
Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities 

Author(s): Hongtu Zhu, Jianqing Fan and Linglong Kong 

Source: Journal of the American Statistical Association , September 2014, Vol. 109, No. 
507 (September 2014), pp. 1084-1098  

Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association 

Stable URL: https://www.jstor.org/stable/24247437

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Taylor & Francis, Ltd.  and American Statistical Association  are collaborating with JSTOR to 
digitize, preserve and extend access to Journal of the American Statistical Association

This content downloaded from 
������������45.37.120.80 on Wed, 30 Aug 2023 02:12:18 +00:00������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/24247437


 ν  Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA

 Spatially Varying Coefficient Model for Neuroimaging
 Data With Jump Discontinuities

 Hongtu Zhu, Jianqing Fan, and Linglong Kong

 Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient

 model (SVCM) to capture the varying association between imaging measures in a three-dimensional volume (or two-dimensional surface)
 with a set of covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise smooth regions with unknown

 edges and jumps and substantial spatial correlations. To specifically account for these two features, SVCM includes a measurement model

 with multiple varying coefficient functions, a jumping surface model for each varying coefficient function, and a functional principal
 component model. We develop a three-stage estimation procedure to simultaneously estimate the varying coefficient functions and the
 spatial correlations. The estimation procedure includes a fast multiscale adaptive estimation and testing procedure to independently estimate
 each varying coefficient function, while preserving its edges among different piecewise-smooth regions. We systematically investigate the

 asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. We also establish the
 uniform convergence rate of the estimated spatial covariance function and its associated eigenvalues and eigenfunctions. Our Monte Carlo
 simulation and real-data analysis have confirmed the excellent performance of SVCM. Supplementary materials for this article are available
 online.

 KEY WORDS: Asymptotic normality; Functional principal component analysis; Jumping surface model; Kernel; Wald test.

 1. INTRODUCTION tively sharp edges (Chan and Shen 2005; Tabelow et al. 2008a,
 „ ,. . , , . „ . 2008b; Chumbley et al. 2009). For instance, normal brain tissue

 The aims of this article are to develop a spatially varying co- „ , , . , ,
 , „ ^ „ , ,. . . , can generally be classified into three broad tissue types mclud

 efficient model (SVCM) to delineate association between mas- , „ .. , , , a ., T, v . . .. , ing white matter, gray matter, and cerebrospinal fluid. These
 sive imaging data and a set of covanates of interest, such as age, . , ,. . ,, ..... , .

 b b . . , r , , ° three tissues can be roughly separated by using MRI due to their
 and to charactenze the spatial variability of the imaging data. . . , , .. . . . .. ,

 .r , . , , J__ . , , . imaging intensity differences and relatively intensity homogene
 Examples of such imaging data include Τ1-weighted magnetic . .... , .. , , ,, . . ,

 . . . b îty within each tissue. The second challenge is to characterize
 resonance imaging (MRI), functional MRI, and diffusion tensor . , , . . , , , ...

 b b ; ,, . spatial correlations among a large number of voxels, usually in
 0t Τ ' · 0mpS0n a,n ?®,a the tens of thousands to millions, for imaging data. Such spatial

 2002; Friston 2007; Lazar 2008). In neuroimaging studies, fol- . . , , . ..... . , . „ ... ,...., ,, ,. correlation structure and variability are important tor achieving
 lowing spatial normalization, imaging data usually consist ot , _ . . . . t .

 b ' , . b b . , , better prediction accuracy, for increasing the sensitivity ot sig
 data points from different subjects (or scans) at a large number , , , . . , , . .... - ^ 1 . „ , ... , .. . , nal detection, and for characterizing the random variability of
 of locations (called voxels) in a common three-dimensional vol- . , t , . . /c, . , „ ,

 „ ., , „ ,. ,· , · „ , , imaging data across subjects (Spence et al. 2007; Cressie and
 ume (without loss of generality), which is called a template. We 2011)
 assume that all imaging data have been registered to a template t , ■

 .j There are two major statistical methods including voxel-wise
 t roug out t e artic e· methods and multiscale adaptive methods for addressing the
 To analyze such massive imaging data, researchers face at . ^ , .. „ . . . , ,

 . , „ c , . first challenge. Conventional voxel-wise approaches involve in
 least two main challenges. The first one is to charactenze vary- „ . . , . . , , ..

 . . °. . , . ... Gaussian smoothing imaging data, independently fitting a sta
 mg association between imaging data and covanates, while pre- . . . , . , , , , . ,
 b . n b , , . . , tistical model to imaging data at each voxel, and generating

 serving important features, such as edges and lumps, and the . . . , , ,,,, , . .
 , . , ~ ■ ι statistical maps of test statistics and p-values (Worsley et al.

 shape and spatial extent of effect images. Due to the physicaf . , i. . ,, . , ,, . . . , „ , 2004; Lazar 2008). As shown in Chumbley et al. (2009) and Li
 and biological reasons, imaging data are usually expected to ^ . . . , ■

 ° . „ . . ; .. et al. (2011), voxel-wise methods are generally not optimal in
 contain spatially contiguous regions or effect regions with rela- . . .

 r power since it ignores the spatial information of imaging data.
 Moreover, the use of Gaussian smoothing can blur the image
 data near the edges of the spatially contiguous regions and thus
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 For instance, in Polzehl and Spokoiny (2000, 2006), a novel The rest of this article is organized as follows. In Section 2,
 propagation-separation approach was developed to adaptively we describe SVCM and its three-stage estimation procedure and
 and spatially smooth a single image without explicitly detecting establish the theoretical properties. In Section 3, we present a set
 edges. Recently, there are a few attempts to extend those adap- of simulation studies with the known ground truth to examine
 tive smoothing methods to smoothing multiple images from a the finite sample performance of the three-stage estimation pro
 single subject (Tabelow et al. 2008a, b; Polzehl, Voss, and Tabe- cedure for SVCM. In Section 4, we apply the proposed methods
 low 2010). In Li et al. (2011), a multiscale adaptive regression in a real imaging dataset on attention deficit hyperactivity dis
 model, which integrates the propagation-separation approach order (ADHD). In Section 5, we conclude the article with some
 and voxel-wise approach, was developed for a large class of discussions. Technical conditions are given in Section 6. Proofs
 parametric models. and additional results are given in the online supplementary

 There are two major statistical models, including Markov materials,
 random fields and low-rank models, for addressing the second
 challenge. The Markov random field models explicitly use the 2. SPATIAL VARYING COEFFICIENT MODEL
 Markov property of an undirected graph to characterize spatial WITH JUMPING DISCONTINUITIES

 dependence among spatially connected voxels (Besag 1986; Li ^ -j Model Setu
 2009). However, it can be restrictive to assume a specific type
 of spatial correlation structure, such as Markov random fields, We consider imaging measurements in a template and clinical
 for very large spatial datasets besides its computational com- variables (e.g., age, gender, and height) from η subjects. Let D
 plexity (Cressie and Wikle 2011). In spatial statistics, low-rank represent a three-dimensional volume and d and do, respectively,
 models, also called spatial random-effects models, use a linear denote a point and the center of a voxel in D. Let Dο be the union
 combination of "known" spatial basis functions to approximate of all centers do in D and Ν ρ equal the number of voxels in Do
 spatial dependence structure in a single spatial map (Cressie Without loss of generality, D is assumed to be a compact set in
 and Wikle 2011). The low-rank models have a close connec- R3. For the ith subject, we observe an m χ 1 vector of imaging
 tion with the functional principal component analysis model for measures yffdo) at do e Do, which leads to an m Ν ρ χ 1 vector
 characterizing spatial correlation structure in multiple images, of measurements across D0, denoted by Y;,p0 = {y,·(do) : do 6
 in which spatial basis functions are directly estimated (Ramsay Do}. For notational simplicity, we set m = 1 and consider a
 and Silverman 2005; Hall, Miiller, and Wang 2006; Zipunnikov three-dimensional volume throughout the article,
 et al. 2011). The proposed SVCM consists of three components: a mea
 The goal of this article is to develop SVCM and its estima- sûrement model, a jumping surface model, and a functional

 tion procedure to simultaneously address the two challenges component analysis model. The measurement model character
 discussed above. SVCM has three features: piecewise smooth, izes the association between imaging measures and covariates
 spatially correlated, and spatially adaptive, while its estima- and is given by
 tion procedure is fast, accurate, and individually updated. Major T
 contributions of the article are as follows. >"i(d) — x; β A) + Vi (d) + e, (d)

 for all i = 1,..., η and d € D, (1)

 • Compared with the existing multiscale adaptive methods, where x, = (xp,..., xlp) is a ρ χ I vector of covariates,
 SVCM first integrates ajumping surface model to delineate Ρ(ά) = A\A), - - -, β,,Α)) is a ρ χ 1 vector of coefficient
 the piecewise smooth feature of raw and effect images functions of d, rçffd) characterizes individual image variations
 and the functional principal component model to explicitly from xf β A), and e, (d) are measurement errors. Moreover,
 incorporate the spatial correlation structure of raw imaging (^'(d) ■ d e D} is a stochastic process indexed by d e D that
 rïata captures the within-image dependence. We assume that they

 • A comprehensive three-stage estimation procedure is de- η·"6 mutually independent and rç,(d) and e, (d) are independent
 veloped to adaptively and spatially improve estimation ac- aiK* identical copies of SP(0, Σ,,) and SP(0, Σ€), respectively,
 curacy and capture spatial correlations. where SPA- Σ) denotes a stochastic process vector with mean

 • Compared with the existing methods, we use a fast and ac- function μ(ά) and covariance function Σ (d, d ). Moreover, e, (d)
 curate estimation method to independently smooth each of an(f'are independent for d φ d and thus ΣΕ(ΰ, d ) = 0 for
 effect images, while consistently estimating their standard d 7^ d . Therefore, the covariance function of {y, (d). d e D},
 deviation images. conditioned on χ,·, is given by

 • We systematically establish consistency and asymptotic
 distribution of the adaptive parameter estimators under E},(d, d') = cov(yi(d),y,(d'))^„(d, d')
 two different scenarios including piecewise-smooth and + Σ^(ά, d)l(d = d'). (2)
 piecewise-constant varying coefficient functions. In partic

 ular, we introduce several adaptive boundary conditions to The second component of the SVCM is a jumping surface
 delineate the relationship between the amount of jumps and model for each of {£,(d) : d € D}y<p. Imaging data {y,(d0) :
 the sample size. Our conditions and theoretical results dif- (j0 ς D0j can usually be regarded as a noisy version of a
 fer substantially from those for the propagation-separation piecewise-smooth function of d e D with jumps or edges. In
 type methods (Polzehl and Spokoiny 2000, 2006; Li et al. many neuroimaging data, those jumps or edges often reflect the
 2011). functional and/or structural changes, such as white matter and
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 gray matter, across the brain. Therefore, the varying function is a smooth function of d. Assume that Pj(do, h), which
 {βί(ά) : d e V) in model (1) may inherit the piecewise-smooth will be called a local patch, contains an open set. See
 feature from imaging data for j = 1,..., p, but allows to have Figure 1 for a graphical illustration,
 different jumps and edges. Specially, we make the following
 assumptions. ™ , , , , , , , ' The jumping surface model can be regarded as a general

 Id) (Disjoint Partition) There is a finite and disjoint parti- ization of various models for delineating changes at unknown
 tion [Djj : / = 1,..., Lj} of V such that each VjA is a location (or time). See, for example, Khodadadi and Asgharian
 connected region of V and its interior, denoted by (2008) for an annotated bibliography of change point problem
 is nonempty, where Lj is a fixed, but unknown integer, and regression. The disjoint partition and piecewise smoothness
 See Figure 1(a), 1(b), and 1(d) for an illustration. assumptions characterize the shape and smoothness of £,-(d) in

 (ii) (Piecewise Smoothness) β](d) is a smooth function of d 22 > whereas the local patch assumption primarily characterizes
 within each V°, for I = 1,..., Lj, but β!(ά) is discon- the l°cal shaPe of A/(d) at each voxel do € T>0 across differ

 tinuous on dV^ = V \ [uj^D?,], which is the union ent scales (or radii)· For do e tu/=i®J./] n ϋο, there exists a
 of the boundaries of all Vjj. See Figure 1(b) for an radius h(d(]) such that fl(d0. /i(d0)) C In this case, for
 illustration. h < /i(d0), we have Pj(d0, h) = fi(do, h) and P;(d0, h)c — 0,

 (iii) (Local Patch) For any d0 e V0 and h > 0, let B(do,h) whereas P,(do, hf may not equal the empty set for large h
 be an open ball of do with radius h and Pj(do, h) a since Z?(do, h) may cross different T>° ts. For do € 3D(j) Π Vq,
 maximal path-connected set in fi(do, h), in which fij(d) Pj( d0, hf φ 0 for all h > 0. Since P;(do, h) contains an open

 D

 Dr,

 D,.
 ΐ,ι ;

 Mo

 (a) (b)

 D

 D0

 D  m ÔD,n(lzl,) = âD(1
 Λ

 / m „Λ)'

 (Λ (H)

 D bmu :fcv,-n_ ,^P.(d,:hY

 D0

 D\.\

 D\j

 (a) (b)

 D

 D0

 D i.i

 (c) (d)

 gD< ii •

 / l](W

 m
 Ww  oA) -

 bDwA)  (he))
 B(d;.A()

 Figure 1. Illustration of a jumping surface model for ^(d) and boundary sets over a two-dimensional region D: (a) £>, £>0, a disjoint partition
 of £> as the union of four disjoint regions with white, yellow, blue green, and red representing £>u, 'Di 2, £>1,3, and £>14, a representative voxel
 d0 e £>0, an open ball of d0, B(d0, h), a maximal path-connected set £i(d0, h), and Pt (d0, h)c; (b) three-dimensional shaded surface of true
 (ySi(d) : d e V] map; (c) three-dimensional shaded surface of estimated {^(do) : d0 e V0} map; and ( d) V, V0, a disjoint partition of V =
 X>!,i U £>12, dDw(h0) C 3Dm(hs), two representative voxels do and d(, in V0, two open balls of d[, e £>1,1, an open ball of d0 e dDa>(hs) Π £>0,
 S (do, hs), and £i(do, hs)c.
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 set for any h > 0, it eliminates the case of d0 being an isolated d (Cressie and Wikle 2011). Most functional principal compo
 point. See Figure 1(a) and 1(d) for an illustration. nent analysis models focus on characterizing spatial correlation

 The last component of the SVCM is a functional principal among multiple observed functions when V 6 Rx (Ramsay and
 component analysis model for η, (d). Let λ ι > À2 > ■ ■ ■ > 0 be Silverman 2005; Hall, Miiller, and Wang 2006; Zipunnikov et al.
 ordered values of the eigenvalues of the linear operator deter- 2011).
 mined by Σ,, with ΣΙΖι λ/ < oo and the ψι(d)'s be the corre
 sponding orthonormal eigenfunctions (or principal components) Three-Stage Estimation Procedure
 (Hall, Miiller, and Wang 2006; Li and Hsing 2010). Then, Έη We develop a three-stage estimation procedure as follows,
 admits the spectral decomposition: See Figure 2 for a schematic overview of SVCM.

 ν η Hh — V . . . , ,Stage (I): Calculate the least squares estimate of /?(d0), denoted
 η ' ~ , 1 'f / ■' by ^(d0), across all voxels in T>o, and estimate {Ee(do, do) :

 do e V0}, {E^(d, d') : (d, d') e T>2}, and its eigenvalues and
 The eigenfunctions t/g(d) form an orthonormal basis on the eigenfunctions.
 space of square-integrable functions on V, and ?7, (d) admits the Stage (II): Use the propagation-seperation method to adaptively
 Karhunen-Loeve expansion as follows: and spatially smooth each component of β (do) across all

 00 do 6 2?0

 rç,(d) = ξ, ιψ[(ά), (4) Stage (III): Approximate the asymptotic covariance matrix of
 /=i the final estimate of β(άο) and calculate test statistics across

 where ξ,·.; = fseV ?j((s)i/f;(i)riV(i) is referred to as the Zth func- a" voxe's e
 tional principal component score (FPCA) of the i-th subject, in This is more refined idea than the two-stage procedure proposed
 which dV(s) denotes the Lebesgue measure. The £,·,/ are un- in Fan and Zhang (1999, 2002).
 correlated random variables with Ε(ξυ) = 0 and Ε(ξί<ιξίλ) = ,,, ... . τι/; i\ re ι ~ η r )-. r , 1 .u j ι /in u 2.2.1 Stage (I). Stage (I) consists of four steps. λ;1(/ = k). If λ; RS 0 for I > Ls + 1, then model (1) can be _ /T , , , , .

 ,, Step (1.1 ) is to calculate the least squares estimate of p(do),
 approxima e y which equals ^(do) = J]"=1 x,y,(do) across all voxels

 T ^ d0 e V0, where Ωχ,„ = Σ"=ι xf2, in which a®2 = aar for
 fi(d) ~ X; /3(d) + 2_^ Ηί,ιΨάΑ) + e,(d). (5) any vect0r a. See Figure 1(c) for a graphical illustration of

 /=1 i£(do) : d0 € V0}.
 In (5), since /are random variables and i/f;(d) are "unknown" Step (1.2) is to estimate tj,-(d) for all d e D. We employ
 but fixed basis functions, it can be regarded as a varying co- the local linear regression technique to estimate all individ
 efficient spatial mixed effects model. Therefore, model (5) is a ual functions η, (A). Let 3di?,(d) = 9??,(d)/3d, C,(d) = (η,(d),
 mixed effects representation of model (1). hd^i(A)T)T, and Z/,(dm — d) = (1, (dm \ — d\ )/ h, (dmp — di)/
 Model (5) differs significantly from other models in the ex- h, (dm i — d^,)/h)T, where d = (d\, dffr and dm — {dm \,

 isting literature. Most varying coefficient models assume some dmp, dmff)T e Vq. We use Taylor series expansion to expand
 degrees of smoothness on varying coefficient functions, while 1i(Am) at d leading to
 they do not model the within-curve dependence (Wu, Chiang,
 and Hoover 1998). See Fan and Zhang (2008) for a comprehen
 sive review of varying coefficient models. Most spatial mixed We develop an algorithm to estimate C,-(d) as follows. Let
 effects models in spatial statistics assume that spatial basis func- Kioc(·) be a univariate kernel function and Kh(dm — d) =
 tions are known and regression coefficients do not vary across h~3 Π/Li ^ioc(04a — dk)/h) be the rescaled kernel function

 rç,(d,„) = C,(d) Zft(dm - d).

 Stage I: Initialization

 t
 Estimate/3(d0) by LSE

 Estimate jj(d0) by LPK

 EstimateI^d^djand I,(d,,d0)

 4
 Eigen-decomposeZ„(d0,d0 ')

 ■

 Stage II: MASS f  Stage III: Hypothesis Test

 X  X
 Updatep(d0;/is) by PS  H  Approximate E„(P(dn;/is))

 ι X  X
 Stop Check  Conduct the Wald Test

 Stage I: Initialization

 X
 Estimate/5(d0) by LSE

 Estimate jj(d0) by LPK

 Estimate S,(d0,do") and S,(d„,d0)

 4
 Eigen-decomposel. (d0,d0')

 ■

 Stage II: MASS

 X
 Update^(d0;/is) by PS

 J I 1  r
 Stop Check

 Stage III: Hypothesis Test

 \ t
 Approximate Ea(^(dn;/!s))

 J I
 Conduct the Wald Test

 Figure 2. A schematic overview of the three stages of SVCM: Stage (I) is the initialization step, Stage (II) is the multiscale adaptive and
 sequential smoothing (MASS) method, and Stage (III) is the hypothesis test.
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 with a bandwidth h. For each i, we estimate C,(d) by minimiz- 2.2.2 Stage (II). Stage (II) is a multiscale adaptive and se
 ing the weighted least squares function given by quential smoothing (MASS) method. The key idea of MASS is

 „ T to use the propagation-separation method (Polzehl and Spokoiny
 C,(d) = argminc.(d) y (r,(dm) — Cj(d) z/,(dm — d)} 2000, 2006) to individually smooth each least squares estimate

 d"eI'0 image {yS7(do) : do e Vq} for j = 1p. MASS starts with
 x Kh (d,„ — d), building a sequence of nested spheres with increasing band

 where r,(dm) = y,(d,„) - xf β(ά,„). It can be shown that widths 0 = h0 < hx < ■ ■ ■ < hs = r0 ranging from the small
 est bandwidth h \ to the largest bandwidth h s = ro for each
 d0 e D0. At bandwidth h\, based on the information con
 tained in {^(do) : do e X>oh we sequentially calculate adap
 tive weights u)j(do, d!0\h\) between voxels do and d(j, which

 χ Τ Kh(dm-d)zh(dm-d)ri(dm). (6) dePends on the distance lldo-dollz and special similarity
 d~,o |/3y(d0) - >3y(do)|, and update >3y (d0 ; /ι ι ) for all d0 e V0 for

 j = 1,..., p. At bandwidth h2, we repeat the same process
 Let Ri = (r,(do) : do e Vo) be an No χ 1 vector of estimated using [fi(do', h\) : do e Vq] to compute spatial similarities. In
 residuals and notice that >/,(d) is the first component of C,(d). this way, we can sequentially determine ω; (do, d'0\hs) and
 Then, we have β; (do; hs) for each component of β (do) as the bandwidth ranges

 ^ -η \ cd a from h ι to h s = Moreover, as shown below, we have found η, = (/),· (do) : do e 2?o) = A and 1 Λ υ ' '
 a simple way of calculating the standard deviation of /β, (do; hs).
 MASS consists of three steps including (II. 1) an initializa

 Ci( d) = y Kh(dm-d)zh(dm-dy

 i?;(d) = (1, 0, 0, 0)C,(d), (7)

 where 5,· is an ND χ ND smoothing matrix (Fan and Gijbels tion step, (II.2) a sequentially adaptive estimation step, and
 1996). We pool the data from all η subjects and select the optimal (Π.3) a stop checking step, each of which involves in the spec
 bandwidth h, denoted by h, by minimizing the generalized cross- ification of several parameters. Since propagation-separation
 validation (GCV) score given by and the choice of their associated parameters have been dis

 n „ cussed in details in Polzehl, Voss, and Tabelow (2010) and Li
 GCN(h) — y dp - Si) (Ip — Sj)Rj et al. (2011), we briefly mention them here for the complete

 [1 — /Vq1 tr(.S,·)]2 ness. In the initialization step (II.1), we take a geometric series
 {hs — cSh '■ s — 1. · · · ι S) °f radii with h0 = 0, where Ch > 1,

 where I ο is an Ν D χ No identity matrix. Based on h, we can say Ch _ | |q \ye suggest relatively small c/, to prevent incor

 use (7) to estimate 77,· (d) for all i. ^ porating too many neighboring voxels.
 Step (1.3) is to estimate Σ,(ά, d ) and Ze(do, d0). Let [n the sequentially adaptive estimation step (II.2), starting

 êi(do) = y, (do) — xf β (do) — ??,(do) be estimated residuals for from .ν = 1 and hi = ο,, at step s, we compute spatial adaptive
 i = 1,..., τι and do 6 V0. We estimate (do, do) by locally weighted average estimate 0j(do; hs) based on {/I/(do) :

 η d0 e Vo] and {$J(d0;hs-l) : d0 6 V0}, where $j(d0-,h0) =
 Ê€(d0,d0) = n-1 y ê,(d0)2 (9) β](do). Specifically, for each j, we construct a weighted

 1=1 quadratic function

 and E„(d, d') by the sample covariance matrix: ^ = £ _ ft(d0)} Vd0, dm;hs),
 η dmeB(d0,hs)nVo

 t„(d, d') = (77 - p)~1 y fc(d)fc(d'). (10) (12)
 i=l

 where œj (do, dm ; hs ), which will be defined below, characterizes

 Step (1.4) is to estimate the eigenvalue-eigenfunction pairs the similarity between $j(dm;hs-i) and $j(do\hs-i). We then
 of Ση by using the singular value decomposition. Let V = calculate
 [ί/j,..., ήη\ be an ND xn matrix. Since n is much smaller than »
 No, we can easily calculate the eigenvalue-eigenvector pairs of ' °' ~~ wrBmm0,(dO) n(pj( 0). j)

 the n χ n matrix VrV, denoted by {(λ,, f,·) : i = 1,..., n}. It = y <w,(d0, dm;hs)$j(dm), (13)
 can be shown that {(λ,·, Vf,·) : i = 1,..., n] are the eigenvalue- dm6fi(d0,As)nD0
 eigenvector pairs of the No x No matrix VV7". In applications, . _ / j j l\/x^
 one usually considers large λ;'s values, while dropping small W fje ^ / Τ °' "" j m' ^d„<eB(do,A,)ni>o
 λ/s. It is common to choose a value of Ls so that the cumula- \ . ,,, ,
 tive eigenvalue Σ1-1 h/ EU h « above a prefixed threshold, c Le^ (d°; lh)) be thevanance of hs).
 say 80% (Hall, Mfiller, and Wang 2006; Li and Hsing 2010; F°^ β/ά^ wycomPut^ lbe fmilarlty between voxels d"
 Zipunnikov et al. 2011). Furthermore, the Ith FPCA scores can a"d do> denoted by DPj(do, d0; Λ, .), and the adaptive weight
 be computed using ω'(d°' d«; hA whlch are' resPectlvely' defined as

 No  DPj(do,d'0;hs-i) = {^(do\hs^) - ^j(d!o\hs^)}2
 h = y^(dm)^/(dm)V(dm) (11) /E„^(do;A,_i)),

 o>j(do,d^-,hs) = ATiocClldo-d'0\\2/hs) χ Kst(DPj
 = \

 for / = 1,..., Ls, where V(dm) is the volume of voxel dm. x (d0, d '0;hs^i)/C„), (14)
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 where Kst(u) is a nonnegative kernel function with compact voxel do. If s = S for all components in all voxels, we stop. If
 support, C„ is a tuning parameter depending on n, and || · 112 D($j(do), /I,(do; hs)) < Cs, then we set hs+\ = Chhs, increase
 denotes the Euclidean norm of a vector. 5 by 1 and continue with the step (II. 1). It should be noted that

 The weights ATi0c(lldo — dfj112//r.v) give less weight to the different components of βΑοΆ) may stop at different band
 voxel dg that is far from the voxel do- The weights Kstiu) down- widths.
 weight the voxels dg with large (do. dg; hs-1), which indi- We usually set the maximal step S to be relatively small, say
 cates a large difference between $j(d'0\hs-i) and ^(d0;/r5_i). between 10 and 20, and thus each B(d0, hs) only contains a
 In practice, we set Kloc(u) = (1 - w)+. Although different relatively small number of voxels. As S increases, the number
 choices of Kst(·) have been suggested in the propagation- of neighboring voxels in B(d0, hs) increases exponentially. It
 separation method (Polzehl and Spokoiny 2000, 2006; Polzehl, increases the chance of oversmoothing β]Αβ when d0 is near
 Voss, and Tabelow 2010; Li et al. 2011), we have tested the edge of distinct regions. Moreover, to prevent oversmoothing

 these kernel functions and found that Kst{u) — exp(—u) per- βρΑο), we compare β] Ah hs) with the least squares estimate
 forms reasonably well. Another good choice of Kst(u) is frjA) and gradually decrease C, with the number of iteration.
 min(l, 2(1 — u))+. Moreover, theoretically, as shown in Scott , -n/, . . „ ,
 (1992) and Fan (1993), Ihey haw examined the efficiency of Z2J S""«' BaSed °n Ca" fuIther COn

 struct test statistics to examine scientific questions associated
 with j8(do). For instance, such questions may compare brain
 structure across different groups (normal controls versus pa
 tients) or detect change in brain structure across time. These
 questions can be formulated as the linear hypotheses about β (do)

 given by

 different kernels for weighted least squares estimators, but ex
 tending their results to the propagation-separation method needs

 some further investigation.

 The scale C„ is used to penalize the similarity between any
 two voxels do and dg in a similar manner to bandwidth, and
 an appropriate choice of C„ is crucial for the behavior of the

 propagation-separation method. As discussed in Polzehl and H0(d0) : /?i0(do) = b0 versus #i(d0) : flij8(d0) φ b0, (18)
 Spokoiny (2000,2006), a propagation condition independent of
 the observations at hand can be used to specify C„. The ba- where Ri is an r χ k matrix of full row rank and b0 is an r χ 1
 sic idea of the propagation condition is that the impact of the specified vector. We use the Wald-test statistic

 statistical penalty in K^DPj{dn,d'Q- hs ])/Cn) should be neg- w {do-h) = {R^(d0;hs) - bo}r{fliE„(0(do;fcs))*f Γ1
 ligible under a homogeneous model pj(d) = constant yielding
 almost free smoothing within homogeneous regions. However,  x{Rrf(d0-,hs)-b0} (19)

 we take an alternative approach to choose C„ here. Specifically, for problem (18)> where Ση(β(ά( · h$)) is the COvariance matrix
 a good choice of C„ should balance between the sensitivity 0f /J(do- hs)
 and specificity of MASS. Theoretically, as shown in Section We °^oae an approximation of E„(^(d0; hs j). According
 2.3, C„ should satisfy CJn = o(l) and C„ log(ND) = o(\). tQ ^3^ we knQW that
 We choose C„ = η°·4χ12(0.8) based on our experiments, where

 Χ[2(α) is the upper α-percentile of the xf-distribution. /}(do; hs) = ^ w(d0, dm;hs)o fi(dm),
 We now calculate E„(^y(do;fiv)). By treating the weights d„eB(d0,hs)

 0)j(d0,dm-,hs) as "fixed" constants, we can approximate
 Σ (β (A h )) b where α ob denotes the Hadamard product of matrices α and b
 " ' ' s and w(do, dm;h) is a ρ χ 1 vector determined by the weights

 V 5>j(do, dm ; hs)5>j(d0, dm ; hs) &>7(d0, dm ; h) in Stage II. Let Jp be the ρ2 x ρ selection matrix
 d„,dm/€B(do,As)np0 (Liu 1999). Therefore, Έη(β(ά0; hs)) can be approximated by

 χ cov(0j(Am), $j(dm )), j, cov(w(d0, dm; hs) ο fi(dm), â>(d0, d'm,hs) ο β(ά,η))
 d„,d;eB(do,fts)

 where cov(47(dm)J7(dm0) can be estimated by % ^ Êv(dm, d'jj], {\ώ(ά(ί, dm;hsMd(h d'm,hs)T\
 e,rpn-x\ej,p{±,(dm, dm0 + Êe(dm, dm)l(dm - dm0}, (16)

 ®nzln}jp.
 in which e;-iP is a ρ χ 1 vector with they'th element 1 and others
 0. We will examine the consistency of approximation (15) later.

 In the stop-checking step (II.3), after the first iteration, we ^.3 Theoretical Results

 start to calculate a stopping criterion based on a normalized We systematically investigate the asymptotic properties of all
 distance between do) and /5j(do; hs) given by estimators obtained from the three-stage estimation procedure.

 DOS,(do), β j (Ah hs)) = [$j( do) - β] A; hs)}2/Ση(β;Α)). Throughout the article we only consider a finite number of iter
 ations and bounded r0 for MASS, since a brain volume is always

 bounded. Without otherwise stated, we assume that op( 1) and
 Then, we check whether /37(d0;/is) is in a confidence el- Op( 1 ) hold uniformly across all d in either T> or Γ>() throughout
 lipsoid of 0j(do) given by {/Sy(d0) : D($j(do), β, A)) < Cs], the article. Moreover, the sample-size η and the number of vox
 where Cs is taken as Cs — χ^(Ο.δΟ/.ν) in our implementa- els ND are allowed to diverge to infinity. We state the following
 tion. If D(j6y(do), $jAo',hs)) is greater than Cs, then we set theorems, whose detailed assumptions and proofs can be found
 β]Αο, hs) = /3y (do, hs-1) and .y = S for the y'th component and in Section 6 and a supplementary document.
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 Let β,(άο) — (βι,.(dr>),..., βρ*(άο))τ be the true value of Thus, 'dV(J>(hs) can be regarded as a band with radius hs cov
 β(άο) at voxel do. We first establish the uniform convergence ering the boundary set 8T>^\ while 3V^(hs) contains all grid
 rate of {^(do) : do e T>o). points within such band. It is easy to show that for a sequence

 of bandwidths ho = 0 < h\ < ■ ■ ■ < hs, we have
 Theorem 1. Under assumptions (C1)-(C4) in Section 6, as

 η -> oo, we have dT)(j\ho) = 322(j) C · · · C 323(j)(fis)and

 (i) >[j8(d0) - β,(d0)] -*L N(0, Ωϊ'Σ,ίάο, do)) for any 9V{0j)(h0) c · · · C dT%\hs). (21)
 do € T>o, where —denotes convergence in distribution; Therefore, for a fixed bandwidth hs, any point do € Vο be

 (ii) supdoeI>o ||^(do) - /S*(d0)||2 = Op{yJn-y log(l + ND)). longs to either V \ 3V<j>(hs) or dVu\hs). For each d0 e
 V \ dD'^(hs), there exists one and only one V, / such that

 Remark 1. Theorem 1 (i) just restates a standard asymp
 totic normality of the least squares estimate of /I (do) at any S(do, h0) c · · · C Β (do, hs) c Τ>° r (22)

 given voxel d0 e î>0. Theorem 1 (ii) states that the maximum See Figure 1(d) f()r an inustration.

 of |[^(d0) — 0»(άο)||2 across all do e V0 is at the order of We first investigate the asymptotic behavior of $j(do\hs)
 y n 1 l°g(l + No). If log(l + No) is relatively small compared when /3;,(d) is piecewise constant. That is, /J7*(d) is a
 with n, then the estimation errors converge uniformly to zero constant in and for any d' e dV<J>, there exists a
 in probability. In practice, Ν η is determined by imaging reso- . l, , , „ ,, ,
 , , . , , , , , , , . d e υΛΡ°, such that /L*(d) = d,-*(d'). Let /î;*(do\hs) = lution and its value can be much larger than the sample size. J·' _ ' ' ' ' ' '
 For instance, in most applications, ND can be as large as 1003 Σά„ΐΒ(ά0Α)ην0 ®i(do» dm,hs)Bj*(dm) be the pseudotrue value
 and log(l + ND) is around 15. In a study with several hundreds °f β;(do) at scale hs in voxel d0. For all do € 22 \ 3Vij)(hs), we
 subjects, n_1 log(l + No) can be relatively small. ^ave Pj*(do',hs) = $/*(do) for all s < S due to (22). In contrast,

 for do e dV{J'(hs), /),■«(do; hs) may vary from ho to hs. In this
 We next study the uniform convergence rate of Έη and its case, we are able to establish several important theoretical re

 associated eigenvalues and eigenfunctions. We also establish suits to characterize the asymptotic behavior of j)(do\hs) even
 the uniform convergence of (do, do). when hs does not converge to 0. We need additional notation as

 follows:
 Theorem 2. Under assumptions (C1)-(C8) in Section 6, we

 have the following results: Â7(do) = Pj(do) — β;»(do) and
 r\ if ι a ν ΙΛ «I'm n\ Ay*(do, dQ) = fij„(do) — /3y»(d0), (t) sup E„(d, d ) — E„(d, d ) = o„(l); fm

 (d.d')sz>2 cof (d0, d^A) = ATtocdldo - di,l|2/A,)A:„(0)
 (ii) f [&(d) - Md)fdV(d) = op(l)and [λ, - λ,| = op( 1)

 Jv
 for/ = 1,, E;

 (iii) sup |Se(do,do)-Ee(do,d0)| = op(l); 0-ι„ V d„€Z>0 Lj (a0,ns)-ej pux eJtP 2_

 l(Mdo) = β]*(ά'0)),

 ^ ^ "" 0>(°)(do,d'0-,hs) = a>f\d0,d'0-,hs)/ Y wf(d0,dm,hs), for I = \ K\ · _ τ-r _ J
 dm g Β (do, h s )CV0

 d/n, &'m g Β (do, h s )ΠΧ>ο

 where Ε will be described in assumption (C8) and ψβά) is the x s«))(d()i dm. hs)^°\d0, d'm; /,,)£,(dm, d'J. (23)
 estimated eigenvector, computed from ψι — V|;. 1 1

 Remark 2. Theorem 2 (i) and (ii) characterize the uniform
 weak convergence of Ση(·, ■) and the convergence of ψι(·) and Theorem 3. Under assumptions (Cl)-(CIO) in Section 6 for
 λ;. These results can be regarded as an extension of Theo- piecewise constant (/37*(d) : d e V], we have the following re
 rems 3.3-3.6 in Li and Hsing (2010), which established the su'ts ^or all 0 < 5 < 5:

 uniform strong convergence rates of these estimates under (i) suPdo6P() |^,(d0;hs) - ^(do)| =op(Vlog(l + ND)/n);
 a simple model. Specifically, Li and Hsing (2010), consid- «·■.. s ,Λ u \ ο <a \ -(0)«j Λ > \ , «j\ «,,, / . ,,, . (U) P)(do;"s)-P;>(do) = Ld„€B(d„/1,)nî)„ft)/ (do,dm;/zs) ered y,(d) =/z(d) + i/,(d) + 6,(d) and assumed that (t(d) is « "" ", '' 0 '

 twice differentiable. Another key difference is that in Li and )( m)L +°p( )J> ^
 Hsing (2010), they employed all cross products y,(d)yi(d') for suPd(JeP0 \^(V^Bj*(do",hs)) — (do; hs)\ = op( 1);
 d φ d' and then used the local polynomial kernel to estimate 0V) V«[/0(do; h j — ^i/t(do)] converges in distribution to
 Σ^(ΰ, d'). In contrast, our approach is computationally simple a normal distribution with mean zero and variance
 and ê,(d, d') is positive definite. Theorem 2 (iii) characterizes Σ, (do; hs) as η -> oo.

 the uniform weak convergence of Êe(d0, d0) across all voxels Remark 3 Theorem 3 shows MASS has seyeral im_

 do € T>o. portant features for a piecewise constant function fij jd). For
 To investigate the asymptotic properties of 0j(do',hs), we instance, Theorem 3 (i) quantifies the maximum absolute differ

 need to characterize points close to and far from the boundary ence (or bias) between the true value β,·*(do) and the pseudo
 set dV^\ For a given bandwidth hs, we first define fi^-boundary ^ue value Bj*(do',hs) across all do e 22o for any s. Since
 sets: fij*( do; hs) ~ Bj*{ do) = Ofordo e V \ 8T>(j>(hs), this result de

 lineates the potential bias for voxels d0 in dV^\hs). Theorem
 dV('\hs) = {d € V : #(d, hs) Π dV<J> φ 0}and 3 (jv) ensures that Y[jij(do\hs) — /i7„(do)J is asymptotically
 322q (Aj) = 322(;)(/zj) Π 220. (20) normally distributed. Moreover, as shown in the supplementary
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 document, Σ^0)(άο\hs) is smaller than the asymptotic variance Third, we assess both Type I and Type II error rates of the
 of the raw estimate $j(do). As a result, MASS increases statis- Wald"test statistic. For the sake of space, we only present some
 tical power of testing //0(do) selected results below and put additional simulation results in

 the supplementary document.
 We now consider a much complex scenario when £,*(d) is We simulated data at all 32,768 voxels on the 64 χ 64 χ

 piecewise smooth. In this case, 0jt(do',hs) may vary from h0 8 phantom image for η = 60 (or 80) subjects. At each d0 =
 to hs for all voxels d0 € V0 regardless whether d0 belongs to (d0 ud02, d0 3)r in V0, F,(d0) was simulated according to
 dDu\hs) or not. We can establish important theoretical results
 to characterize the asymptotic behavior of /?(do; hs) only when >7' (do) = x; β (do) + rj,(do) + e,(do) for i = 1(25)

 h, = 0(sJ\og(\ + ND)/n) = o(l) holds. We need some addi- where χ = ( ψ β(ά) = (β(ά) β{ά) fo(ào)fy
 tional notation as follows: and ^ m 1} or χ^)2 _ 3> £ ^ χ2^ _ 3 is
 (î) , , a very skewed distribution. Furthermore, we set ??,(do) =

 wj *-d°' = **(11* - d0||2//!j)kTji(0) Σ/3=ι ξίΐΨι(do), where ξα are independently generated accord
 l(IMdo) - ^*(d0)l < 0(hs)), (24) ing to ξη ~ N{0,0.6), ξα ~ N(0,0.3), and f/3 ~ N(0, 0.1),

 (d0, hs) = o)f(do, hs)/ Y o>f(do, d^l(do) = °'5 sm(2^^u/64), ^(d0) - 0.5cos(2^rf0,2/64),
 dmeB(^hs)nv0 and ^3(d0) = sj 1/2.625(9/8 - d0,3/4). The first eigenfunction

 E(1)(d 'h ) — eT Ω-' (d°) c^an§es on'y along doj direction, while it keeps con
 j to. s) — t'j.p χ £j,p 2_j stant in the other two directions. The other two eigenfunctions,

 dm, d'm € Β (do, h s )Γ\"Ώq

 χ ω
 ( (1) ι ι ^(do) and V*"3(do), were chosen in a similar way (Figure 3). We
 (do, dm\hs)&j (do, dm;/ζΛ)Σν(ΰ,„, dm). set Χ.χ _ \ and generated jq2 independently from a Bernoulli

 distribution with success rate 0.5 and x,3 independently from
 the uniform distribution on [1,2]. The covariates xi2 and

 ^ ... . „ x,-3 were chosen to represent group identity and scaled age,
 Section 6 hold for piecewise continuous {βμ(ά) : d e V}. For . . v 6 1 3 6 '
 αΐι π ο ^ c ,,,ο ko,,a tka ^o,,it,· respectively.

 Theorem 4. Suppose assumptions (C1)-(C9) and (Cll) in
 action 6 hold for piecewise continuous [β]

 all 0 < s < S, we have the following results:
 We chose different patterns for different β} (d) images to ex

 (i) supdo€l) |j6j*(d0; hs) - β]*(ά0)\ = Op(hs)\ amine the finite sample performance of our estimation method
 (ii) /3y(d0; hs) - ^»(d0; hs) = Σλ^β^μπΌο Under different scenarios· We set a11 the eiSht slices along the

 ~(D/j j , ,, r ι , /im '' coronal axis to be identical for each of 6,(d) images. As shown
 w)\do,dm-,hs)Aj(dm) l +op(l)]; . _. . ... f, ,.LJ® . ,
 1 _ _ (l) in f 'eure 4, each slice of the three different p, (d) images has

 (iii) supdogPo |£(Vn^,(do,A,)) - Σ,· (do,hs)\ = op(l). four different blocks and five different regions of interest (ROIs)
 (iv) y/n[fij{do; hs) - do; /is)] converges in distribution with varying patterns and shape. The true values of β](ά) were

 to a normal distribution with mean zero and variance varied from 0 to 0.8, respectively, and were displayed for all
 Σj (do; hs) as η —r oo. ROIs with navy blue, blue, green, orange, and brown colors

 n . , . , . , , . representing 0,0.2,0.4,0.6, and 0.8, respectively.
 Remark 4. Theorem 4 characterizes several key features of , , , ... ... f J

 MASS for a piecewise continuous function /S/*(d). These re
 sults differ significantly from those for the piecewise constant
 case, but under weaker assumptions. For instance, Theorem 4 (i)

 quantifies the bias of the pseudotrue value /jy*(do;/is) relative
 to the true value /3y*(do) across all do € Vq for a fixed s. Even
 for voxels inside the smooth areas of 6,*(d), the bias On(hs) , . „ , . T , , ,
 • . , . , . . ., c , 7, els) and s — 10 (lower panels). Inspecting Figure 4 reveals that
 is still much higher than the standard bias at the rate of h due - , à /j , ·

 We fitted the SVCM model (1) with the same set of covari
 ates to a simulated dataset, and then applied the three-stage
 estimation procedure described in Section 2.2 to calculate adap
 tive parameter estimates across all pixels at 11 different scales.
 In MASS, we set hs = 1.1s for s = 0,..., S = 10. Figure 4
 shows some selected slices of /3(do; hs) at s = 0 (middle pan

 . . ,, , w „ , , , ί all /3,(d0;/iio) outperform their corresponding β,(do) in terms
 ο ,he pre»„cc of *,,<%», ΛΜ/C,(Wand and Jones of and detected R0I patterns. FoHovs-iSg <he methodde
 Λ Ζ ΐ« Ϊ ^ " Κ S,i°· ™ scribed in Secdon 2.2. we esdmated ,,(d) based on the residuals and p,»(d) is twice differentiable, then the bias of 6,»(do; Λ,) ... τ η,, . , · . ,. ,. , ,
 , · α /. , . α ,,ι, ™ /,· yi (do) - x; p(do) by using the local linear smoothing method relative to 6,*(do) may be reduced to Op(h2). Theorem 4 (iv) , . ' , , 3 ... „ , f . Vr« ,, . χ a /j , ,v· ■ „ and then calculate n,(d). Figure 3 shows some selected slices

 ensures that Vi[p/(do; η.) — p,*(do; η,)] is asymptotically nor- „ ... . , T „ , ■ ■? j ,. 1 . . , of the first three estimated eigenfunctions. Inspecting Figure 3
 mally distnbuted. Moreover, as shown in the supplementary , . „ ... , . , , . ...

 d) . reveals that η,(ά) are relatively close to the true eigenfunctions
 document, Σ( (do;hs) is smaller than the asymptotic variance
 of the raw estimate /3;(do), and thus MASS can increase statis
 tical power in testing Ho(do) even for the piecewise continuous
 case.

 and can capture the main feature in the true eigenfunctions,
 which vary in one direction and are constant in the other two
 directions. However, we do observe some minor block effects,

 which may be caused by using the block smoothing method to

 3 "SIMULATION ^TUDIE^ estimate ij,(d).
 Furthermore, for /J(d0; hs), we calculated the bias, the empir

 In this section, we conducted a set of Monte Carlo simulations ical standard error (RMS), the mean of the estimated standard

 to compare MASS with voxel-wise methods from three differ- errors (SD), and the ratio of RMS over SD (RE) at each voxel
 ent aspects. First, we examine the finite sample performance of of the five ROIs based on the results obtained from the 200 sim
 β(ά0 \h.) at different signal-to-noise ratios. Second, we exam- ulated datasets. For the sake of space, we only presented some
 ine the accuracy of the estimated eigenfunctions of Σ^(ά, d')· selected results based on /î3(do) and )33(do;/iio) obtained from
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 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 -0.5 0 0.5

 Figure 3. Simulation results: A selected slice of (a) true V^ld); (b) true ψ2(d); (c) true ^(d); (d) i^i(d); (e) ^(d); and (f) ^(d).

 Ν(Ο, 1) distributed data with η = 60 in Table 1. The biases are curate for all scenarios, while the statistical power for rejecting
 slightly increased from ho to h\o (Table 1), whereas RMS and the null hypothesis in ROIs with ft (do) ft 0 significantly in
 SD at /z5 and h m are much smaller than those at ho (Table 1 ). In creases with radius hs and signal-to-noise ratio (Table 2). As
 addition, the RMS and its corresponding SD are relatively close expected, increasing η improves the statistical power for detect
 to each other at all scales for both the normal and chi-square dis- ing ft (do) φ 0.
 tributed data (Table 1). Moreover, SDs in these voxels of ROIs

 with ft(do) > 0 are larger than SDs in those voxels of ROI with ^ REAL DATA ANALYSIS
 ft(do) = 0, since the interior of ROI with ft(do) = 0 contains
 more pixels (Figure 4(c)). Moreover, the SDs at steps ho and h\o We applied SVCM to the ADHD data from the New York
 show clear spatial patterns caused by spatial correlations. The University (NYU) site as a part of the ADHD-200 Sample
 RMSs also show some evidence of spatial patterns. The biases, Initiative (http://fconJ000.projects.nitrc.org/indi/adhd200/).
 SDs, and RMSs of ft (do) are smaller in the normal distributed ADHD-200 Global Competition is a grassroots initiative event
 data than in the chi-square distributed data (Table 1), because to accelerate the scientific community's understanding of the
 the signal-to-noise ratios (SNRs) in the normal distributed data neural basis of ADHD through the implementation of open
 are bigger than those SNRs in the chi-square distributed data, data-sharing and discovery-based science. ADHD is one of the
 Increasing sample size and signal-to-noise ratio decreases the most common childhood disorders and can continue through
 bias, RMS and SD of parameter estimates (Table 1). adolescence and adulthood (Polanczyk et al. 2007). Symptoms
 To assess both Type I and Type II error rates at the voxel include difficulty staying focused and paying attention, diffi
 level, we tested the hypotheses /ft(do) : ft (do) = 0 versus culty controlling behavior, and hyperactivity (over-activity).
 //i(d0) : ft(d0) ft 0 for j — 1,2,3 across all d0 e V0. We ap- It affects about 3% to 5% of children globally and diagnosed
 plied the same MASS procedure at scales ho and h\q. The in about 2% to 16% of school-aged children (Polanczyk et al.
 — log10(ft values on some selected slices are shown in the 2007). ADHD has three subtypes, namely, predominantly
 supplementary document. The 200 replications were used to hyperactive-impulsive type, predominantly inattentive type,
 calculate the estimates (ES) and standard errors (SE) of rejec- and combined type.
 tion rates at a = 5% significance level. Due to space limit, we The NYU dataset consists of 174 subjects (99 Normal Con
 only report the results of testing ft(do) = 0. The other two tests trois (NC) and 75 ADHD subjects with combined hyperactive
 have similar results and are omitted here. For Wp(do',h), the impulsive). Among them, there are 112 males whose mean age
 Type I rejection rates in ROI with ft(do) = 0 are relatively ac- is 11.4 years with standard deviation 7.4 years and 62 females
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 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8

 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8

 Figure 4. Simulation results: A selected slice of (a) true /81(d); (b) true /82(d); (c) true /63(d); (d) /6i(d0); (e) /62(d0); (f) /63(do); (g) /6i(d0; h\a)\
 (h) /S2(d0; A10); and (i) /63(d0; hl0).

 whose mean age is 11.9 years with standard deviation 10 years, methodology is based on a volume-preserving spatial transfor
 Resting-state functional MRIs and Τ1-weighted MRIs were ac- mation, which ensures that no volumetric information is lost
 quired for each subject. We only use the Τ1 -weighted MRIs here, during the process of spatial normalization, since this process
 We processed the Tl-weighted MRIs by using a standard im- changes an individual's brain morphology to conform it to the
 age processing pipeline detailed in the supplementary material, morphology of the Jacob template (Kabani et al, 1998).
 Such pipeline consists of anterior commissure (AC) and pos- We fitted model (1) to the RAVEN images calcu
 terior commissure (PC) correction, bias field correction, skull- lated from the NYU dataset. Specifically, we set /î(do) =
 stripping, intensity inhomogeneity correction, cerebellum re- (/Si (do),..., ft (do))' and x,· = (1, G,·, A,·, D,, WBV,, A; χ
 moval, segmentation, and nonlinear registration. We segmented D,·, G,· χ D,, A, χ G,)r, where G,, A,·, D,, and WBV,·,
 each brain into three different tissues including gray matter respectively, represent gender, age, diagnosis (1 for NC and 0 for
 (GM), white matter (WM), and cerebrospinal fluid (CSF). We ADHD), and whole brain volume. We applied the three-stage
 used the RAVENS maps to quantify the local volumetric group estimation procedure described in Section 2.2. In MASS, we
 differences for the whole brain and each of the segmented tissue set hs = 1.1s for s = 1,..., 10. We are interested in assessing
 type (GM, WM, and CSF) using the deformation field that we the age and diagnosis interaction and the gender and diagnosis
 obtained during registration (Davatzikos et al. 2001). RAVENS interaction. Specifically, we tested //o(do) : ft(do) = 0 against
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 Table 1. Simulation results: Average bias (x 10 2), RMS, SD, and RE of /32(d0) parameters in the five ROIs at 3 different scales (h0, h5, hi0),
 N(0, 1), and χ(3)2 — 3 distributed noisy data, and two different sample sizes (n = 60, 80)

 X (3) — 3 mi)

 ^2 (do)

 O SO II c  O OO II c  n = 60  O 00 II

 ho  hi  h\o  ho  hs  h\o  ho  hi  h\o  ho  hi  h\o

 0.0 BIAS  -0.03  0.36  0.61  0.00  0.34  0.56  -0.01  0.17  0.22  0.01  0.16  0.20

 RMS  0.18  0.13  0.13  0.15  0.10  0.10  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.13  0.12  0.15  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06
 RE  1.03  1.00  1.04  1.00  0.94  0.98  0.99  0.94  1.03  1.00  0.95  1.04

 0.2 BIAS  0.72  0.37  0.38  0.15  -0.35  -0.39  -0.04  -0.55  -0.66  0.10  -0.48  -0.61

 RMS  0.19  0.14  0.13  0.16  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.14  0.13  0.16  0.12  0.11  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  0.99  1.03  1.00  0.96  0.99  0.99  0.96  1.04  1.00  0.97  1.06

 0.4 BIAS  -0.40  -0.55  -0.68  -0.10  -0.15  -0.24  0.04  0.12  0.13  -0.10  0.05  0.08

 RMS  0.19  0.14  0.14  0.16  0.12  0.12  0.14  0.07  0.07  0.12  0.07  0.07

 SD  0.18  0.14  0.13  0.16  0.12  0.12  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.03  1.00  0.96  1.00  0.99  0.96  1.04  1.00  0.97  1.06

 0.6 BIAS  0.42  -1.14  -1.93  0.05  -1.20  -1.89  0.03  -0.55  -0.69  -0.01  -0.43  -0.54

 RMS  0.18  0.13  0.13  0.15  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.13  0.13  0.15  0.11  0.11  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.04  1.00  0.95  0.99  0.99  0.97  1.05  1.00  0.97  1.05

 0.8 BIAS  -1.04  -2.95  -4.09  -0.13  -1.71  -2.70  -0.11  -0.82  -1.03  -0.03  -0.59  -0.77

 RMS  0.19  0.15  0.15  0.16  0.12  0.12  0.14  0.08  0.07  0.12  0.07  0.07

 SD  0.19  0.15  0.14  0.16  0.13  0.12  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.03  1.00  0.96  0.99  0.99  0.94  1.01  1.00  0.95  1.02

 Χ (3) — 3 Ν(0,1)

 ^2 (do)

 η = 60  Ο OO II c  η = 60  Ο OO II κ

 ho  hs  h io  ho  hs  h ίο  ho  hs  h\o  ho  hs  hi ο

 0.0 BIAS  -0.03  0.36  0.61  0.00  0.34  0.56  -0.01  0.17  0.22  0.01  0.16  0.20

 RMS  0.18  0.13  0.13  0.15  0.10  0.10  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.13  0.12  0.15  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06
 RE  1.03  1.00  1.04  1.00  0.94  0.98  0.99  0.94  1.03  1.00  0.95  1.04

 0.2 BIAS  0.72  0.37  0.38  0.15  -0.35  -0.39  -0.04  -0.55  -0.66  0.10  -0.48  -0.61

 RMS  0.19  0.14  0.13  0.16  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.14  0.13  0.16  0.12  0.11  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  0.99  1.03  1.00  0.96  0.99  0.99  0.96  1.04  1.00  0.97  1.06

 0.4 BIAS  -0.40  -0.55  -0.68  -0.10  -0.15  -0.24  0.04  0.12  0.13  -0.10  0.05  0.08

 RMS  0.19  0.14  0.14  0.16  0.12  0.12  0.14  0.07  0.07  0.12  0.07  0.07

 SD  0.18  0.14  0.13  0.16  0.12  0.12  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.03  1.00  0.96  1.00  0.99  0.96  1.04  1.00  0.97  1.06

 0.6 BIAS  0.42  -1.14  -1.93  0.05  -1.20  -1.89  0.03  -0.55  -0.69  -0.01  -0.43  -0.54

 RMS  0.18  0.13  0.13  0.15  0.11  0.11  0.14  0.07  0.07  0.12  0.06  0.06

 SD  0.18  0.13  0.13  0.15  0.11  0.11  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.04  1.00  0.95  0.99  0.99  0.97  1.05  1.00  0.97  1.05

 0.8 BIAS  -1.04  -2.95  -4.09  -0.13  -1.71  -2.70  -0.11  -0.82  -1.03  -0.03  -0.59  -0.77

 RMS  0.19  0.15  0.15  0.16  0.12  0.12  0.14  0.08  0.07  0.12  0.07  0.07

 SD  0.19  0.15  0.14  0.16  0.13  0.12  0.14  0.08  0.07  0.12  0.07  0.06

 RE  1.02  1.00  1.03  1.00  0.96  0.99  0.99  0.94  1.01  1.00  0.95  1.02

 α ■

 NOTE: For each case, 200 simulated datasets were used.
 BIAS, bias of the mean of estimates; RMS, root-mean-square error; SD, mean of the standard deviation estimates; RE, ratio of RMS over SD.

 Hi (do) : /if,(do) φ 0 for the age χ diagnosis interaction across eigenvalues, which decrease very slowly to zero, and explains
 all voxels. Moreover, we also tested Ho(do) : ^7(do) = 0 against 22% of variation in data after accounting for x, . Inspecting
 Hi(d0) : /i7(d0) φ 0 for the gender χ diagnosis interaction, but Figure 5 reveals that the estimated eigenfunction correspond
 we present the associated results in the supplementary material, ing to the largest estimated eigenvalue captures the dominant
 Furthermore, as shown in the supplementary material, the largest morphometric variation.
 estimated eigenvalue is much larger than all other estimated As s increases from 0 to 10, MASS shows an advantage

 in smoothing effective signals within relatively homogeneous
 Table 2. Simulation study for Wp(A0\h): Estimates (ES) and standard ROIs, while preserving the edges of these ROIs (Figure 6 (a)

 errors (SE) of rejection rates for pixels inside the five ROIs were 6(d)). Inspecting Figure 6(c) and 6(d) reveals that it is much

 reported at two different scales (h0, h 10), N(Q, 1) and χ2(3) - 3 easier to identify significant ROIs in the — logI0(p) images at
 distributed data, and two different^sample sizes (n = 60, 80) at scaje /, |()j which are much smoother than those at scale h0.

 To formally detect significant ROIs, we used a cluster-form of

 threshold of 5% with a minimum voxel clustering value of 50
 voxels. We were able to detect 26 significant clusters across the
 brain. Then, we overlapped these clusters with the 96 prede
 fined ROIs in the Jacob template and were able to detect several

 predefined ROIs for each cluster. As shown in the supplemen
 tary material, we were able to detect several major ROIs, such
 as the frontal lobes and the right parietal lobe. The anatomical
 disturbance in the frontal lobes and the right parietal lobe has
 been consistently revealed in the literature and may produce
 difficulties with inhibiting prepotent responses and decreased
 brain activity during inhibitory tasks in children with ADHD
 (Bush 2011). These ROIs comprise the main components of
 the cingulo-frontal-parietal cognitive-attention network. These
 areas, along with striatum, premotor areas, thalamus, and cere

 bellum, have been identified as nodes within parallel networks

 X2(3) — 3 N( 0,1)

 fc(do)  s

 η = = 60  η = : 80  η = : 60  η = : 80

 ES  SE  ES  SE  ES  SE  ES  SE

 0.0  h0  0.056  0.016  0.049  0.015  0.048  0.015  0.050  0.016

 h io  0.055  0.016  0.042  0.015  0.036  0.016  0.040  0.019
 0.2  ho  0.210  0.043  0.245  0.039  0.282  0.033  0.370  0.035

 h\o  0.358  0.126  0.413  0.139  0.777  0.107  0.870  0.081

 0.4  ho  0.556  0.072  0.692  0.054  0.794  0.030  0.895  0.024

 h io  0.792  0.129  0.894  0.078  0.994  0.006  0.998  0.003
 0.6  ho  0.907  0.040  0.966  0.022  0.988  0.008  0.998  0.003

 h\o  0.986  0.023  0.997  0.009  1.000  0.001  1.000  0.000

 0.8  h0  0.978  0.016  0.997  0.004  1.000  0.001  1.000  0.000

 h\o  0.997  0.006  1.000  0.001  1.000  0.000  1.000  0.000

 NOTE: For each case, 200 simulated datasets were used. of attention and COgnitlOn (Bush 2011).

 Table 2. Simulation study for VEe(do; h): Estimates (ES) and standard
 errors (SE) of rejection rates for pixels inside the five ROIs were
 reported at two different scales (h0, h]0), N(0, 1) and *2(3) — 3
 distributed data, and two different sample sizes (n = 60, 80) at

 X2(3) — 3 mi)

 n = 60 n = 80 n = 60 n = 80

 A>(d0) s ES SE ES SE ES SE ES SE

 h0 0.056 0.016 0.049 0.015 0.048 0.015 0.050 0.016
 Jio  0.055 0.016 0.042 0.015 0.036 0.016 0.040 0.019

 h0 0.210 0.043 0.245 0.039 0.282 0.033 0.370
 hto 0.358 0.126 0.413 0.139 0.777 0.107 0.870
 h0 0.556 0.072 0.692 0.054 0.794 0.030 0.895
 h\o 0.792 0.129 0.894 0.078 0.994 0.006 0.998
 h0 0.907 0.040 0.966 0.022 0.988 0.008 0.998
 hl0 0.986 0.023 0.997 0.009 1.000 0.001
 h0 0.978 0.016 0.997 0.004 1.000 0.001
 h 10 0.997 0.006 1.000 0.001 1.000 0.000
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 Figure 5. Results from the ADHD 200 data: Five selected slices of the four estimated eigenfunctions corresponding to the first four largest
 eigenvalues of Ση(·, ■): (a) i/o(d); (b) ^(d); (c) ft3(d); and (d) i/r4(d).

 To evaluate the prediction accuracy of SVCM, we randomly neuroimaging data. We have developed a three-stage estimation
 selected one subject with ADHD from the NYU dataset and procedure to carry out statistical inference under SVCM. MASS
 predicted his/her RAVENS image by using both model (1) and integrates three methods including propagation-separation,
 a standard linear model with normal noise. In both models, we functional principal component analysis, and jumping surface
 used the same set of covariates, but different covariance struc- model for neuroimaging data from multiple subjects. We have
 tures. Specifically, in the standard linear model, an independent developed a fast and accurate estimation method for indepen
 correlation structure was used and the least-square estimates of dently updating each of effect images, while consistently es
 /3(do) were calculated. For SVCM, the functional principal com- timating their standard deviation images. Moreover, we have
 ponent analysis model was used and yS(d0; /r 10) were calculated, derived the asymptotic properties of the estimated eigenvalues
 After fitting both models to all subjects except the selected one, and eigenfunctions and the parameter estimates,
 we used the fitted models to predict the RAVEN image of the se- Many issues still merit further research. The basic setup of
 lected subject and then calculated the prediction error based on SVCM can be extended to more complex data structures (e.g.,
 the difference between the true and predicted RAVEN images, longitudinal, twin, and family) and other parametric and semi
 We repeated the prediction procedure 50 times and calculated parametric models. For instance, we may develop a spatial vary
 the mean and standard deviation images of these prediction er- ing coefficient mixed effects model for longitudinal neuroimag
 ror images (Figure 7). Inspecting Figure 7 reveals the advantage ing data. It is also feasible to include nonparametric components
 and accuracy of model (1) over the standard linear model for in SVCM. More research is needed for weakening regularity as
 the ADHD data. sumptions and for developing adaptive-neighborhood methods

 to determine multiscale neighborhoods that adapt to the pattern

 5 DISCUSSION imaging data at each voxel. It is also interesting to examine
 the efficiency of our adaptive estimators obtained from MASS

 This article studies the idea of using SVCM for the spa- for different kernel functions and coefficient functions. An
 tial and adaptive analysis of neuroimaging data with jump dis- important issue is that SVCM and other voxel-wise methods
 continuities, while explicitly modeling spatial dependence in do not account for the errors caused by registration method. We
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 Figure 6. Results from the ADFID 200 data: Five selected slices of (a) /^(do), (b) ^(do; hi0), the — log10(p) images fortesting H0 : ββ(ά0) = 0
 (c) at scale h0, and (d) at scale hia, where /86(d0) is the regression coefficient associated with the age χ diagnostic interaction.

 may need to explicitly model the measurement errors caused Moreover, E(\f2) = Ωχ is invertible. The x,·, e,(d), and η,(ά)
 by the registration method, and integrate them with smoothing are mutually independent of each other,
 method and SVCM into a unified framework.

 Assumption C4. Each component of {77(d) : d e 22],
 6. TECHNICAL CONDITIONS {η(ά)η(ά')τ : (d, d') e V2}, and {x/?r(d) : d e 22} are Donsker

 classes. Moreover, minder> S,(d, d) > 0 and £[supde2?||
 6.1 Assumptions 77(d)! |^''] < oo for some r\ 6 (2, oo), where || · lb is the Eu

 Throughout the article, the following assumptions are needed clidean norm. All components of E^(d, d') have continuous
 to facilitate the technical details, although they may not be the second-order partial derivatives with respect to (d, d') e V1.
 weakest conditions. We do not distinguish the differentiation and . ,,c ,r, ., . ^ , ,

 . . . ■ r , . , . Assumption C5. The grid points 220 = {dm, m = 1,..., ND}
 continuation at the boundary points from those in the interior of . , „
 ^ J ' are independently and identically distributed with density func

 tion 7r(d), which has the bounded support 22. Moreover, 7r(d) >

 Assumption CI. The number of parameters ρ is finite. Both 0 for all d e 22 and π(ά) has continuous second-order derivative.
 Nd and η increase to infinity such that Ιίιη,,^οο C„/n = . ™ , . ,. „ ... , „ ..

 _ ,, ,.T . ,. Assumption C6. the kernel functions K\()c(t) and Ks,(t) are
 limn^oo C_ \og(ND) = lim^oo C„ = 0. ,, .. , . . , .. c ... " 0 « uu „ Lipschitz continuous and symmetnc density functions, while
 Assumption C2. e, (d) are identical and independent copies of ^ioc(0 has a compact support [—1,1]. Moreover, they are

 SP(0, Ee) and e,(d), and e, (d') are independent for d φ d'e 22. continuously decreasing functions of t > 0 such that Kst(0) =
 Moreover, e,(d) are, uniformly in d, sub-Gaussian such that A|OC(0) > 0 and lim, Ks,(t) = 0.
 K2[E exp(|e,(d)|2/2G) — 1] < Ce for all d e 22 and some pos- , , , ( . il Y „ Assumption C7. « converges to zero such that
 hive constants Kf and Cf.

 A ,· Γο rj., . . . , . , , . h > c(\ogND/NDy~2/<1> andh~n(\ogn/n)l'l/q2 = o(l), Assumption Ci. The covanate vectors x, s are independently
 and identically distributed with Ex, = μχ and | |x(*| |oo < 00 · where c > 0 is a fixed constant and minify], qi) > 2.
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 Figure 7. Results from the ADHD 200 data: The raw RAVENS image for a selected subject with ADHD (a), mean ((b) GLM and (d) SVCM)
 and standard error ((c) GLM and (e) SVCM) of the errors to predict the RAVENS image in (a), where GLM denotes general linear model.

 Assumption C8. There is a positive integer Ε < oo such that given by
 λ\ > · · · > hg > 0.

 u(J\hs) = min(1/3;»(d0) - /?,·*(d/| : (d0, d„) e T>1,

 .... . .. ^7* (d0) φ β,·* (dô), Ûq e B (d0, hs)}.
 Assumption C9. For each j, the three assumptions or the

 jumping surface model hold, each D°t is path-connected, and Assumption Cll. For piecewise continuous /3,/d), UdePo
 j8/*(d) is a Lipschitz function of d with a common Lipschitz [P/d0, hsf Π //do, SL, S[/)] is an empty set and h0 =
 constant Kj >0 in each V", such that |/J;*(d) —//*(d')l < 0</zi is a sequence of bandwidths such that
 Kj\\d - d'||2 for any d, d'e X>/. Moreover, supdeD\fij*(d)\ < sL = CK/logd + ΝD)/n) = ο(1),δν = JCJnMn = o(l),in
 oo, and max(Kj,Lj)< oo. which lim,,^ M„ = oo, hs = 0(Vlog(l + ND)/n),

 //do, SL, Su) = {d' : d' € V, SL < - fij,(d') < Su)
 . . rin κ ■ ■ , , r (Λ\ and NDh3sKst(M^/(3Sy)) = o(Vlog(l + ND)/n). Assumption CIO. For piecewise constant p;*(d),

 o(u(i\hs)) — Vlog(l + ND)/n and NDh3sKst(C~lnu(j\hs)2/ Remark 5. Assumption (C2) is needed to invoke Hoeffding
 (35y)) = oi/logd + ΝD)/n) holds uniformly for/ίο = 0 < · · · inequality (van der Vaar and Wellner 1996; Buhlmann and van
 < hs, where Sy — maxd(jep0 Ev(d0,d0) and u(j){hs) is the de Geer 2011) to establish the uniform bound for /3(d0;hs).
 smallest absolute value of all possible jumps at scale hs and In practice, since most neuroimaging data are often bounded,
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 the sub-Gaussian assumption is reasonable. The bound assump
 tion on I|x| |oo in Assumption (C3) is not essential and can be
 removed if we put a restriction on the tail of the distribution
 x. Moreover, with some additional efforts, all results are valid

 even for the case with fixed design predictors. Assumption (C4)
 avoids smoothness conditions on the sample path /7(d), which
 are commonly assumed in the literature (Hall, Miiller, and Wang

 2006). The assumption on the moment of supdeI) \\ί]{Α)\\^2 is
 similar to the conditions used in (Li and Hsing 2010). Assump
 tion (C5) on the stochastic grid points is not essential and can
 be modified to accommodate the case for fixed grid points with
 some additional complexities.

 Remark 6. The bounded support restriction on AjocO) in As
 sumption (C6) can be weaken to a restriction on the tails of
 ^ioc(·)· Assumption (C9) requires smoothness and shape condi
 tions on the image of /6y*(d) for each j. For piecewise constant
 /J;-*(d), assumption (CIO) requires conditions on the amount of
 changes at jumping points relative to n, No, and h$■ If Ks,(t) has
 a compact support, then K^u^2/ C) = 0 for relatively large
 «0')2. in this case, hs can be very large. However, for piecewise

 continuous β]*(ά), assumption (Cl 1) requires the convergence
 rate of h s and the amount of changes at jumping points.

 SUPPLEMENTARY MATERIALS

 Supplementary document of "Spatially Varying Coefficient
 Model for Neuroimaging Data with Jump Discontinuities" in
 cludes detailed proofs and discussions of the theoretical results
 in the main article. Additional simulation results and compar
 isons with the local constant estimation and Gaussian kernel

 smoothing methods are provided. The document also includes
 a short description of imaging processing procedure and more
 results from real data analysis. In the end of the supplemental
 materials, additional references are listed.

 [Received May 2013. Revised October 2013.]
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