilation
We dilate each GM cortical region into WM in ψ voxels, where ψ is the

parameter for controlling the amount of dilation. The tractography al-
gorithm can prematurely stop the streamlines in theWM regions or at the
GM-WM interface. However, the cortical ROIs extracted by Freesurfer
only include the GM ROIs. Dilation of the cortical ROIs to include the
GM-WM interface enables us to extract a complete set of WM pathways
for each connection.

Similar dilation procedures have been used in the literature (Reveley
et al., 2015; Donahue et al., 2016; Shadi et al., 2016; Finger et al., 2012).
As pointed out by Thomas et al. (2014), even though it may decrease the
specificity (e.g., ability to avoid false connections), including some WM
regions in the GM ROIs can increase the sensitivity (e.g., ability to detect
true connections). Donahue et al. (2016) used the nearby WM voxels to
decide whether two GM ROIs are connected, which improved the results
by two times with respect to the study of van den Heuvel et al. (2015).
These findings and the apparent limitations of the current tractography
algorithm encourage us to explore the effect of dilation on the repro-
ducibility and robustness of extracted connectomes. The detailed algo-
rithm for the dilation procedure is presented in the Supplementary
Material, Section 1. Supplementary Fig. 1 illustrates the effect of the
dilation for an image with 1mm isotropic resolution.

Streamline cutting
A key idea behind streamline cutting is to account for the possible

passage of streamlines through multiple ROIs. Most tractography algo-
rithms stop the propagation of streamlines based on certain pre-set
stopping criteria; otherwise, the streamline will grow continuously. It
is common to have streamlines connecting multiple ROIs, especially
subcortical ROIs. To extract a connection for any pair of ROIs on the path

of a tract, we cut the tract into
�
n
2

�
line segments if it passes n ðn > 2Þ
Fig. 2. The top row shows the effect of using streamline cutting and dilation. In pa
streamline cutting and dilation, with only streamline cutting and with both stream
parentheses represent the number of streamlines. The dilated regions are marked in
describe the WM connectivity pattern between any ROI pair: panel (c) is an example
show different features extracted from the connection.
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ROIs. A similar cutting operation has been proposed by Ziyan et al.
(2009) in order to remove the erroneous part of the tract that deviates
from a major fiber bundle.

Using the tractography algorithm by Girard et al. (2014), it is very
rare for the middle ROI(s) to be a cortical ROI because when a streamline
reaches the cortical region, it triggers one of the stopping criteria with
high probability. Thus, for streamlines that pass through multiple ROIs,
most of the middle ROIs are subcortical regions. Therefore, this cutting
procedure has a greater effect on subcortical-cortical connections than on
cortical-cortical connections. It allows us to extract the parts of stream-
lines that connect two given regions, regardless of whether these
streamlines start, end or pass through those two regions.

The combination of dilation and streamline cutting enables us to
faithfully extract more complete and reliable WM pathways between
ROIs. Panels (a) and (b) of Fig. 2 compare the streamlines before and
after applying streamline cutting and dilation for two selected pairs of
ROIs. For the two examples in Fig. 2, we identified about 10 times more
streamlines after applying dilation and streamline cutting. Similar phe-
nomena were observed for most pairs of ROIs, indicating that the pro-
cedures developed in the PSC framework can extract rich fiber bundles.

Removing outlier streamlines
In this step, our goal is to identify streamlines that do not followmajor

WM pathways as outliers in each connection. Almost all tractography
algorithms (Girard et al., 2014) can produce false fiber tracts for various
reasons, such as the accumulation of errors for streamline propagation,
low resolution of dMRI, or the stopping criteria of streamline propaga-
tion. Removing these outliers can improve either the estimation of fiber
bundles or the connection between two ROIs (Côt�e et al., 2015; Khatami
et al., 2017). In Fig. 1, item (3) in module 1 illustrates some apparent
outlying streamlines in red for two randomly selected connections.

We choose a scalable outlier detection method based on the Quick-
Bundlemethod (Garyfallidis et al., 2012) to rapidly remove outliers (Côt�e
et al., 2015). The key idea of QuickBundle is to use the minimum average
nels (a) and (b), we show the identified streamlines between two ROIs without
line cutting and dilation, respectively, from left to right. The numbers in the
purple in each ROI. The bottom row shows the extracted features in PSC that
of streamlines connecting the right and left paracentral lobules; panels (d)–(f)
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direct-flip (MDF) distance to classify streamlines based on a pre-set dis-
tance threshold θt . In PSC, streamlines in each connection have the same
orientation, i.e., they all start from one region and end at the same other
region. Utilizing this property, we replace theMDF distance by the simple

L2 distance, dðf1; f2Þ ¼ kf1 � f2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ ðf1ðsÞ � f2ðsÞÞ2ds

q
, for two stream-

lines f1 and f2 in a specific connection. Lettingm be the number of sample
points on each streamline, the computational complexity of computing
such L2 distance is OðmÞ, making the outlier removal step computation-
ally efficient. Given a fixed θt , a streamline is assigned to a cluster if its L2

distance to the cluster center is smaller than θt . The outliers then are the
singleton clusters with very few streamlines inside.

Efficient representation and analysis of streamlines

After the above preprocessing steps, for a pair of ROIs, we obtain the
streamlines that connect them. This streamline-based connectivity
structure is illustrated in Fig. 1, module 2. We refer to this special con-
nectivity structure as the streamline connectivity cell structure (SCCS),
where each cell contains streamlines that connect the corresponding
ROIs. In most parcellation-based connectivity analysis pipelines, the
streamlines are discarded because of the data size, since each SCCS may
contain thousands of streamlines. However, the SCCS contains rich
geometric information and enables tract-based analysis (O'Donnell et al.,
2009; Prasad et al., 2014; Wang et al., 2016a; Wassermann et al., 2010),
which is more discriminative than some summary statistics (Colby et al.,
2012).

In this section, our goal is to develop an efficient representation
system to enable us to compress and compare the SCCSs extracted from a
large-scale neuroimaging dataset. To achieve this goal, this part of PSC
includes two components: (i) a shape analysis framework to separate the
variation of streamlines in each cell of the SCCS, and (ii) an encoding and
decoding procedure to efficiently compress the SCCS.

Streamline variation decomposition
In each cell of the SCCS (e.g., first row of Fig. 2), streamlines have

very similar shape and are smooth. The shape here refers as the
streamline after removing some shape confounding variables, e.g.,
translations, rotations, scaling and re-parameterization (Srivastava et al.,
2011). Our idea for compression is to use a shape analysis framework
(Srivastava et al., 2011; Corouge et al., 2004) to decompose all stream-
lines into different components and then represent the aligned shape
component using a low-dimensional structure. All other components,
such as rotation and translation, can be preserved by using a few pa-
rameters. Finally, the original streamlines can be recovered by recom-
bining these components.
Fig. 3. Remaining shape component after separating different shape-preserving tr
second row shows the x, y, z coordinates. C: translation, L: scaling, O: rotation, an
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Let Ωða;bÞ be the functional space of all WM bundles that connect ROIs
a and b, and a smooth streamline f 2 Ωða;bÞ is a function f : ½0; 1�→ℝ3.
According to Srivastava et al. (2011), we can decompose the variation of
streamlines in Ωða;bÞ into translations, rotations, scalings, re-parameteri-
zations and shapes. This decomposition is quite flexible. For instance, we
can merge some shape-confounding components into the shape compo-
nent to simplify the decomposition. In Fig. 3, we illustrate the remaining
shape part of the simulated streamlines after separating different shape
confounding components. As more shape-confounding components are
separated and removed, the remaining shapes are more consistent across
different streamlines.

We adapt an elastic shape analysis framework (Srivastava et al.,
2011) to separate the translations, rotations, scalings and
re-parameterizations from the shapes. It is assumed that we have a
template streamline μða;bÞ (such template can be learned from the data)
for each connection ða; bÞ in one SCCS. The template μða;bÞ is usually a
centered 3D curve with a unit length, representing the shared geometric
structure of streamlines in this connection. We can align streamlines
ff1ð⋅Þ;…; fnða;bÞ ð⋅Þg 2 Ωða;bÞ to this template to perform the decomposition.
It is easy to separate the translation and scaling (Srivastava et al., 2011;
Corouge et al., 2004), respectively denoted as C and L, by centering and
normalizing each streamline. Without specifically stating otherwise,
hereafter, we consider all streamlines to have been centered and
normalized.

To separate rotation and re-parameterization, we represent each

streamline as its square root velocity function (SRVF) qðsÞ ¼

_f ðsÞ=
ffiffiffiffiffiffiffiffiffiffiffi��� _f ðsÞ���r

: A rotation of f by O 2 SOð3Þ is denoted as O*f and its SRVF

becomes O*q. Re-parameterization is represented as γ 2 Γ, where Γ is the
set of all orientation-preserving diffeomorphisms of ½0; 1�,
γ : ½0;1�→½0; 1�. Re-parameterization of f by γ is denoted as f ðγðsÞÞ, and its
SRVF is denoted as ðq; γÞ ¼ ðq∘γÞ ffiffiffi

_γ
p

, where ∘ denotes the composition of
two functions. The following optimization is used to separate the trans-
lation and re-parameterization from a streamline fk with respect to the
template μða;bÞ:

ðOk; γkÞ ¼ argmin
O2SOð3Þ;γ2Γ

������qμða;bÞ � O*ðqk ; γÞ
������; (1)

where qk is the SRVF of fk and qμða;bÞ is the SRVF of μða;bÞ. When the
template μða;bÞ is unknown, or in the case that we need to learn a template
from some training data, we can formulate the estimation of rotations, re-
parameterizations and μða;bÞ as a joint optimization problem as follows:
ansformations in a simulated example. The first row shows the 3D curves; the
d γ: re-parameterization.
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ðOk; γkÞ ¼ argmin
O2SOð3Þ;γ2Γ

��qμða;bÞ � O*ðqk; γÞ��;
� �

qμða;bÞ ¼ n�1
ða;bÞ

Xnða;bÞ
k¼1

Ok�ðqk; γkÞ for k ¼ 1;…; nða;bÞ;
(2)

where nða;bÞ is the total number of streamlines in the training data. The
optimization of Eqn. (2) is done through an iterative procedure until
convergence. We optimize Ok through Procrustes analysis (Corouge et
al., 2004) and γk through dynamic programming (Srivastava et al.,
2011). Finally, as illustrated in the last column of Fig. 3, we obtain a
collection of tightly aligned fiber tracts as the shape component, denoted

as f~f k
���~f k ¼ Ok�ðfk∘γkÞ for k ¼ 1;…; na;bg.

Encoding and decoding streamlines
Due to the variation decomposition, the cross-sectional variance of

the remaining shape components ~f kðsÞ for any s 2 ½0;1� is much smaller
than that of the original streamlines. This phenomenon allows us to
represent the shape component using a low-dimensional structure, which
is the component that takes the most space to save. For each cell of the
SCCS, we use a training dataset to learn a template streamline and a set of
basis functions for efficiently representing the shapes of streamlines.
Specifically, for each connection ða; bÞ, we pool the streamlines from a set
of representative subjects, extract the template streamline and shape
component, and learn a set of basis functions using functional principal
component analysis (fPCA) to represent the functional space of the
aligned streamlines. Let ϕi

l : ½0;1�→ℝ be a basis function for i ¼ 1; 2; and
3 and l ¼ 1;…;Mi

ða;bÞ, where Mi
ða;bÞ is the number of basis functions

learned for the i-th coordinate, in which i ¼ 1; 2 and 3 represent the x, y
and z coordinates, respectively. We denote this representation coordinate
as follows:

L ða;bÞ ¼
n
μða;bÞ;

n
ϕi
l : i ¼ 1; 2; 3; l ¼ 1;…;Mi

ða;bÞ
oo

; (3)

in which the template fiber μða;bÞ is the origin of this coordinate system.
For a given streamline f in connection ða; bÞ, we align it to μða;bÞ to

extract the shape component ~f ð⋅Þ after separating the rotation O, trans-
lation C, scaling L and re-parameterization γ. We then encode the shape
part as

~f ðsÞ ¼

0
BBBBBBBBB@

μ1ða;bÞðsÞ þ
XbM 1

ða;bÞ

l¼1

c1l ϕ
1
l ðsÞ

μ2ða;bÞðsÞ þ
XbM 2

ða;bÞ

l¼1

c2l ϕ
2
l ðsÞ

μ3ða;bÞðsÞ þ
XbM 3

ða;bÞ

l¼1

c3l ϕ
3
l ðsÞ

1
CCCCCCCCCA

þ
0
@ ε1ðsÞ

ε2ðsÞ
ε3ðsÞ

1
A; (4)

where ε is the error term, cil is the coefficient corresponding to the basis

function ϕi
l and bMi

ða;bÞ represents the total number of basis functions for

i ¼ 1;2; and 3 that are used to approximate ~f ðsÞ up to the error of
εðsÞ ¼ ðε1ðsÞ; ε2ðsÞ; ε3ðsÞÞT .

Through this encoding procedure, we represent the streamline f as

fC;O; L; γ; cil : i ¼ 1;2; 3; l ¼ 1;…; bMi
ða;bÞg. The re-parameterization γ does

not alter the streamline path (Srivastava et al., 2011) since it is only used to
align streamlines to the template to reduce the cross-sectional variance.
Thus, we can discard γ for the purpose of compression. The original
streamline path can be recovered from fC;O; L; cil : i ¼ 1; 2;3; l ¼
1;…; bMi

ða;bÞg, which is a decoding procedure:

bf ¼ OT�L*~f þ C : (5)
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Let
����⋅��j2 be the L2 norm of a vector or matrix. A smaller kεk corre-

sponds to a more accurate representation of f, which requires more co-
efficients. We define a measure, called the compression ratio, as

ρ ¼ 100ð1� Nc=NrÞ; (6)

for evaluating the representation efficiency, where Nr is the number of
parameters used to represent the raw streamline f andNc is the number of

parameters used to represent bf after compression.
The proposed encoding procedure is a learning-based approach. For

each cell of the SCCS, we learn the common geometry of streamlines (the
template) and a set of basis functions to efficiently represent the devia-
tion of an individual streamline from the template. To represent different
data, such as tractography data associated with neurodegenerative dis-
ease, a new training process would be necessary. However, we emphasize
that the proposed compression method is robust. The alignment process
separates the shape from other shape-preserving transformations and the
compression is conducted on the shape part. Given new tractography
data, as long as the streamline shapes remain similar to those in the
training dataset, the designed compression method should work well. In
our PSC pipeline, for each connection based on the Desikan-Killiany and
Destrieux parcellations, we provide a template streamline and a set of
basis functions learned from HCP subjects. If a new subject has stream-
lines that cannot be precisely represented by the provided coordinate
systems, a warning will be given and a new training procedure is
recommended.
Multi-level groupwise connectome analysis

We now obtain a parcellation-based tractography common space
(PTCS) for each connection, which is given by PTCS ¼ [V

a;b¼1ða; bÞ 	
L ða;bÞ: To the best of our knowledge, PTCS is the first common space of its
kind to efficiently represent streamlines for parcellation-based con-
nectome analysis. For any new subject, in PTSC, we can use (4) to
transform all tractography data from the original 3D measurement space
onto the coordinate system of PTCS, which is a compression process of
the SCCS. Based on the saved (compressed) SCCS, we can carry out the
groupwise connectome analysis at three different levels, from complex to
simple: (i) the streamline level; (ii) the weighted network level; and (iii)
the binary network level. See the illustration of multi-level groupwise
connectome analysis in the rightmost column of Fig. 1.

At the streamline level, our PSC framework saves the object SCCS, in
which each cell contains the streamlines that connect the corresponding
pair of regions. The geometric information of each streamline is well
preserved in the SCCS. Since the streamlines in each cell of the SCCS are
aligned to a template, we can directly compare their shapes without the
misalignment issue. We also can calculate the WM integrity measures,
such as FA and generalized FA (GFA), along all streamlines in each cell of
the SCCS and perform statistical analysis for these diffusion measure-
ments. The diffusion profile along with these tracts integrate both the
geometric and diffusion properties of a connection.

At the weighted network level, the object of the SCCS is turned into an
adjacency matrix, representing how different brain regions are con-
nected. The scalar in each cell often represents the coupling strength
between two ROIs. For example, the commonly used metric is the count
of streamlines (Smith et al., 2012, 2013). However, that count is not
considered to be reliable when measuring the coupling strength (Fornito
et al., 2013; Smith et al., 2013; Jones et al., 2013). Instead of only using
the count as the “connection strength”, we propose to include multiple
features of a connection to generate a tensor network for each brain. The
tensor network has a dimension of V � V � P, where P represents the
number of features and V represents the number of nodes. Each of the P
matrices is a weighted network and describes one aspect of the connec-
tion. As illustrated in the bottom row of Fig. 2, the following features are
included in our PSC package.
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1 Diffusion-related features. Diffusion properties along streamlines
characterize the water diffusivity along WM streamlines for each ROI
pair. For each streamline, our PSC package provides eight different
diffusion-related features, the mean of FA, max FA, the mean of the
mean diffusivity (MD), max MD, the mean of GFA, max GFA, the
mean of the apparent fiber density (AFD) and max AFD. More
diffusion-related features can be included in the PSC package in the
future.

2 Geometry-related features. The average length, shape, and cluster
configuration characterize the geometric information of streamlines
for each ROI pair. The average length of streamlines in a connection
reflects the intrinsic spatial distance between two regions. In the
PTCS, the coefficients fcilg, i ¼ 1;2; 3 of streamlines are natural shape
information. We calculate the averages of fci1;…; cing for i ¼ 1;2 and
3, and use them as three different shape features. In addition, we
calculate the number of clusters using the Quickbundle method with a
fixed θt , which is more robust to some confounding effects in the
tractography reconstruction, such as the seeding strategy.

3 Endpoint-related features.We consider the features generated from
the end points of streamlines for each ROI pair. We first extract the
number of end points as a feature, which is the same as the count of
streamlines. We also calculate the total connected surface area (CSA)
for each ROI pair. Specifically, we treat each ROI as a 3D surface, as
illustrated in Fig. 2 (f). At each intersection between the surface and a
streamline, we calculate the area covered by all small circles gener-
ated by streamlines. In the Supplementary Section 2, we present the
detailed procedure to calculate the CSA feature. Note that the CSA
feature is similar to the continuous connectivity feature proposed by
Moyer et al. (2017), with both having the effect of smoothing the
count matrix. However, the extracted weight in Moyer et al. (2017)
depends on the density of the streamlines, whereas the CSA depends
on the touching area. A weighted version of the CSA is also calculated
by dividing the CSA by the total surface area of the two ROIs.

At the binary network level, we threshold the streamline count matrix
into a binary matrix. Each element of the binary matrix indicates the
presence or absence of a connection for a specific ROI pair. Statistical
analysis of such binary networks (Durante and Dunson, 2016; Durante et
al., 2017) and the inference of the network change with different phe-
notypes (Wang et al., 2016b) suggests that this type of data contains rich
Fig. 4. Examples of extracted brain networks usi
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information. However, defining a proper threshold is not trivial at all
(Shadi et al., 2016). With a novel reproducibility evaluation metric and a
test-retest dataset (introduced in Sections 2.5 and 2.6, respectively), we
are able to find a proper threshold for our PSC framework in order to turn
the streamline count matrix into a binary network. Fig. 4 presents some
representative binary networks and weighted networks on the scale of
V ¼ 68 based on the cortical ROIs in the Desikan-Killiany atlas from a
randomly selected subject in the HCP dataset.
Quantitative evaluation of reproducibility

Robustness and reproducibility are critical for a good structural
connectome mapping pipeline. Based on a test-retest dataset (will be
introduced in the following section), we develop different quantitative
metrics to evaluate the robustness and reproducibility of PSC under
different preprocessing parameters. Currently, the reproducibility of the
brain structural connectome is mainly evaluated through the intraclass
correlation coefficient (ICC) (Prckovska et al., 2016; Welton et al.,
2015), which is defined as ICC ¼ σ2bs=ðσ2bs þ σ2wsÞ; and its extensions,
where σ2bs represents the between-subject variance and σ2ws represents the
within-subject variance under an analysis of variance (ANOVA) model.
Since the ICC is limited to univariate variables (Shrout and Fleiss, 1979),
we propose a distance-based ICC (dICC) to evaluate the reproducibility of
complex connectivity representations, such as weighted networks. Spe-

cifically, the dICC is defined as dICC ¼ ðd2bs � d
2
wsÞ=d

2
bs; where d

2
bs and d

2
ws

respectively represent the average squared distance between subjects and

within multiple scans of a subject. Here, d
2
bs is analogous to the “total

variance”, d
2
ws to the “within-subject variance”, and d

2
bs � d

2
ws to

“between-subject variance”.
We need to define the distances for different representations of the

structural connectome to calculate the dICC. We first consider the binary
and weighted networks. For any two binary networks B1 and B2, we
define their distance as db ¼ jB1 � B2j, where j⋅j represents the L1 metric.
For two weighted networks A1 and A2, we use the L2 metric to calculate
their distance dw1 ¼ A1 � A2. Note that it is possible to use other metrics
to calculate the dICC, e.g., we first log-transform each weighted matrix
and then calculate their L2 distances. These options are explored in the
Supplementary Material, Section 3.
ng PSC for a randomly selected HCP subject.
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At the streamline level, it is not trivial to define a good metric to
compare two SCCSs due to the complex structure of SCCSs. Specifically,
each cell in the SCCS contains streamlines in the native subject space, and
there are different numbers of streamlines for the same connection across
subjects. Instead of directly comparing SCCSs, we extract and compare
the mean diffusion profiles along streamlines, which depend on the
spatial location of streamlines and the diffusivities along them. Subse-
quently, for each ROI pair, we calculate the L2 distance between their
mean FA curves in order to calculate the associated dICC score for SCCSs.
Real datasets

We use two real datasets, a test-retest dataset and the HCP dataset, to
evaluate three different aspects of the developed PSC framework:
robustness and reproducibility, representation efficiency, and the heri-
tability of various extracted connectivity features.

Test-Retest Dataset: The test-retest dataset represents a clinical
acquisition. It consists of 11 healthy subjects, each of whom has 3
repeated acquisitions with an approximate two-week interval between
two consecutive acquisitions. A total of 33 acquisitions comprise this
dataset. The average age of all subjects is 26� 2:4 years. The diffusion
space (q-space) was acquired along 64 uniformly distributed directions
with a b-value of b ¼ 1000 s=mm2 and a single b0 (¼0 s=mm2) image. The
scan was done by using the single-shot echo-planar imaging sequence on
a 1.5 Tesla Siemens MAGNETOM (128� 128 matrix, 2 mm isotropic
resolution, TR/TE 11000=98 ms and GRAPPA factor 2). An anatomical
T1-weighted 1� 1� 1 mm3 MPRAGE (TR/TE 6:57=2:52 ms) image was
also acquired. The diffusion data were upsampled to 1� 1� 1 mm3

resolution using a trilinear interpolation and the T1-weighted image was
registered on the upsampled b0 image. Quality control by manual in-
spection was used to verify the registration (Girard et al., 2014).

Human Connectome Project (HCP) Dataset: The HCP dataset rep-
resents a high-resolution dMRI acquisition. A full dMRI session for the
HCP data includes 6 runs (each approximately 10min), representing 3
different gradient tables, with each table acquired once with right-to-left
and left-to-right phase encoding polarities, respectively. Each gradient
table includes approximately 90 diffusion weighting directions plus 6 b0
acquisitions interspersed throughout each run. Within each run, there are
three shells of b ¼ 1000;2000, and 3000 s/ mm2 interspersed with an
approximately equal number of acquisitions on each shell. Refer to Van
Essen et al. (2012) and Sotiropoulos et al. (2013) for more details about
the data acquisition and preprocessing. We have used all 3 shells for fiber
ODF estimation. Only the b ¼ 1000 data were used for diffusion tensor
estimation and the calculation of diffusion tensor metrics, such as FA and
MD. We extracted 856 subjects with both preprocessed dMRI and
anatomical T1-weighted MRI data from the 900-subject release of the
HCP dataset.

Experimental results

In the experimental section, we evaluate the following four aspects of
the PSC framework.

(I) Choice of optimal parameters in PSC: There are several tuning
parameters in PSC that are important for generating reproducible
connectomes. The test-retest dataset together with the quantita-
tive reproducibility measures enable us to select these parameters.

(II) Validation of reproducibility: We are interested in validating and
comparing the robustness and reproducibility of various con-
nectomes extracted by PSC.

(III) Evolution of the proposed compression method: We want to
evaluate and compare the compression ratio of the SCCS with that
of existing methods.

(IV) Demonstration of groupwise analyses: The HCP dataset was pro-
cessed using PSC. Using these data, we illustrate the potential
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applications of PSC in characterizing normal variations and heri-
tability of structural connectomes in healthy subjects.
Choosing the parameters of PSC

There are several tuning parameters in PSC that are critical for
generating robust structural connectomes. We use the test-retest dataset
and the defined reproducibility metrics to select these tuning parameters.

Dilation parameter ψ . We dilate the GM cortical region into the WM
area with ψ voxels. A proper choice of ψ is important. As ψ increases,
each GM ROI contains a small portion of WM and thus, streamlines that
stop at the GM-WM interface will be included in the extracted connec-
tions. However, a large ψ can increase the number of false positive
connections.

Length filtering parameters. Most local tractography algorithms
(Girard et al., 2014) are likely to generate short erroneous streamlines.
Initialized from the WM-GM interface, most streamlines rapidly stop
propagating since they immediately enter the GM region. It is routine to
filter streamlines based on their length. Specifically, we filtered out
streamlines with lengths outside of an interval ½Llen;Ulen�. We set the
upper bound Ulen to be 240 mm, since streamlines with lengths larger
than 240 mm are deemed to be outliers. However, the effect of Llen on
constructing structural connectomes is unknown.

We used the sub-network that consists of the nodes of cortical regions
to determine the optimal values of ψ and Llen, since the dilation was done
solely for the cortical region. Specifically, we considered the reproduc-
ibility of streamline count matrix under the Desikan-Killiany parcellation
(V ¼ 68 for cortical regions) on the test-retest dataset with different
choices of ðψ ; LlenÞ. The reproducibility scores (dICC) are shown in Fig. 5
(a). This reveals that ψ is a crucial parameter for reproducibility. By
increasing ψ from 0 to 2, the reproducibility of the count matrices
dramatically improves, whereas for ψ > 2, the improvement is negli-
gible. Therefore, we set ψ ¼ 2 (dilate 2 mm into WM since we have the
isotropic 1mm image resolution in the test-retest dataset). We also
observe that filtering out short streamlines improves the reproducibility
of the extracted count matrices. However, a large Llen can filter out a large
portion of relatively short streamlines, making the structural connectome
very sparse. We set Llen ¼ 20 throughout this paper.

Outlier threshold. The clustering threshold θt in QuickBundle affects
the outlier detection and feature extraction for each connection. We
selected a set of candidate θts in ð1;20Þ (mm) and then calculated the
number of outliers identified for each θt . For θt > 10 mm, QuickBundle
barely detected any outliers, whereas for θt < 5 mm, QuickBundle
identified too many outliers. Since we focus on these apparent outlying
streamlines that do not follow any major WM pathways, we conserva-
tively set θt ¼ 8 mm; the manual inspection validated our choice.

Reproducibility of connectomes produced by PSC

Since the structural connectome of a normal adult brain is temporally
stable, a good PSC framework must produce similar structural con-
nectomes based on different scans of the same person acquired within a
few weeks. In this section, we evaluated and compared the reproduc-
ibility of structural connectomes at three different levels ranging from the
binary network and the weighted network to the whole-brain streamline
data (saved in the SCCS) under two different cortical surface parcella-
tions. The two parcellations are Desikan-Killiany (Desikan et al., 2006)
with V ¼ 68 cortical surface nodes and Destrieux (Destrieux et al., 2010)
with V ¼ 148. The optimal parameters for dilation (ψ ¼ 2 mm),
streamline length filtering (Llen ¼ 20 mm, Ulen ¼ 240 mm) and outlier
removal (θt ¼ 8 mm) were used in PSC to process the test-retest dataset.

Reproducibility at the binary network level
We considered the structural connectomes generated by PSC for all 33

scans in the test-retest dataset and thresholded each count adjacency



Fig. 5. Reproducibility study of the weighted networks. (a) Effect of parameters ψ and Llen on the reproducibility (measured by dICC) of streamline count matrix
under the Desikan-Killiany parcellation. (b) Reproducibility score (dICC) of the final PSC extracted weighted networks based on ψ ¼ 2, Llen ¼ 20 and θt ¼ 8 mm. A
comparison of PSC with a general weighted network extraction framework is also shown.

Fig. 6. Reproducibility study at the binary network level. (a) The leftmost two columns show two binary network matrices from two different scans of the same
subject. Column 3 shows the difference between the scans, and column 4 shows the difference between the 1st scan and that from a different subject. (b)–(c)
Pairwise distance matrices between 33 binary networks extracted from the test-retest dataset. (d) Relationship between the threshold θbin and the dICC score.
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matrix to obtain a binary network matrix Bi ¼ ΦðAi; θbinÞ, where Φ is a
threshold function defined as ΦðAiða; bÞ; θbinÞ ¼ 1ðAiða; bÞ > θbinÞ; in
which 1ð⋅Þ is an indicator function of an event. Finding a good threshold
θbin is an important problem for brain network analysis (Li et al., 2012;
Shadi et al., 2016). Fig. 6 presents the results of the reproducibility
analysis. We observe only a small number of non-zero edges in the dif-
ference matrix of two scans of the same subject. In contrast, there are
many more non-zero edges in the difference matrix of two different
subjects. For both parcellations, the dICC increases from 0.40 to around
0.64 as the threshold θbin increases from 0 to 100. Since the increasing
rate in the range of ð0; 20Þ is much higher than that in the range of
ð20; 100Þ, we recommend to set θbin ¼ 20 in PSC, where the dICC value is
close to 0.59. Moreover, we observe that increasing V does not increase
the dICC, which is consistent with the findings in the literature
(Prckovska et al., 2016; Welton et al., 2015).

We also used the ICC to evaluate the reproducibility of topological
features of the binary network and compared them with those in the
existing literature (Prckovska et al., 2016; Welton et al., 2015; Zhao et
al., 2015; Cheng et al., 2012a). Four selected topological features were
calculated, the network density, characteristic path length, local efficiency,
and clustering coefficient (Watts and Strogatz, 1998). The ICC(1,1),
introduced by Shrout and Fleiss (1979), was calculated using all 33 bi-
nary networks obtained by using θbin ¼ 20. Table 1 summarizes the re-
sults. The ICC scores of these topological features are significantly higher
than those in the literature (Cheng et al., 2012a; Welton et al., 2015). For
instance, Cheng et al. (2012a) reported ICC scores in the range of 0:2 �
0:7 and Welton et al. (2015) reported ICC scores < 0:6. These results
suggest that the proposed PSC can produce more robust binary networks.

Reproducibility at the weighted network level
Various weighted networks defined in Section 2.4 were extracted

from the test-retest dataset by using PSCwith the optimal parameters. We
used the defined L2 distance to calculate the dICC scores under the two
parcellations. Fig. 5 (b) shows the dICC scores of different weighted
networks. Among all network features, the mean FA, max FA and average
Fig. 7. Comparison of PSC with a routine procedure of extracting the connectivity
row shows the pairwise distance matrices of the streamline count and the CSA matr
streamline count matrices and the binary network matrices produced by the routin
can refer to Fig. 6.
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length have relatively lower dICC scores, indicating that these three
features are less discriminative or reproducible. The new CSA feature has
the highest dICC scores under different parcellations. We consider CSA as
a robust feature that may be better related to the “amount” of neurons
connecting a pair of regions. In addition, we can see that the endpoint-
related features have higher dICC scores than all other features, indi-
cating that the endpoint-related features are very robust and reproduc-
ible under the PSC framework. By comparing the two resolutions of the
endpoint-related features, we observe that the dICC scores are higher
at V ¼ 68 than V ¼ 148.

We compared the proposed PSC framework with a general method
from the literature (e.g. Roncal et al. (2013)) without using the GM ROI
dilation, streamline cutting and outlier removal procedures. The
streamline count matrix was extracted and then the binary matrix was
generated by setting θbin ¼ 0 to threshold the streamline count matrix.
The reproducibility results for the count and binary matrices are pre-
sented in the last two columns of the bar chart in Fig. 5 (b). Fig. 7
compares the pairwise distance matrices of different features extracted
from PSC and this general method. With the weighted networks gener-
ated by PSC, we observe a subject-specific block pattern along the di-
agonal, indicating strong reproducibility of weighted networks. The dICC
scores are around 0.8 under both resolutions. In contrast, the corre-
sponding pairwise distance matrices for the general method do not have
such a clear block pattern and their dICC scores are much smaller. This
indicates that the proposed PSC framework can extract much more reli-
able weighted networks compared with the standard method.

Reproducibility at the streamline level
Each cell of the SCCS contains the original streamlines for each

connection extracted using PSC. At this stage, the streamlines have not
been compressed yet. To perform the streamline-based analysis, we
extracted the FA values along each streamline, treated them as a function
from ½0; 1� to ℝ, and calculated an average FA curve for each connection
(or each cell of the SCCS). The L2 distance between mean FA curves is
matrices from tractography data. The test-retest dataset is used here. The top
ices produced by PSC. The bottom row shows pairwise distance matrices of the
e procedure. To compare with the binary networks produced by PSC, readers
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used to calculate the dICC score at each connection. In our experiment,
the dICC scores were only evaluated at the connections that have at least
20 streamlines in all subjects in the test-retest dataset. Fig. 8 presents the
results.

In Fig. 8 panel (a), we show the streamlines connecting the left and
right frontal sulci and the FA values along them from two scans of two
randomly selected subjects in the test-retest dataset. These streamlines
are part of the corpus callosum bundle. We observe that the streamlines
and the FA values along them are different across subjects, but are very
similar across multiple scans of the same subject. In Fig. 8 (b) and (c),
from left to right, we show the calculated dICC scores using the L2 dis-
tance between mean FA curves, the selected edges with dICC> 0:75, and
the streamlines in a randomly selected subject corresponding to the
selected edges with dICC> 0:75, respectively. The dICC scores for most
connections are higher than 0.6, indicating good reproducibility of PSC
at the streamline level. There are 144 connections at the scale of V ¼ 68
and 202 connections at that of V ¼ 148 with dICC> 0:75. Since the PSC
framework preserves both the networks (binary and weighted) and the
streamlines (SCCS), we can readily map the connections with dICC> 0:75
back to the streamline space. From the mapped back streamlines, we see
that the WM bundles that have high values of reproducibility are similar
across different parcellations.
Connectome representation efficiency

In this section, we examine the representation efficiency of the pro-
posed PTCS. Due to the flexibility of the proposed decomposition, we can
separate different shape-preserving transformations and remove specific
transformations from the shape component. In a simulation study pre-
sented in the Supplementary Material, Section 4.1, we examine three
different scenarios: extracting the shape component by separating (i)
translations only, (ii) rotations and translations, and (iii) rotations,
translations and re-parameterizations (scaling is preserved in the shape
component since it does not help with the compression). It has been
shown that by removing more shape-confounding parameters, we can
achieve better representation efficiency (compression ratio). However,
separating the re-parameterization parameters can be computationally
expensive with naive implementations (Huang et al., 2016; Srivastava et
al., 2011). To speed up the alignment process, we can either use a fast
Fig. 8. Reproducibility analysis of PSC at the streamline level. (a) Extracted stream
dataset. The FA value along each streamline and the mean FA curves (in solid gree
curves at the scale V ¼ 68 and V ¼ 148, respectively. In each panel, we show the
corresponding to the selected edges, from left to right, respectively. A: anterior; P
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alignment procedure (Huang et al., 2016) (a simulation study indicates
that it is more than three times faster than the current dynamic pro-
gramming implementation) or assume an identity re-parameterization
for all streamlines (similar to scenario ii). In the following experiments,
we used the latter approach for simplicity: the streamlines in each
connection are only decomposed into rotation, translation and shape
components.

Representation efficiency for streamlines in connections. We
used the defined compression ratio to evaluate the representation effi-
ciency of the PTCS. We considered streamlines in three representative
connections under the Desikan-Killiany parcellation: (i) those connecting
the left and right superior parietal lobule, which is part of the corpus
callosum bundle, indexed as connection ðL28;R28Þ; (ii) those connecting
the left caudal middle frontal gyrus and left superior parietal lobule,
indexed as connection ðL3;R28Þ; and (iii) those connecting the brain
stem and the left precentral gyrus as part of the corticospinal tracts,
indexed as connection ðLS9;R23Þ. Fig. 9 (a) presents those example
bundles. To learn a PTCS for each connection, 20 subjects from HCP were
used as the training set. Another 20 subjects were used as the test set for
calculating the average compression ratio. The compression ratio was
evaluated under different values of ε. The proposed method was
compared with the classical cubic spline method and the linearization
compression method in Presseau et al. (2015). Table 2 presents the
comparison results. The PTCS outperforms the cubic spline and lineari-
zation compression methods in all cases. At the precision of kεk ¼ 0:2
mm, we have ρ 
 98%. That is, with around 2% of parameters, we can
almost perfectly recover the streamlines with the original image resolu-
tion of 1:25� 1:25� 1:25 mm3. The size of the whole HCP tractography
dataset can be reduced from a few terabytes to dozens of gigabytes.

To further test the robustness of the PTCS learned from HCP subjects,
we applied our PSC pipeline to three other datasets that have relatively
low image quality. The detailed compression results are presented in the
Supplementary Material, Section 4.2. Although there is a slight decrease
in the compression ratios, we can still achieve comparable compression
ratios in these datasets using the PTCS trained from the HCP data, indi-
cating that the proposed compression method is very robust. The slight
decrease in the compression ratio may be due to the low image
resolution.

Impact of diffusion measures along bundles. Since tract-based
lines connecting left and right frontal sulci from two subjects in the test-retest
n) are also plotted; (b) and (c) Reproducibility analysis based on the mean FA
dICC score matrix, selected edges with the dICC > 0:75, and the streamlines
: posterior; R: right; and L: left.



Fig. 9. Evaluation of the proposed compression method. (a) Raw streamlines in connections ðL28;R28Þ, ðL3;R28Þ and ðLS9;R23Þ in a subject from the HCP
dataset, which require 21.4MB disk space. (b) Reconstructed compressed streamlines from PSC with kεk ¼ 0:2 mm which require only 0.49MB disk space. (c–d)
Mean FA and MD curves along the streamlines in ðL28;R28Þ when the streamlines are compressed with different values of jjεjj.

Table 2
Compression ratio of streamlines connecting some representative ROI pairs.

Error kεk (mm) Connection ðLS9;R23Þ Connection ðL3;R28Þ Connection ðL28;R28Þ
0.1 0.2 0.5 2.0 0.1 0.2 0.5 2.0 0.1 0.2 0.5 2.0

PTCS 0.961 0.976 0.987 0.992 0.959 0.974 0.984 0.988 0.961 0.977 0.988 0.992
Linearization 0.865 0.930 0.969 0.981 0.867 0.930 0.966 0.978 0.867 0.933 0.969 0.980
Cubic Spline 0.783 0.873 0.935 0.960 0.770 0.864 0.925 0.951 0.779 0.872 0.934 0.959
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studies often use dMRI diffusivity metrics, such as FA and MD, along WM
bundles, we performed additional experiments to explore how our
compression can impact the integrity of diffusivity information along
WM bundles that connect two ROIs. Supplementary Table 3 shows that
the percentages of the mean FA and MD change. The mean FA and MD
values along these tracts barely change when jjεjj is smaller than 0.5. Fig.
9 panel (c) and (d) present the mean FA and MD curves along streamlines
in ðL28;R28Þ when the tracts are compressed with different kεk (a
randomly selected HCP subject). Fig. 9 indicates that PSC not only
removes outliers and compresses streamlines, but also preserves the
diffusion properties along the reconstructed streamlines after
compression.

Groupwise connectome analysis

In this section, we demonstrate the use of PSC for groupwise analysis
in a large cohort study. The whole HCP dataset was processed using PSC,
and various representations of connectomes were extracted for future
statistical analysis.

Heritability of the weighted network. Given the weighted net-
works extracted by PSC, we examined the heritability of the weighted
structural networks of different cortical ROIs. Among 856 subjects in the
HCP dataset, we identified 86 monozygotic twin pairs, 83 dizygotic twin
pairs, and 207 singleton subjects. In our heritability analysis, we used the
68� 68 mean FA weight matrix (under the Desikan-Killiany parcella-
tion) as the phenotype of interest. Depending on the research focus, other
weighted matrices, such as the CSA matrix, can be easily included in this
analysis. We fitted an ACE model (Haseman and Elston, 1970; Neale and
Cardon, 1992) as follows:

yij ¼ xT
ijβ þ aij þ ci þ eij; (7)

where fyijg with j ¼ 1;2 represent the mean FA measure for the i-th twin
pair, a p� 1 vector xij is a set of covariates and β represents the vector
containing all the coefficients of the effect. There are three variance
components in the above model, including the additive genetic variance
aij � Nð0; σ2aÞ, the common environmental variance ci � Nð0; σ2c Þ, and the
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specific environmental effect eij � Nð0; σ2e Þ. For the additive genetic ef-
fect, it is assumed that corðai1; ai2Þ ¼ 1 for the monozygotic twin pairs
and corðai1; ai2Þ ¼ 0:5 for the dizygotic twin pairs. And eij � Nð0; σ2e Þ is
assumed to be independent for different subjects. The genetic heritability
was calculated as h2 ¼ σ2a=ðσ2a þ σ2c þ σ2e Þ. To test the significance of the
heritability h2, we particularly focused on testing whether the genetic
variance σ2a equals zero:

H0 : σ2
a ¼ 0  v:s:   H1 : σ2a > 0: (8)

Since a large proportion of connections are zero-inflated where the
normal assumption of model (7) is violated, we only kept 672 connec-
tions. These connections were selected based on the criterion that each of
them has less than 5% of zero weights among all HCP subjects. Based on
model (7), the maximum likelihood estimates of ðβ; σ2

a ; σ
2
c ; σ

2
e Þ were ob-

tained and the log-likelihood ratio test (LRT) was applied to test the
significance. The results are presented in Fig. 10, in which panel (a)
shows the estimated heritability scores for the mean FA weighted matrix,
panel (b) shows the p-values of the significant edges (with a threshold of
α ¼ 0:05) after Bonferroni correction, panel (c) shows the selected 28
significant connections with heritability scores greater than 0.8, and
panel (d) shows the streamlines of the 28 connections. In the Supple-
mentary Table 4, we present the ROI names, heritability scores and
adjusted p-values of the 28 selected connections. Our results reveal that
some well-known fiber bundles, including the left and right arcuate
fasciculus bundles, the right inferior longitudinal fasciculus bundle, the
right uncinate fasciculus bundle, the optic radiation bundle, and a large
portion of the corpus callosum bundle, are highly heritable. This finding
is consistent with the results in the existing literature (Kochunov et al.,
2015).

Heritability of streamlines. At the streamline level, we conducted
heritability analysis on the mean FA along streamlines in each cell of the
SCCS. The same set of subjects from the previous experiment was used
here. We fitted a functional version of the ACE model proposed in Luo et
al. (2017):

yijðsÞ ¼ xT
ijβðsÞ þ aijðsÞ þ ciðsÞ þ eijðsÞ; s 2 ½0; 1�; (9)



Fig. 10. The top row illustrates the heritability analysis using the mean FA weighted matrix: (a) Estimated heritability scores for each connection based on the
mean FA weighted matrix; (b) P-values of the significant edges (with a threshold of α ¼ 0:05) after Bonferroni correction; (c) Selected significant connections with
heritability scores greater than 0.8; (d) Corresponding streamlines in the selected connections in (c). The bottom row illustrates the heritability analysis using
mean FA curves along streamlines: (e) Selected connection; (f) Mean FA curves along streamlines in this connection for two pairs of monozygotic twins; (g)
Heritability score along the curve; and (h) P-value along the curve. A: anterior; P: posterior; R: right; L: left and MZ: monozygotic.

Table 3
Selected connections with the possible smallest global p-values from streamline-level
analysis. The global p-values are evaluated based on 106 bootstrap runs and are adjusted
using Bonferroni correction. The heritability scores at the weighted network level (using
mean FA values) and the adjusted p-values are also presented for comparison.

ROI1 ROI2 global
pval

network-
h2

network-
pval

L10 (lh-
lateraloccipital)

L34 (lh-insula) �2.56E-
04

0.827 8.34E-07

L10 (lh-
lateraloccipital)

R24 (rh-
precuneus)

�2.56E-
04

0.417 5.32E-04

L12 (lh-lingual) L34 (lh-insula) <2.56E-
04

0.622 1.67E-04

L23 (lh-precentral) R16 (rh-
paracentral)

�2.56E-
04

0.311 1.01E-05

L23 (lh-precentral) R23 (rh-
precentral)

�2.56E-
04

0.608 3.08E-05

L24 (lh-precuneus) R24 (rh-
precuneus)

�2.56E-
04

0.241 1.54E-01

L24 (lh-precuneus) R28 (rh-
supparietal)

�2.56E-
04

0.239 1.19E-03

L26 (lh-
rostlmidfron)

R26 (rh-
rostmidfron)

�2.56E-
04

0.383 7.90E-05

L26 (lh-
rostralmidfron)

R25 (rh-
supfrontal)

�2.56E-
04

0.745 1.84E-06

L27 (lh-supfrontal) R25 (rh-
supfrontal)

�2.56E-
04

0.767 5.00E-11

L28 (lh-supparietal) R9 (rh-
isthcingulate)

�2.56E-
04

0.37 1.00Eþ00

L28 (lh-supparietal) R24 (rh-
precuneus)

�2.56E-
04

0.439 1.19E-06

L28 (lh-supparietal) R28 (rh-
supparietal)

�2.56E-
04

0.804 5.99E-06

R10 (rh-
lateraloccipital)

R34 (rh-insula) �2.56E-
04

0.306 2.50E-01

R28 (rh-
supparietal)

R34 (rh-insula) �2.56E-
04

0.436 1.00Eþ00
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where yijðsÞ with j ¼ 1;2 represent the mean FA curve for the i-th twin
pair at a point s 2 ½0;1�. Age, gender, handedness and an intercept term
were added in xij 2 ℝ4 and βðsÞ is a vector of four functional covariate
coefficients. The three variance components aijðsÞ � GPð0;ΣaÞ,
ciðsÞ � GPð0;ΣcÞ, eijðsÞ � GPð0;ΣeÞ are Gaussian processes that at a fixed
point s 2 ½0; 1� have the same assumptions as in the previous ACE model
(7). Then heritability is estimated along each curve as h2ðsÞ ¼
Σaðs; sÞ=½Σaðs; sÞ þ Σcðs; sÞ þ Σeðs; sÞ� locally. To test the significance of
heritability, we performed both local and global tests. For a specific point
s0 2 ½0; 1�, we focused on testing locally whether the genetic variance
Σaðs0; s0Þ is equal to zero:

H0 : Σaðs0; s0Þ ¼ 0  v:s:   H1 : Σaðs0; s0Þ > 0: (10)

The weighted likelihood ratio statistic (WLRS) (Luo et al., 2017) was
used to calculate the local p-values. For the global test on the entire
curve, we tested whether all the locations have genetic variance equal to
zero:

H0 : Σaðs; sÞ ¼ 0;8s 2 ½0; 1�  v:s:   H1 : Σaðs; sÞ > 0;9s 2 ½0; 1�: (11)

The summation of the local WLRS along the tract curve was taken as a
global statistic. We performed a wild bootstrap procedure (Zhu et al.,
2012) to efficiently estimate the corresponding global p-value using 106

bootstrap replications. Bonferroni correction was applied to adjust for
multiple comparisons of 256 connections under the test. Table 3 shows
the top connections with global p-values less than or equal to 2:56� 10�4

(the smallest possible p-value based on our bootstrap sampling strategy).
Fig. 10 panels (e)-(h) present the results for a specific connection
ðL10; L34Þ, in which panel (e) shows one example of the streamlines in
ðL10; L34Þ, panel (f) shows one example of the mean FA curves along this
connection for two pairs of monozygotic twins, panel (g) shows the
heritability score along the curve and panel (h) shows the corresponding
local p-values along the curve.
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Discussion

We have developed a powerful PSC mapping framework for per-
forming structural connectome analysis in large-scale neuroimaging
studies. The multi-layer representation allows us to explore the brain
structural connectome across three different levels. At the streamline
level, the geometric information is well preserved, and the developed
variance decomposition allows us to separate the streamlines into various
components. The shape component usually needs a large number of pa-
rameters to represent, but the developed PTCS makes it possible to effi-
ciently represent the shape information using a low-dimensional vector.
At the weighted network level, we extract a dozen features from different
aspects to better characterize the brain connectivity. Compared to the
commonly used count feature, PSC not only provides several novel and
robust measures but also describes each connection in a more compre-
hensive manner. A concatenation of all weighted networks leads to a
tensor weighted network representation, which calls for novel statistical
methods. At the binary network level, a systematic evaluation of repro-
ducibility helps us to choose optimal thresholds to obtain robust binary
networks.

We applied PSC to process both the test-retest dataset and the HCP
dataset. The test-retest dataset is crucial for the development of PSC,
based on which the reproducibility of the brain's structural connectomes
was evaluated across the three different levels. The tuning parameters of
PSC were determined by optimizing the reproducibility results. In our
study, we tried to explore some important questions when analyzing the
structural connectomes.

Factors that affect connectome reproducibility. Through the newly
defined dICC score, we can evaluate the reproducibility of the whole
cortical brain connectome at the binary and weighted network levels.
From the experimental results, we observe that dilation of the GM ROIs,
fiber cutting, and filtering out short streamlines are crucial for improving
the reproducibility of the weighted networks. Dilation and fiber cutting
can overcome some of the drawbacks of the current tractography algo-
rithms. Specifically, due to low image resolution and noise caused by
imaging techniques and tractography algorithms, a decent amount of
streamlines are stopped before reaching the GM ROIs. A recent study by
Reveley et al. (2015) delineates three major causes of this: the low
diffusion anisotropy, dominant superficial WM and sudden propagation
changes of small axonal tracts. Dilation and fiber cutting can include
pre-stopped and non-stopped fibers, leading to more complete and robust
streamlines. However, we note that dilation is only one strategy for
reducing the drawbacks of current tractography algorithms. It also has
the risk of increasing the false positive rate by introducing false con-
nections. Moreover, the dilation parameter ψ is a key parameter that
must be tuned in the PSC framework.

In addition, among all the streamlines in a brain's tractography data, a
large portion are short ones (Girard et al., 2014). These short streamlines
tend to be false positives more than the long ones. Thresholding some
short streamlines can produce more robust connectomes based on our
analyses of the test-retest dataset. To obtain a binary network, our results
have shown that using a small threshold for the countmatrix will produce
much more robust binary networks. In the current setting (with about
106 streamlines in each tractography dataset), a threshold of 20 works
well.

Note that the outlier removal strategy we use is relatively simple. The
average fiber length between two ROIs can vary. Instead of using a fixed
threshold θt , an adaptive one can be used to better classify streamlines in
a connection and thus remove outliers more effectively. Since we have
the test-retest dataset, a future direction will be to utilize these data as a
training set and develop a supervised outlier streamline removal method.

Connectomes at different levels. From simple to complex, the developed
PSC framework produces binary, weighted and streamline-based con-
nectomes. Each format carries different information. For simplicity, the
current literature focuses on the study of binary networks, however, the
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streamline-based connectome (referred to as the SCCS in this paper)
carries much more information. For example, it contains the information
carried by the binary network and most of the weighted networks. Our
compression method allows us not only to project streamlines into a low-
dimensional common space, but also to apply statistical methods to
efficiently model them. A study on the shapes of fiber curves (Zhang et
al., 2016) has demonstrated that the shape is much more reproducible
than the streamline count feature.

Heritability of diffusion profiles. As simple illustrations, we demonstrate
the heritability of FA values extracted using the PSC framework. With the
weightedmean FAmatrix, we observed that many connections are highly
heritable (with h2 > 0:8). Since PSC preserves the streamline-based
connectome, we can extract the highly heritable streamlines. We found
that well-known fiber bundles including the left and right arcuate
fasciculus bundles, the right inferior longitudinal fasciculus bundle, the
right uncinate fasciculus bundle, the optic radiation bundle, and a large
portion of the corpus callosum bundle, are highly heritable. At the
streamline level, using the mean FA curves, we can specifically analyze
the local and global heritability along the streamlines and achieve results
that are consistent with those obtained by using the weighted mean FA
matrix.

Although we have demonstrated some examples of using PSC for
groupwise connectome analysis, the power of PSC has not been fully
explored yet, especially at the streamline level. A low-dimensional rep-
resentation and the learned common space allow us to build efficient
statistical models using the geometric information for the brain structural
connectome. The variation decomposition is an alignment process, and
shape components from different subjects are in the same coordinate
system and can be directly used for modeling. In addition to the extracted
features to characterize a particular connection, many other features can
be extracted, such as the topologic features generated through persistent
homology.
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