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ABSTRACT
Cross-trait polygenic risk score (PRS) method has gained popularity for assessing genetic correlation of
complex traits using summary statistics from biobank-scale genome-wide association studies (GWAS).
However, empirical evidence has shown a common bias phenomenon that highly significant cross-trait PRS
can only account for a very small amount of genetic variance (R2 can be < 1%) in independent testing GWAS.
The aim of this paper is to investigate and address the bias phenomenon of cross-trait PRS in numerous
GWAS applications. We show that the estimated genetic correlation can be asymptotically biased toward
zero. A consistent cross-trait PRS estimator is then proposed to correct such asymptotic bias. In addition, we
investigate whether or not SNP screening by GWAS p-values can lead to improved estimation and show the
effect of overlapping samples among GWAS. We analyze GWAS summary statistics of reaction time and brain
structural magnetic resonance imaging-based features measured in the Pediatric Imaging, Neurocognition,
and Genetics study. We find that the raw cross-trait PRS estimators heavily underestimate the genetic
similarity between cognitive function and human brain structures (mean R2 = 1.32%), whereas the
bias-corrected estimators uncover the moderate degree of genetic overlap between these closely related
heritable traits (mean R2 = 22.42%). Supplementary materials for this article, including a standardized
description of the materials available for reproducing the work, are available as an online supplement.
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1. Introduction

The major aim of many genome-wide association studies
(GWAS) is to examine the genetic influences of common
genetic variants on complex human traits given that many
traits have a polygenic architecture (Boyle, Li, and Pritchard
2017). That is, a large number of genetic variants, typically
single nucleotide polymorphisms (SNPs), have small but
nonzero contributions to the phenotypic variation. In GWAS,
many statistical methods have been developed on the use of
individual-level common SNP (minor allele frequency [MAF]
≥ 0.05) data to infer the heritability and cross-trait genetic
correlation in general populations. For instance, heritability
can be estimated by aggregating the small contributions of a
large number of common SNP markers, resulting in the SNP
heritability estimator (Yang et al. 2010). Moreover, genetic
correlation quantifies the shared genetic influences between
two heritable phenotypes and is traditionally estimated in
family studies. GWAS data offer an alternative to family
studies for genetic correlation estimation using independent
individuals. Specifically, GWAS data are able to measure the
genetic similarity attributable to common SNPs, which can be
calculated as the inner product of genetic effects of SNPs on the
two traits (see Definition 1).

Accessing individual-level SNP data is often inconvenient
due to policy restrictions, and a recent standard practice in
the genetic community is to share the summary association
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statistics, including the estimated effect size, standard error, p-
value, and sample size n, of all SNPs after GWAS are published.
Therefore, it has become an active research area to examine the
heritability and cross-trait genetic correlation based on GWAS
summary statistics. Among them, the cross-trait polygenic risk
score (PRS) (Purcell et al. 2009) has become a popular routine
to measure genetic similarity of polygenic traits with widespread
applications. Compared with other popular methods such as the
cross-trait linkage disequilibrium (LD) score regression (Bulik-
Sullivan et al. 2015) (cross-trait LDSC) and BOLT-REML (Loh
et al. 2015), cross-trait PRS offers at least two unique strengths
as follows. First, cross-trait PRS only requires the summary
statistics of one trait obtained from a large discovery GWAS,
while it allows the individual-level data of the other trait to be
collected in a much smaller testing GWAS. In contrast, most
other methods require large GWAS data for both traits at either
summary or individual-level. For example, the input summary
statistics of cross-trait LDSC should be generated from large-
scale GWAS (Ni et al. 2018), whose sample size is typically larger
than 5000. The main reason is that summary statistics estimated
from small GWAS tend to be noisy and thus the cross-trait LDSC
estimates may have large standard errors. However, cross-trait
PRS can avoid this issue as it directly utilizes the individual-level
data of small testing GWAS. Second, SNP selection can be easily
implemented in cross-trait PRS, enabling flexible PRS construc-
tion for traits with different genetic architectures. However,
given these strengths of cross-trait PRS, empirical evidence has
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shown a common bias phenomenon that even highly significant
cross-trait PRS can only account for a very small amount of vari-
ance (R2 can be < 1%) when dissecting the shared genetic basis
among highly related heritable traits (Bogdan, Baranger, and
Agrawal 2018). Except for some introductory studies, such as
Dudbridge (2013), few attempts have been made to study cross-
trait PRS and to explain such a counterintuitive phenomenon in
real GWAS applications.

This paper fills this significant gap with the following con-
tributions. By comprehensively investigating the properties of
cross-trait PRS for polygenic/omnigenic traits, our first con-
tribution in Section 2 is to show that the estimated genetic
correlation may asymptotically biased toward zero, uncovering
that the underlying genetic overlap can be seriously underesti-
mated. Furthermore, when all SNPs are used in cross-trait PRS,
we show that the asymptotic bias is largely determined by the
triple (n, p, h2) and is independent of the unknown number of
causal SNPs of the two traits, where n is GWAS sample size, p
is the number of SNPs, and h2 is heritability. Thus, our second
contribution in Section 2 is to propose a consistent estimator
by correcting such asymptotic bias in cross-trait PRS. Next, in
Section 3, we show that when cross-trait PRS is constructed
using q top-ranked SNPs whose GWAS p-values pass a given
threshold, in addition to (n, p, h2), the asymptotic bias will also
be determined by the number of causal SNPs m, since the
ratio m/n determines the quality of the q selected SNPs. Based
on these results, we provide practical guidelines for assessing
the m/n ratio and minimizing the potential bias in GWAS
applications. In Section 4, we generalize our results to quantify
the influence of overlapping samples among GWAS. We show
that our bias-corrected estimator for independent GWAS can
be smoothly extended to GWAS with partially or even fully
overlapping samples.

We apply cross-trait PRS to examine the genetic similar-
ity between cognitive function and human brain structures.
Specifically, we use the summary statistics of reaction time
generated by a recent large-scale meta-analysis GWAS (Davies
et al. 2018) and evaluate the performance of cross-trait PRS in
the Pediatric Imaging, Neurocognition, and Genetics (PING)
study (Jernigan et al. 2016). In a preliminary positive control
analysis, we illustrate that the raw cross-trait PRS estimator
is biased toward zero and the proposed bias-corrected esti-
mator provides the expected genetic correlation in the PING
study. We then show that raw estimators underestimate the
genetic similarity between cognitive function and human brain
structures (mean R2 = 1.32%), whereas the bias-corrected
estimators suggest that there are moderate genetic correlations
between cognitive function and human brain structures (mean
R2 = 22.42%).

The remainder of this article is structured as follows. Sec-
tions 2 and 3 study the cross-trait PRS with all SNPs and selected
SNPs, respectively. Section 4 considers the effect of overlap-
ping samples among different GWAS. Section 5 summarizes the
results from numerical experiments using simulated and real
SNP data. In Section 6, we provide the real data analysis in
the PING study. The article concludes with some discussions in
Section 7.

2. Cross-Trait PRS With All SNPs

2.1. General Setup

We first introduce the modeling framework to investigate the
cross-trait PRS, including the genetic architecture of polygenic
traits, distribution of genetic effects, and genetic correlation
estimators.

2.1.1. Polygenic Traits
Consider three independent GWAS that are conducted for three
different traits as follows: (i) Discovery GWAS-I: (X, yα), with
X = [X(1), X(2)] ∈ R

n1×p, X(1) ∈ R
n1×mα , and yα ∈ R

n1×1; (ii)
Discovery GWAS-II: (Z, yβ), with Z = [Z(1), Z(2)] ∈ R

n2×p,
Z(1) ∈ R

n2×mβ , and yβ ∈ R
n2×1; and (iii) Target testing GWAS:

(W, yη), with W = [W(1), W(2)] ∈ R
n3×p, W(1) ∈ R

n3×mη , and
yη ∈ R

n3×1. Here yα , yβ , and yη are three different continuous
phenotypes studied in three GWAS with sample sizes n1, n2, and
n3, respectively. We will use (yα ,yβ) and (yα ,yη) to investigate
two different bias phenomena in later sections, respectively. The
mα , mβ , and mη are different numbers of causal SNPs in these
GWAS. The X(1), Z(1), and W(1) denote the causal SNPs of
yα , yβ , and yη, respectively, and X(2), Z(2), and W(2) donate
the corresponding null SNPs. Thus, X, Z, and W are three
matrices of p SNPs. Furthermore, we assume that column-wise
standardization on X, Z, and W is performed such that each
variable has sample mean zero and sample variance one. Based
on these notations, we may introduce the following condition
on SNP data:

Condition 1. Entries of X, Z, and W are real-value independent
random variables with mean zero, variance one and a finite
eighth order moment. For (X, yα), as n1, p → ∞, we assume
mα/n1 = γα → γα0 and mα/p = ωα → ωα0 for 0 < γα0 ≤ ∞
and 0 ≤ ωα0 ≤ 1. In addition, let mβ/n2 = γβ , mβ/p = ωβ ,
mη/n3 = γη, and mη/p = ωη, similar condition holds for
(Z, yβ) and (W, yη) as n2, n3, p → ∞.

In Condition 1, the number of causal SNPs m is allowed to
be proportional to the number of total SNPs p, reflecting the
widespread dense signals of polygenic/omnigenic traits across
the whole genome (Boyle, Li, and Pritchard 2017). To generate
reliable summary statistics for polygenic traits, sample size n in
discovery GWAS typically needs to be large enough compared
with m. On the other hand, n is allowed to be much smaller
than m in testing GWAS. Thus, we assume GWAS sample size
to be on the same scale as m or smaller than m. In addition,
the standardization assumption on SNP data is for notational
convenience and our main conclusions remain unchanged for
unstandardized data.

The linear polygenic model assumes

yα = Xα + εα , yβ = Zβ + εβ , and yη = Wη + εη,
(1)

where αT = (
αT

(1), α
T
(2)

)
, βT = (

βT
(1), β

T
(2)

)
, and ηT =(

ηT
(1), η

T
(2)

)
are p × 1 vectors of SNP effects, in which α(2), β(2),

and η(2) are zeros, and εα , εβ , and εη represent independent
random error vectors. The α(1), β(1), and η(1) are random
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vectors (Dobriban and Wager 2018; Jiang et al. 2016), and the
distribution assumption will be detailed below.

The overall genetic heritability of yα is, therefore, given
by h2

α = var(Xα)/v(yα) = var(X(1)α(1))/{var(X(1)α(1)) +
var(εα)}, which measures the proportion of variation in yα that
can be explained by the aggregated genetic variation var(Xα).
The yα is fully heritable when h2

α = 1. Similarly, we can define
the heritability h2

β of yβ and h2
η of yη, respectively. We assume

h2
α , h2

β , and h2
η ∈ (0, 1]. The cross-trait genetic correlation in this

article is defined as the inner product of SNP effects on pairs of
phenotypes (Bulik-Sullivan et al. 2015; Lu et al. 2017; Pasaniuc
and Price 2017; Shi et al. 2017; Guo et al. 2019).

Definition 1 (Cross-trait Genetic Correlation). The (cross-trait)
genetic correlation between yα and yη and that between yα and
yβ are respectively given by inner products ϕαη = αTη/(‖α‖ ·
‖η‖) · I(‖α‖ · ‖η‖ > 0) and ϕαβ = αTβ/(‖α‖ · ‖β‖) · I(‖α‖ ·
‖β‖ > 0). where I(·) is the indicator function, ‖·‖ is the l2 norm
of a vector, and ϕαη and ϕαβ ∈ [−1, 1].

2.1.2. Genetic Effects
In this section, we introduce the distribution assumption on
nonzero genetic effects α(1), β(1) and η(1). Since mα , mβ and
mη can be different and the causal SNPs of different phenotypes
may partially overlap, we let mαη be the number of overlap-
ping causal SNPs of yα and yη, and mαβ be the number of
overlapping causal SNPs of yα and yβ . Let F(0, V) represent a
generic distribution with mean zero, (co)variance V , and finite
fourth-order moments. We introduce the following condition
on genetic effects and random errors.

Condition 2. As min(n1, n3, p) → ∞, min(mαη, mα , mη) →
∞, we assume mαη/

√mαmη = καη → κ0αη ∈ (0, 1]. Similarly,
as min(n1, n2, n3, p) → ∞, min(mαβ , mα , mβ) → ∞, we
assume mαβ/

√mαmβ = καβ → κ0αβ ∈ (0, 1]. αi, βj, and ηk
are independent random variables satisfying αi ∼ F(0, σ 2

α/p),
i = 1, ..., mα ; βj ∼ F(0, σ 2

β/p), j = 1, ..., mβ ; ηk ∼ F(0, σ 2
η /p),

k = 1, ..., mη, where σ 2
α , σ 2

β , and σ 2
η are positive scalars. The

mαη overlapping nonzero effects (αi, ηi)s of (yα ,yη) and mαβ

overlapping nonzero effects (αj, βj)s of (yα ,yβ) satisfy(
αi
ηi

)
∼ F

[(
0
0

)
, p−1 ·

(
σ 2

α σαη

σαη σ 2
η

)]
and(

αj
βj

)
∼ F

[(
0
0

)
, p−1 ·

(
σ 2

α σαβ

σαβ σ 2
β

)]
,

respectively, where σαη = ραη · σαση and σαβ = ραβ · σασβ .
And εαi , εβj and εηk are independent random variables satisfying
εαi ∼ F(0, σ 2

εα
), i = 1, ..., n1; εβj ∼ F(0, σ 2

εβ
), j = 1, ..., n2;

εηk ∼ F(0, σ 2
εη

), k = 1, ..., n3, where σ 2
εα

, σ 2
εβ

, and σ 2
εη

are positive
scalars.

Since the three GWAS have independent samples, their
random errors are assumed to be independent. Overlapping
samples and the induced nongenetic correlation will be studied
in Section 4. The genetic correlation between yβ and yη and
that between yα and yη have similar asymptotic properties. To
save space, we do not explicitly study the genetic correlation

between yβ and yη, and the related definitions (e.g., the joint
distribution between nonzero effects (βi, ηi)s) are omitted in
Condition 2. The cross-trait genetic correlation between yα

and yη is asymptotically given by ϕαη = αTη/(‖α‖ · ‖η‖) =
mαη/(mαmη)

1/2 · ραη + op(1) = κ0αη · ραη + op(1) and
the genetic correlation between yα and yβ is asymptotically
given by ϕαβ = αTβ/(‖α‖ · ‖β‖) = mαβ/(mαmβ)1/2 ·
ραβ + op(1) = κ0αβ · ραβ + op(1). As in Jiang et al.
(2016), heritability h2

α , h2
β , and h2

η can be asymptotically
represented as follows: h2

α = {(mα/p)σ 2
α }/{(mα/p)σ 2

α +
σ 2

εα
}, h2

β = {(mβ/p)σ 2
β }/{(mβ/p)σ 2

β + σ 2
εβ

}, and h2
η =

{(mη/p)σ 2
η }/{(mη/p)σ 2

η + σ 2
εη

}.
The aim of introducing the normalizer p−1 for nonzero

genetic effects is to let the per-SNP contribution vanish and
thus the aggregated genetic variation var(Xβ) remains finite
(Bulik-Sullivan et al. 2015; Dobriban and Wager 2018). It is
also possible to introduce the normalization via SNP data as
in Jiang et al. (2016). The following analysis of cross-trait PRS
remains the same in both situations, because the normalization
will cancel out from the numerator and denominator of genetic
correlation estimators. The iid assumption on nonzero genetic
effects α(1), β(1), and η(1) in Condition 2 is introduced for
simplicity and can be relaxed. In GWAS context, iid random
effect formulation is a popular technique to summarize key
global characteristics of widespread small per-SNP genetic
contributions (e.g., Yang et al. 2010; Jiang et al. 2016). In
practice, however, SNPs in coding, regulatory, and low LD
genomic regions may have enriched contributions to heri-
tability. To acknowledge these heterogeneities, it is possible
to allow SNP effect sizes to have different magnitudes. For
example, by letting αi ∼ F(0, σ 2

αi/p) and ηi ∼ F(0, σ 2
ηi/p)

independently for i = 1, ..., p, ϕαη, h2
α , and h2

η can be redefined
as ϕαη = (

∑p
i=1 αiηi)/{(∑p

i=1 α2
i )

1/2(
∑p

i=1 η2
i )

1/2}, h2
α =

(
∑p

i=1 σ 2
α/p)/(

∑p
i=1 σ 2

α/p + σ 2
εα

), and h2
η = (

∑p
i=1 σ 2

η /p)/

(
∑p

i=1 σ 2
η /p + σ 2

εη
). Intuitively, the iid assumption takes an

average of different effect sizes across a large number of SNPs.
Our main conclusions about the asymptotic bias in Section 2.2
remain the same under these more general settings if the
parameters such as genetic correlation and heritability are
redefined accordingly. For SNP screening studied in Section 3,
the performance of cross-trait PRS could be better than expected
if the top-ranked SNPs selected by GWAS p-values tend to have
larger than average effect sizes, but the pattern across different
levels of sparsity will remain unchanged.

2.1.3. PRS-based Genetic Correlation Estimators
For common SNPs, the standard approach in GWAS is marginal
screening. That is, the marginal association between the
phenotype and single SNP is assessed each at a time, while
adjusting for the same set of covariates. Now we introduce
the cross-trait PRS and genetic correlation estimators based on
GWAS marginal screening. We need the following individual
level or summary-level data. As n1, n2, and p → ∞, the
summary association statistics for yα and yβ from Discovery
GWAS-I & II are given by α̂ = n−1

1 XTyα = n−1
1 XT(

X(1)α(1) +
εα

)
and β̂ = n−1

2 ZTyβ = n−1
2 ZT(

Z(1)β(1) + εβ

)
. We assume
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that the individual-level SNP W and phenotype yη in the
Target testing GWAS can be accessed. In addition, h2

α , h2
β ,

and h2
η are assumed to be estimable by their corresponding

either individual-level data (Yang et al. 2010) or summary-
level data (Bulik-Sullivan et al. 2015). These SNP heritability
estimators generally perform well in practice, see Evans et al.
(2018) for a detailed numerical comparison. Theoretically,
Jiang et al. (2016) showed that the REML heritability estimator
(Yang et al. 2010) is consistent in high-dimensional linear
mixed effect model. In summary, besides (n1, n2, n3, p), it is
assumed that summary-level data (̂α, β̂) and individual-level
data (yη, W) are available, and consistent estimators of h2

α ,
h2

β , and h2
η can be obtained in corresponding either GWAS or

previous studies of the same traits. We construct cross-trait
PRSs Ŝα = ∑p

i=1 wîai = Wâ = W(1,α)̂a(1) + W(2,α)̂a(2)

for yα and Ŝβ = ∑p
i=1 wîbi = Wb̂ = W(1,β)̂b(1) +

W(2,β)̂b(2) for yβ , where âT = (̂a1, · · · , âmα , âmα+1, · · · , âp) =(̂
a T

(1), â T
(2)

)
, in which âi = α̂i · I(pvalαi < cα), b̂T =

(̂b1, · · · , b̂mβ , b̂mβ+1, · · · , b̂p) = (̂
b T
(1), b̂ T

(2)

)
, in which b̂i =

β̂i · I(pvalβi < cβ), pvalαi and pvalβi are p-values correspond to
α̂i and β̂i, respectively, and cα and cβ are given thresholds used
for SNP screening in order to calculate Ŝα and Ŝβ . Moreover,
we define W(1,α) = [w1, · · · , wmα ], W(2,α) = [wmα+1, · · · , wp],
W(1,β) = [w1, · · · , wmβ ], W(2,β) = [wmβ+1, · · · , wp], and W
= [W(1,α), W(2,α)] = [W(1,β), W(2,β)].

We estimate the genetic correlation between yα and yη based
on

(̂
Sα ,yη

)
and that between yα and yβ based on

(̂
Sα ,̂Sβ

)
.

They represent two common cases in GWAS applications. For(̂
Sα ,yη

)
, individual-level data are available for one trait, but not

for the other one. It often occurs when the traits are studied
in two different GWAS. For

(̂
Sα ,̂Sβ

)
, neither of the two traits

has individual-level data. This happens when we have GWAS
summary statistics of two traits and estimate their genetic cor-
rection on an independent target dataset. We define the PRS-
based empirical genetic correlation estimators as follows.

Definition 2 (PRS-based Empirical Genetic Correlation Esti-
mators). Suppose the cross-trait genetic correlation ϕαη

between yα and yη is estimated by using
(̂
Sα ,yη

)
, then the

PRS-based empirical genetic correlation estimator is Gαη =
yT
η Ŝα/(‖yη‖ · ‖̂Sα‖) = {(W(1)η(1) + εη)

T(W(1,α)̂a(1) +
W(2,α)̂a(2))}/{‖W(1)η(1) + εη‖ · ‖W(1,α)̂a(1) + W(2,α)̂a(2)‖}.
Similarly, suppose the cross-trait genetic correlation ϕαβ

between yα and yβ is estimated by
(̂
Sα ,̂Sβ

)
, then the PRS-

based empirical genetic correlation estimator is Gαβ =
ŜT
β Ŝα/(‖̂Sβ‖·‖̂Sα‖) = {(W(1,β)̂b(1)+W(2,β)̂b(2))

T(W(1,α)̂a(1)+
W(2,α)̂a(2))}/{‖W(1,β)̂b(1) + W(2,β)̂b(2)‖ · ‖W(1,α)̂a(1) +
W(2,α)̂a(2)‖}.

Here, Gαη is defined by the PRS of yα and measured values
of yη, whereas Gαβ is defined by the two PRS of yα and yβ .
Both of the two estimators can be viewed as empirical val-
ues subjected to the set of selected SNPs in PRS construction.
Therefore, they have different interpretations from the genetic
correlation estimators from other models, such as the genome-
wide estimator in cross-trait LDSC (Bulik-Sullivan et al. 2015).
Furthermore, Gαη and Gαβ may not be consistent estimators for

the underlying population-level parameters ϕαη and ϕαβ . We
quantify their relationships in the following sections.

2.2. Asymptotic Bias and Correction

We first investigate Gαβ and Gαη when all of the p candidate
SNPs are used, that is, we set cα = cβ = 0. Thus, â(1) = α̂(1),
â(2) = α̂(2), b̂(1) = β̂(1), and b̂(2) = β̂(2). We have the following
results on the asymptotic properties of Gαη, whose proof can be
found in the supplementary file.

Theorem 1. Under polygenic model (1) and Conditions 1 and 2,
suppose min(mαη, mα , mη) → ∞ as min(n1, n3, p) → ∞, and
let p = c · (n1n3)a for some constants c > 0 and a ∈ (0, ∞]. If
a ∈ (0, 1), then we have

Gαη = ϕαη +
(√ n1

n1 + p/h2
α

· hη − 1
)

· ϕαη + op(1).

If a ∈ [1, ∞], then we have Gαη · n3 = Op(1).

An important implication of Theorem 1 is that the asymp-
totic limit of Gαη is independent of the unknown numbers
mα , mη, and mαη, as well as parameters of genetic effects in Con-
dition 2. In real GWAS, the number of independent common
SNPs p can be hundreds of thousands or even more than one
million. We allow a to vary widely and depend on GWAS sample
sizes n1 and n3 such that p and (n1n3)

a are proportional, with a
small bounded constant c. For example, suppose p = 500,000, if
n1 = 500,000 and n3 = 1000 (large GWAS), then a can be 0.65
with c = 1.1; if n1 = 1000 and n3 = 200 (small GWAS), then a
can be 1.1 and c = 0.74.

If a ∈ [1, ∞], that is, n1n3 is too small compared to p, then
Gαη will have a zero asymptotic limit. In practice, this occurs
when the sample size of discovery GWAS is too small to obtain
reliable GWAS summary statistics. When these summary statis-
tics are applied on an independent target dataset, the mean of
genetic covariance yT

η Ŝα cannot dominate its standard error. The
genetic variance ŜT

α Ŝα is so overwhelming such that Gαη goes to
zero. Details can be found in the supplementary file. If a ∈ (0, 1),
Gαη is a biased estimator of ϕαη when

√
n1/(n1 + p/h2

α) · hη is
smaller than 1. Formally, let p = c · nb

1 for some constants c > 0
and b ∈ (0, ∞], we have

√ n1
n1 + p/h2

α

· hη =
⎧⎨⎩

op(1), if b > 1;
{h2

η/(1 + c/h2
α)}1/2, if b = 1;

hη, if b < 1.

It follows that Gαη is an unbiased estimator of ϕαη only if h2
η = 1

and p = o(n1). For p = O(n1), Gαη is a shrinkage estimate of
ϕαη; and when n1 = o(p), Gαη is asymptotically zero. Therefore,
Gαη has nonzero asymptotic limit only when training GWAS
sample size n1 is at least proportional to p (i.e., 0 < b ≤ 1).
In such situation, a consistent estimator of ϕαη can be given as
follows.

Consistent estimator of ϕαη. Under the same conditions as in
Theorem 1, if a ∈ (0, 1) and b ∈ (0, 1], then GA

αη = Gαη ·√
(n1 + p/h2

α)/(n1 · h2
η) = ϕαη+op(1) is a consistent estimator
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of ϕαη. The variance of Gαη and GA
αη is provided in the following

corollary.

Corollary 1. Under polygenic model (1) and Conditions 1 and 2,
suppose min(mαη, mα , mη) → ∞ as min(n1, n3, p) → ∞, and
let p = c · nb

1 for some constants c > 0 and b ∈ (0, 1], we have

(Gαη) =
{

(p + 2n1 + 2n3)h2
η

n3(p/h2
α + n1)

· ϕ2
αη + n1h2

η

p/h2
α + n1

·mαη(σα2η2 − σ 2
αη)

mαmησ 2
ασ 2

η

}
· {1 + op(1)},

where E(α2
1η

2
1) = σα2η2/p2. It follows that var(Gαη) = Op{(n1+

n3)/(n3n1) + mαη/(mαmη)} = Op{max(n−1
1 , n−1

3 , m−1
αη )}.

As the discovery GWAS sample size n1 is often large, we
usually have n1 > n3 in practice. Thus, Corollary 1 shows that
the scale of var(Gαη) is jointly determined by the testing GWAS
sample size n3 and the polygenicity of genetics co-architecture
of the two traits, characterized by mαη. When mαη ≥ n3, (Gαη)

has a scale Op(1/n3) and thus the inference of Gαη can be valid
in the testing GWAS even if Gαη is heavily biased toward zero.
For example, if mαη ≥ n3, the T score for testing H0 : ϕαη = 0
versus H1 : ϕαη 
= 0 is given by T2

αη = G2
αη/(Gαη) = {(p +

2n1 +2n3)/(n1n3)+(σα2η2 −σ 2
αη)/(mαησ

2
αη)}−1 ·{1+op(1)} =

Op(n−1
3 ), under H0. On the other hand, if mαη < n3, cross-trait

PRS may have large variance with scale Op(1/mαη). Notably, the
testing power of GA

αη and Gαη is the same under the conditions of
Corollary 1, because GA

αη can be viewed as Gαη multiplies some
constant.

In summary, estimating genetic correlation with cross-trait
PRS requires the training GWAS sample size n1 is at least
proportional to p. The testing sample size n3 vanishes in the limit
of Gαη, which verifies that we can apply the discovery summary
statistics onto a much smaller set of target samples. In addition,
the variance of cross-trait PRS has scale Op(1/n3) for a pair of
traits with high polygenicity (i.e., mαη ≥ n3). Therefore, cross-
trait PRS may have good testing power even the estimation is
biased. This result matches widespread empirical observations
that cross-trait PRS may have small p-value, but the R2 is small.
The asymptotic properties of Gαβ are given as follows.

Theorem 2. Under polygenic model (1) and Conditions 1 and 2,
suppose min(mαβ , mα , mβ) → ∞ as min(n1, n2, n3, p) → ∞,
and let p2 = c · (n1n2n3)

a for some constants c > 0 and a ∈
(0, ∞]. If a ∈ (0, 1), then we have

Gαβ = ϕαβ +
(√

n1
n1 + p/h2

α

· n2

n2 + p/h2
β

− 1
)

· ϕαβ + op(1).

If a ∈ [1, ∞], then we have Gαβ · {n3(n1 + p)(n2 + p)}/p2 =
Op(1).

If a ∈ (0, 1), Gαβ is an unbiased estimator of ϕαβ

for p = o{min(n1, n2)}. When p = O(n1) = O(n2),√
n1/(n1 + p/h2

α) · n2/(n2 + p/h2
β) is smaller than 1, and thus

Gαβ is biased toward zero. Further if min(n1, n2) = o(p),
then Gαβ is asymptotically zero. Therefore, to have nonzero

asymptotic limit, both of the two sets of summary statistics
need to be trained from large-scale GWAS. Giving that n1, n2,
and p are proportional, the scale of (Gαβ) is (Gαβ) = Op{n−1

3 +
mαβ/(mαmβ)} = Op{max(n−1

3 , m−1
αβ )}. A consistent estimator

of ϕαβ is given as follows.

Consistent estimator of ϕαβ . Under the same conditions as in
Theorem 2, if a ∈ (0, 1) and n1, n2, and p are proportional, then
GA

αβ = Gαβ ·
√

(n1 + p/h2
α) · (n2 + p/h2

β)/(n1n2) = ϕαβ+op(1)

is a consistent estimator of ϕαβ .
Now we propose and study a novel estimator of ϕαβ that can

be directly constructed by using two sets of summary statistics
α̂ and β̂ . Let ϕ̂αβ = α̂T β̂/(‖α̂‖ · ‖β̂‖) = {(X(1)α(1) +
εα)TXZT(Z(1)β(1) + εβ)}/{‖(X(1)α(1) + εα)TX‖ · ‖(Z(1)β(1) +
εβ)TZ‖}, we have the following asymptotic properties.

Theorem 3. Under polygenic model (1) and Conditions 1 and 2,
suppose min(mαβ , mα , mβ) → ∞ as min(n1, n2, p) → ∞, and
let p = c · (n1n2)

a for some constants c > 0 and a ∈ (0, ∞]. If
a ∈ (0, 1), then we have

ϕ̂αβ = ϕαβ +
(√

n1
n1 + p/h2

α

· n2

n2 + p/h2
β

− 1
)

· ϕαβ + op(1).

If a ∈ [1, ∞], then we have ϕ̂αβ · {(n1 + p)(n2 + p)}/p = Op(1).

The ϕ̂αβ is interesting in its own right because it quantifies the
potential bias of the inner product of marginal screening esti-
mates in high-dimensions. When n1, n2, and p are proportional,
(ϕ̂αβ) = Op

{
max(n−1

1 , m−1
αβ )

}
and a consistent estimator of ϕαβ

can be obtained after bias correction.

Consistent estimator of ϕαβ . Under the same conditions as in
Theorem 3, if a ∈ (0, 1) and n1, n2, and p are proportional, then
ϕ̂A

αβ = ϕ̂αβ ·
√

{(n1 + p/h2
α) · (n2 + p/h2

β)}/(n1n2) = ϕαβ +
op(1) is a consistent estimator of ϕαβ . Since ϕ̂αβ and Gαβ have
similar asymptotic properties, in what follows we will focus on
Gαβ and the general conclusions of Gαβ remain the same for ϕ̂αβ .

3. SNP Screening

As shown in Theorems 1 and 2, in addition to heritability, the
asymptotic limit of Gαη or Gαβ is largely affected by n/p. These
results intuitively suggest to select a subset of p SNPs to construct
cross-trait PRS. The common approach in practice is to screen
the SNPs according to their GWAS p-values. We investigate this
strategy in this section.

For a given threshold cα > 0, let qα = p · πα =
qα1 + qα2 (πα ∈ (0, 1]) be the number of top-ranked SNPs
selected for yα , among which there are qα1 true causal SNPs
and the remaining qα2 are null SNPs, and we let qαη be
the number of overlapping causal SNPs of yα and yη, and
thus qα1 ≥ qαη. The SNP data are defined accordingly. We
write X(1) = [X(11), X(12)], X(2) = [X(21), X(22)], W(1,α) =
[W(11,α), W(12,α)], and W(2,α) = [W(21,α), W(22,α)]. Here X(11)

and W(11,α) are the selected qα1 causal SNPs of yα , and similarly,
X(21) and W(21,α) are the selected qα2 null SNPs of yα . In addi-
tion, we let α̂T

(1) = [̂αT
(11), α̂

T
(12)] and α̂T

(2) = [̂αT
(21), α̂

T
(22)], where
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α̂(11) corresponds to the selected causal SNPs of yα and α̂(21)

corresponds to the selected null ones. Then we have GTαη =
{(W(1)η(1) + εη)

T(W(11,α)α̂(11) + W(21,α)α̂(21))}/{‖W(1)η(1) +
εη‖ ·‖W(11,α)α̂(11) +W(21,α)α̂(21)‖} = CTαη/(Vη ·VTα), where
Vη = ‖W(1)η(1) + εη‖, VTα = ‖W(11,α)XT

(11)(X(1)α(1) +
εα) + W(21,α)XT

(21)(X(1)α(1) + εα)‖, and CTαη = (W(1)η(1) +
εη)

TW(11,α)XT
(11)(X(1)α(1)+εα)+(W(1)η(1)+εη)

TW(21,α)XT
(21)

(X(1)α(1) + εα).

Corollary 2. Under polygenic model (1) and Conditions 1 and 2,
suppose that min(mαη, mα , mη) → ∞ and min(qαη, qα1, qα2) →
∞ as min(n1, n3, p) → ∞, further if

{
m2

αη(qα1+qα2)
}
/(q2

αηn1n3)
→ 0, then we have

GTαη = ϕαη +
(√ n1mα

n1qα1 + mαqα/h2
α

· qαη

mαη

· hη − 1
)

· ϕαη + op(1).

Corollary 2 shows the tradeoff of SNP screening. Given n1, mα ,
mαη, hα , and hη, the potential bias of GTαη is also affected by
qα , qα1 and qαη. As more SNPs are selected, the numerator
of

√
(n1mα)/(n1qα1 + mαqα/h2

α) · (qαη/mαη) increases with
qαη, while the denominator increases with √qα (and √qα1).
Therefore, whether or not SNP screening can improve the esti-
mation is largely affected by the quality of the selected SNPs,
which is highly related to the mα/n1 ratio. In the optimistic
case where qαη = mαη and qα = qα1 = mα , GTαη becomes√

n1/(n1 + mα/h2
α) · hη · ϕαη, which is the theoretical upper

limit. We note that this optimistic upper limit can still be biased
toward zero. An opposite case is that the GWAS summary
statistics of causal and null SNPs are totally mixed up, which
may occur when mα/n1 is large (i.e., sample size is relatively
small or trait is highly polygenic). Therefore, we have qα1/qα ≈
mα/p. Suppose also qαη/qα1 ≈ mαη/mα , we have GTαη ≈√

n1/(n1p + p2/h2
α) · qα · hη · ϕαη, which increases with qα .

As qα = p, GTαη reaches its upper bound
√

n1/(n1 + p/h2
α) ·

hη · ϕαη. That is, GTαη achieves the best performance when
the cross-trait PRS is constructed without SNP screening. For
example, in the left panel of Figure 2, we set mα/n1 = 0.01 to
reflect the sparse signal case, in which causal and null SNPs can
be easily separated by SNP screening. Thus, SNP screening can
reduce the bias of Gαη when signals are sparse. However, as the
number of causal SNPs increase (from left to right in Figure 2),
it becomes much hard to separate causal and null SNPs by
their GWAS p-values. Therefore, SNP screening will enlarge the
bias.

In conclusion, when causal and null SNPs can be easily
separated by GWAS, the top-ranked SNPs are more likely to be
causal ones, that is, SNP screening helps. However, for highly
polygenic complex traits whose mα/n1 is large, SNP screening
may result in larger bias. Moreover, since different underlying
mα/n1 ratio will result in different patterns as shown in Figure 2,
the observed pattern can be used to infer the mα/n1 ratio (i.e.,
the degree of polygenicity) and minimize the potential bias
in estimation. We display this strategy in Section 6. The Gαβ

has similar properties when performing SNP screening, whose
results can be found in the supplementary file.

4. Overlapping Samples

In practice, different GWAS may share a subset of participants.
It is often inconvenient to recalculate the GWAS summary
statistics after removing the overlapping samples. In this section,
we examine the effect of overlapping samples on the bias of
cross-trait PRS, which provides more insights into the bias phe-
nomenon of cross-trait PRS. Particularly, we focus on one case
which is common in practice: ns overlapping samples between
discovery GWAS and Target testing data for ϕαη estimation. We
add ns overlapping samples into Discovery GWAS-I and Target
testing GWAS, resulting in the following two new datasets: (i)
Dataset IV: (X, S, yα), with X ∈ R

n1×p, S ∈ R
ns×p, and yT

α =
(yT

αX , yT
αS) ∈ R

(n1+ns)×1; and ii) Dataset V: (W, S, yη), with W ∈
R

n3×p, S ∈ R
ns×p, and yT

η = (yT
ηW , yT

ηS) ∈ R
(n3+ns)×1. Mimick-

ing h2, we define hαη ∈ (0, 1] as the proportion of phenotypic
correlation that can be explained by the correlation of their
genetic components as hαη = (mαη/p)σαη/{(mαη/p)σαη +
σεαεη }. On the overlapping samples, we allow nonzero corre-
lation between random errors to capture the non genetic con-
tribution to phenotypic correlation. We introduce an additional
condition on random errors.

Condition 3. On ns overlapping samples, εαj and εηj are inde-
pendent random variables satisfying(

εαj
εηj

)
∼ F

[(
0
0

)
,
(

σ 2
εα

σεαεη

σεαεη σ 2
εη

)]
for j = 1, ..., ns, where σεαεη = ρεαεη · σεασεη .

Theorem 4. Under polygenic model (1) and Conditions 1–3,
suppose min(mαη, mα , mη) → ∞ as min{(n1 + ns), (n3 +
ns), p} → ∞, and let p = c · {(n1 + ns)(n3 + ns)}a for some
constants c > 0 and a ∈ (0, ∞]. If a ∈ (0, 1), then GSαη can be
written as[

1 + nsp/{(n1 + ns)(n3 + ns) · hαη}
] · [

hη · ϕαη · {1 + op(1)}][
1 + p/{(n1 + ns) · h2

α} + 2nsp/{(n1 + ns)(n3 + ns)}
+nsp2/{(n1 + ns)2(n3 + ns) · h2

α}]1/2.

If a ∈ [1, ∞], then we have GSαη = op(1).

Theorem 4 shows the effect of ns overlapping samples on the
estimation of ϕαη. Both sample sizes (n1 + ns) and (n3 + ns)
are involved in the limit. An interesting special case is when the
two GWAS are fully overlapped, then we have GSαη = (ns +
p/hαη)/{n2

s + 2nsp + p(p + ns)/h2
α}1/2 · hη · ϕαη + op(1). In the

optimal situation where h2
α = h2

η = hαη = 1, we have GSαη =
{1 + (p/ns + ns/p + 2)−1}−1/2 · ϕαη + op(1). Therefore, GSαη

is asymptotically biased unless either p = o(ns) or ns = o(p)

holds, neither of which is the case in modern GWAS. As ns and
p are more comparable, the asymptotic bias in GSαη increases
and the largest bias occurs as p = ns → ∞.

Note that it is not recommended to estimate the genetic cor-
relation between two traits with (fully) overlapping samples due
to concerns such as confounding and overfitting (Dudbridge
2013). In our analysis, such concern is quantified by the value of
hαη. That is, when non-genetic correlation exists in error terms,
we have hαη < 1, and the estimation of genetic correlation is
inflated. However, on the other hand, our results show that even
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Figure 1. Raw genetic correlations estimated by cross-trait PRS with all SNPs (A: Gαη , C: Gαβ ) and the bias-corrected genetic correlation estimates (B: GA
αη , D: GA

αβ ). We set

h2
α = h2

β = h2
η = 0.5, n1 = n2 = p = 10, 000, and n3 = m = 2000.

in an optimal overlapping setting with h2
α = h2

η = hαη = 1, the
cross-trait PRS estimator based on GWAS summary statistics
can be biased toward zero.

In the supplementary file, we provide a consistent estimator
of ϕαη given overlapping samples and further investigate sev-
eral other specific overlapping cases, which can be useful for
quantifying potential bias and perform correction. In summary,
these analyses reveal that the bias in cross-trait PRS estimator
may result from the following facts: (i) summary statistics are
generated from independent GWAS, where the induced bias is
largely determined by the n/p ratio; (ii) phenotypes are not fully
heritable, that is, heritability is less than one; and (iii) nongenetic
correlation exists in the random errors of overlapping samples.
This may happen, for example, when confounding effects are
not fully adjusted. The first two facts may bias the genetic
correlation estimator toward zero, while the last fact may inflate
the estimated genetic correlation.

5. Numerical Experiments

5.1. Cross-Trait PRS With All SNPs

To illustrate the finite sample performance of our theoretical
results, we simulate 10,000 uncorrelated SNPs. The MAF of each
SNP, f , is independently generated from Uniform [0.05, 0.45]
based on which the SNP genotypes are independently sampled
from {0, 1, 2} with probabilities {(1 − f )2, 2f (1 − f ), f 2}, respec-
tively. The SNPs are then standardized to satisfy Condition 1.
We set the same 2000 causal SNPs on each trait and the nonzero
genetic effects are generated from Normal distribution accord-
ing to Condition 2 with σα = ση = σβ = 1. We set all heritabil-
ity to 0.5 and vary σαη and σαβ (and thus asymptotically ϕαη and
ϕαβ) from 0.1 to 0.9. Model (1) is used to generate continuous
phenotypes. We generate 10,000 samples in training dataset
and 2000 samples in testing dataset. A total of 200 replicates is
conducted. Cross-trait PRS is built with all SNPs. We calculate
the raw estimators Gαη and Gαβ studied in Theorems 1 and 2,
and the corresponding bias-corrected estimators GA

αη and GA
αβ .

The performance of Gαη and Gαβ is displayed in panels A and C
of Figure 1. It is clear that these raw estimates are biased toward
zero. For example, when σαη = σαβ = 0.9, Gαη is around 0.37
while Gαβ is about 0.30. The performance of GA

αη and GA
αβ is

displayed in panels B and D of Figure 1, which indicates that the

two bias-corrected estimators perform well and are close to the
true value of σαη and σαβ , respectively.

Next, we generate mixed samples from five sub popula-
tions. Specifically, the overall MAF of each SNP is simulated
from Uniform [0.05, 0.45] and the Fst values are independently
generated from Uniform [0.01, 0.04]. Then the MAF in each
sub-population is obtained according to the Balding-Nichols
model (Balding and Nichols 1995). The sample size is 2000 in
training data and 200 in testing data for each sub population. We
perform principal component analysis on all SNPs and use the
top four principal components (PCs) to adjust for population
substructures. Supplementary material (Figure 1) displays the
performance of the raw and bias-corrected estimators, which
suggests that our theoretical results remain unchanged after
adjusting population substructures by genetic PCs. We also
perform power analysis on Gαη and Gαβ . We set σαη and σαβ

to be 0, 0.3, or 0.4, simulate 500 testing samples, and vary the
number of causal SNPs from 500 to 8000. Other settings remain
the same as in Figure 1. A total of 500 replicates is conducted.
Although Gαη and Gαβ are biased toward zero, we find that they
can still have good power to detect nonzero genetic correlations
(supplementary material, Table 1). When the number of causal
SNPs is relatively small (500), the Type I error is slightly inflated,
which may due to the larger variance of Gαη and Gαβ in this
situation.

To verify that our bias-corrected estimators are independent
of the signal sparsity, we set mα = mβ = mη = p · aα and vary
the sparsity aα = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.6, 0.7, and 0.8 to
generate sparse and dense signals. Next, we fix aα = 0.2 and set
mβ = mη = k·mα to allow phenotypes to have different number
of causal SNPs, where k = 0.3, 0.4, 0.5, 0.8, 1, 1.25, 2, 2.5, and
3.3. We set all heritability to 0.5 and let σαη = σαβ = 0.5.
Sample size of training and testing datasets is set to 10,000 and
2000, respectively. The performance of Gαη is displayed in the
left two panels of Figure 2 (supplementary material). The bias
of Gαη is independent of either the sparsity aα of a trait or the
ratio of sparsity k between two traits, which verifies our results
of Theorem 1. The right two panels of Figure 2 (supplementary
material) display the performance of GA

αη. It is clear that GA
αη

is unbiased regardless of aα and k. The performance of Gαβ

and GA
αβ is displayed in the supplementary material (Figure 3)

and supports our results in Theorem 2. Finally, we illustrate the
performance of ϕ̂αβ and ϕ̂A

αβ in the supplementary material (Fig-
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Figure 2. Raw genetic correlation GTαη estimated by cross-trait PRS with selected SNPs under different sparsity m/p. We set h2
α = h2

η = 0.5, ϕαη = 0.8, n1 = p = 10,000,
n3 = 2000, and mα/p = mη/p = 0.01, 0.1, 0.5, and 0.8 (left to right). The red and green dashed lines represent ϕαη and the asymptotic limit of Gαη according to
Theorem 1, respectively.

ure 4), verifying our results in Theorem 3 and the unbiasedness
of ϕ̂A

αβ .

5.2. SNP Screening and Overlapping Samples

Instead of using all the 10,000 SNPs, we construct cross-trait
PRS with the top-ranked SNPs whose GWAS p-values pass
a pre-specified threshold. We consider a series of thresholds
{1, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 10−3, 10−4,
10−5, 10−6, 10−7} and generate a series of GTαη accordingly.
We set heritability to 0.5 and ϕαη = 0.8. Four levels of sparsity
mα/p = mη/p = 0.01, 0.1, 0.5 and 0.8 are examined. Figure 2
displays the performance of GTαη across a series of thresholds.
As expected, the pattern of GTαη varies dramatically with the
sparsity. When signals are sparse, SNP screening helps and
GTαη outperforms Gαη. However, when signals are dense, the
performance of GTαη drops as the threshold decreases. The
GTαη has the best performance when all SNPs are selected, that
is, the same as Gαη, which confirms our results of GTαη in
Corollary 2. In addition, we examine our analyses of overlapping
samples. For GSαη and GSαβ , half of the 10, 000 samples are set
to be overlapping. Other settings remain the same as those of
Figure 1. The performance of GSαη, GSαβ , and the corresponding
bias-corrected estimators GA

Sαη and GA
Sαβ (see supplementary file

for definitions) is displayed in the supplementary material (Fig-
ure 5), which fully supports the results in Theorem 4 and Propo-
sition S4.

5.3. UK Biobank Data Simulation

We perform additional simulation using real SNP data from
the UK Biobank (UKB) resources (Bycroft et al. 2018). We
download the imputed genotype data and apply the following
quality controls (QCs): excluding subjects with more than 10%
missing genotypes, only including SNPs with MAF > 0.01,
genotyping rate > 90%, and passing Hardy-Weinberg test (p-
value > 1 × 10−7). To balance the accuracy and computational
burden, we constrain our analysis to 653,122 QC’ed variants that
are overlapped with the ones in the HapMap3 reference panel.
We randomly select 60,000 unrelated individuals of European
(British, Irish and others) ancestry with fine-scale population

structures in simulation. Among the 60,000 samples, 50, 000
are randomly picked as training data, and the cross-trait PRS
is evaluated with the remaining 10,000 testing individuals. We
randomly set half of all SNPs to be causal SNPs. The nonzero
SNP effects are independently generated from Normal distri-
bution according to Condition 2 with σα = ση = 1, and we
set h2

α = h2
η = σαη = 0.6. We generate cross-trait PRS by

summarizing across all relatively independent SNPs after LD-
based pruning (window size 50, R2 = 0.05) using the Plink tool
set. We use unstandardized SNPs in UKB data simulation and
200 replicates are conducted.

The performance of Gαη and GA
αη is displayed in the left panel

of supplementary material (Figure 6). The Gαη is biased toward
zero and the bias-corrected estimator GA

αη is close to ϕαη. These
results illustrate the existence of bias in real SNP data and show
the good performance of our bias-corrected estimator. In the
right panel of Figure 6 (supplementary material), we further
evaluate the sensitivity of GA

αη to biased heritability estimates.
When the heritability is overestimated (or underestimated), the
genetic correlation may be underestimated (or overestimated).
The bias of GA

αη generally has a similar scale to the bias of
heritability estimates. For example, when h2

α and h2
η are both

overestimated by 20% (i.e., ĥ2
α = ĥ2

η = 0.72), ϕαη is underes-
timated by 13% (i.e., GA

αη = 0.52). To evaluate the performance
of cross-trait PRS in the presence of related samples, we rerun
our simulation after including related individuals in the training
data. Specifically, we replace our training samples with 50,000
European individuals that have relatives in UKB (Bycroft et al.
2018) but are unrelated with the 10, 000 testing samples. We
find that the performance of Gαη and GA

αη is slightly reduced,
indicating the negative influence of sample relatedness on PRS
performance.

In PRS construction, we can also directly adjust for the
SNP data LD structures with reference panels (e.g., the 1000
Genomes Project LD reference panel), which has shown better
performance than LD-based pruning (Mak et al. 2017). We
examine one recently the proposed method that incorporates
LD using continuous shrinkage priors (PRScs) (Ge et al. 2019).
Figure 6 (supplementary material) shows that PRScs estima-
tor has smaller bias than the raw LD-pruned estimator, but
still heavily underestimates the underlying genetic correlation.
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These results suggest that the bias of cross-trait PRS still exists
after taking local LD structures into account. Quantifying and
correcting the bias in PRScs and other similar methods can be
an interesting future problem.

6. Real Data Analysis

Human brain structural changes are known to be associated
with cognitive and mental health traits. It is of great interest to
understand the shared genetic influences among these brain-
related complex traits. Gray matter volumes of brain region of
interest (ROI) (refer to as ROI volumes) are heritable measures
of brain structural variation and can be obtained from brain
magnetic resonance imaging (MRI). In this section, we apply
cross-trait PRS to quantify the genetic similarity between ROI
volumes and reaction time, which is a heritable measure of
general cognitive functions (Davies et al. 2018). We focus on the
volume measures from seven important brain ROIs, including
the thalamus proper, caudate, putamen, pallidum, hippocam-
pus, accumbens area, and the total brain volume (TBV). These
ROIs are frequently studied in neuroimaging genetics, and com-
mon SNPs are able to account for about 50% phenotypic varia-
tion in these traits (Biton et al. 2020) (supplementary material,
Table 2).

As a positive control, we first estimate the genetic correlation
between the TBV phenotype measured in the PING study and
the same trait measured in the UKB study. The TBV phenotype
in the two studies is generated using consistent standard proce-
dures, and thus the underlying genetic correlation is expected
to be close to one. A full description of the PING study, imaging
processing, and genotyping data quality controls is documented
in the supplementary file. We download the UKB GWAS sum-
mary statistics of TBV (Zhao et al. (2019), n = 19, 629) and
construct the PRS on the PING samples (n = 924). Specifically,
we generate the PRS by summarizing across all the LD-pruned
unstandardized SNPs (R2 = 0.2, window size 50), weighed by
the UKB GWAS effect sizes. As chromosome strands in UKB
and PING data can be different, ambiguous SNPs (i.e., SNP
with complementary alleles, either C/G or A/T) are removed
in our analysis, after which there are 381,182 overlapped SNPs
between UKB and PING. The association between TBV and
the constructed PRS is estimated and tested in linear regres-
sion, adjusting for the effects of age and sex. The additional
phenotypic variation that can be explained by the PRS (i.e., the
partial R2) is interpreted as an estimator of the squared genetic
correlation. The estimated genetic correlation is 0.13 (partial
R2 = 1.77%, p-value = 2.6 × 10−6) in this positive control
analysis, which is comparable with reported results for neu-
roimaging traits and other brain-related complex traits (Bogdan,
Baranger, and Agrawal 2018). On the other hand, the bias-
corrected genetic correlation is 1.03 according to Theorem 1
(p = 381,182, n = 19,629, and h2 = 0.58). These results suggest
that the raw PRS-based genetic correlation estimator of TBV is
heavily biased toward zero, supporting our theoretical results
and matches many empirical observations. More importantly,
we find that our bias-corrected estimator performs well and can
reflect the expected genetic similarity.

Next, cross-trait PRS of reaction time is constructed on these
PING samples using the published GWAS summary statistics

Figure 3. Raw partial R2 of fitting reaction time PRS on seven regional brain
volumes (listed in the figure) in the PING study given different GWAS p-value cutoffs.

of reaction time from the largest study so far (Davies et al.
(2018), n = 282,014). The original GWAS has no overlapping
samples with the PING study. After removing ambiguous SNPs,
428, 146 overlapped SNPs are used for PRS construction. We
examine the partial R2 using the same procedure as in the above
positive control analysis. The results are summarized in Table 2
(supplementary material). The mean proportion of variation
that can be additionally explained by the cross-trait PRS is 1.32%
across the seven ROIs. The largest partial R2 2.80% is found in
the thalamus (p-value =8.74 × 10−9), which is known to play
integrative roles in cognitive functions (Wolff and Vann 2019).
Evidence from imaging studies indicates that the thalamus is
associated with reaction time and has predictive power to this
cognitive trait (Nikulin et al. 2008). However, though the p-
value indicates a significant genetic relationship between tha-
lamus and reaction time, the partial R2 is small and may under-
interpret the genetic similarity of the two traits. Thus, we correct
the observed partial R2 with our formula in Theorem 1. We use
the heritability estimate of reaction time reported in Davies et al.
(2018) (h2 = 0.25), and the heritability estimates of ROI vol-
umes reported in Biton et al. (2020). The mean partial R2 across
the seven ROIs becomes 22.42% after correction. These findings
indicate that the raw PRS-based genetic correlation estimators
may substantially underestimate the genetic similarity between
reaction time and ROI volumes, whereas our bias-corrected
estimator reveals a moderate level of genetic correlation between
these brain-related complex traits.

To uncover the underlying m/n ratio and minimize the
potential bias in the raw partial R2, we apply SNP screening with
multiple GWAS p-value cutoffs and present the trajectory of
partial R2 in Figure 3. The pattern of partial R2 is similar across
the seven ROI volumes, suggesting that these ROI volumes
have similar genetic co-architecture with reaction time. The
optimal GWAS p-value cutoff for genetic correlation estimation
is around 0.1 in this analysis. The partial R2 of thalamus moves
up to 3.48% given this cutoff, which is still much smaller than the
bias-corrected estimator. Overall, the trajectory analysis reveals
the polygenic genetic co-architecture of reaction time and ROI
volumes, indicating that a large number of common genetic
variants have small contributions to these traits.
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We also run cross-trait LDSC (Bulik-Sullivan et al. 2015) to
estimate the genetic correlation between reaction time and the
seven ROI volumes. The estimates of LDSC are noisy (supple-
mentary material, Table 3), which may due to the small sample
size of the PING study (n = 924). These observations make
sense, because it is known that cross-trait LDSC may have poor
performance when GWAS sample size is small (Ni et al. 2018),
for example, smaller than 5000 as mentioned in https://github.
com/bulik/ldsc/wiki/FAQ.

In summary, we examine the genetic similarity between cog-
nitive function and brain structures using GWAS summary-
level data of reaction time and individual-level genotyping and
MRI data in the PING study. The raw PRS-based genetic corre-
lation estimators are all small, which may heavily underestimate
the genetic overlaps between the two sets of closely related
heritable traits. We apply Theorem 1 to generate bias-corrected
estimators, which uncover the moderate degree of genetic sim-
ilarity among these traits. These findings suggest that brain
volumetrical variations can serve as important endophenotypes
in studying the genetic pathways of human cognitive functions.
Finally, we note that methods for genetic correlation estimation
based on two sets of GWAS summary statistics, such as cross-
trait LDSC, require all the input summary statistics from large-
scale GWAS. Thus, one of the main advantages of our bias-
corrected cross-trait PRS estimator over cross-trait LDSC is that
cross-trait PRS estimator can be applied in small testing GWAS.
However, it is also important to note that the genetic correlation
estimator in cross-trait LDSC is a genome-wide quantity, while
the cross-trait PRS estimator is an empirical value characterizing
the genetic correlation attributable to the set of selected SNPs.
Although related to each other, these two estimators have com-
pletely different definitions and interpretations.

7. Discussion

Understanding the genetic similarity among human complex
traits is essential to model biological mechanisms, improve
genetic risk prediction, and design personalized preven-
tion/treatment. Cross-trait PRS (Purcell et al. 2009) is one of the
most popular methods for genetic correlation estimation with
thousands of publications. This paper empirically and theoreti-
cally studies the properties of cross-trait PRS in GWAS applica-
tions for complex traits. Our analyses demystify the commonly
observed small R2 in GWAS applications, and help avoid over-
or under-interpreting of research findings. We demonstrate the
importance of our results in a case study using GWAS summary
statistics of reaction time and neuroimaging traits measured in
the PING study. Our analysis uncovers the moderate degree of
genetic correlation between reaction time and brain structures
and illustrate the polygenicity of their genetic co-architecture.
As more discovery GWAS summary statistics from biobanks
become publicly available, our bias-corrected estimators can be
used to assess the underlying genetic correlation in many cross-
trait PRS applications, especially when the in-house testing
GWAS has relatively small sample size.

Our analyses face a few limitations. First, we focus on con-
tinuous traits in this article. It is also of great interest to examine
binary clinical outcomes/diseases in generalized linear poly-
genic models. Second, we assume SNPs are independent in
our analyses. However, nearby SNPs within the same genomic

region (local LD block) may be correlated with each other in real
GWAS. Our independence assumption is inspired by the LD-
based pruning/clumping step utilized in PRS construction, after
which only relatively independent SNPs are kept. We use real
SNP data simulation to show that our bias-corrected estimator
has good performance after LD-based pruning, but it might be
more interesting to develop asymptotic results under a general
variance-covariance structure of SNP data in future studies.
In addition, the influence of overlapping samples quantified
in Section 4 depends on the overlapped sample size ns, which
may be unknown in PRS applications. Thus, the best strategy
in practice is to use independent training and testing GWAS
samples in cross-trait PRS applications.

Finally, besides the sample size, heritability, and SNP screen-
ing analyzed in this study, some other factors may also influence
the performance of PRS. For example, the mismatch of the
genotyping arrays and imputation platforms in training and
testing GWAS may decrease the accuracy of PRS. Moreover,
modeling the gene–environment interaction could result in bet-
ter PRS (Arnau-Soler et al. 2019), and it is well observed that
population disparities can introduce additional challenges in
PRS applications (Martin et al. 2019). More efforts are needed
to explore these problems and improve the performance of PRS.
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