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 Tensor Regression with Applications in Neuroimaging
 Data Analysis

 Hua Zhou, Lexin Li, and Hongtu Zhu

 Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications
 in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and
 computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as
 complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor

 covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction.

 A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are
 studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data. Supplementary materials for this
 article are available online.

 KEY WORDS: Brain imaging; Dimension reduction; Generalized linear model; Magnetic Resonance Imaging; Multidimensional array;
 Tensor regression.

 1. INTRODUCTION out a dimension reduction step, often by principal component
 analysis (PCA), and then fit a regression model based on the
 top principal components (Caffo et al. 2010). This strategy is
 intuitive and easy to implement. However, it is well known that
 PCA is an unsupervised dimension reduction technique and the
 extracted principal components can be irrelevant to the response.

 In this article, we formulate a regression framework that
 treats clinical outcome as response, and images, in the form of
 multidimensional array, as covariates. Most classical regression
 methods take vectors as covariates. Naively turning an image
 array into a vector is evidently unsatisfactory. For instance,

 . . . ,T. , . typical anatomical MRI images of size 256-by-256-by-256
 received increasing interest in recent years (Lindquist 2008; . .. . . ,, ___ .,,
 Τ oooo. onnv. XT-: " onno. implicitly require 256 = 16, 777, 216 regression parameters.

 Understanding the inner workings of human brains and their
 connection with neuropsychiatry and neurodegenerative disor
 ders is one of the most intriguing scientific questions. Studies in

 neuroscience are greatly facilitated by a variety of neuroimaging

 technologies, including anatomical magnetic resonance imag
 ing (MRI), functional magnetic resonance imaging (fMRI),
 electroencephalography (EEG), diffusion tensor imaging, and
 positron emission tomography (PET), among others. The sheer
 size and complexity of medical imaging data, however, pose un
 precedented challenge to classical statistical methods and have

 Lazar 2008; Martino et al. 2008; Friston 2009; Hinrichs et al.
 2009; Ryali et al. 2010; Kang et al. 2012).

 In the literature, there have been roughly three categories of
 statistical methods for establishing association between brain

 Both computability and theoretical guarantee of the classical
 regression analysis are severely compromised by this ultrahigh
 dimensionality. More seriously, vectorizing an array destroys

 ,, , , , the inherent spatial structure of the image that possesses wealth
 images and clinical traits. The first is the voxel-based methods, r. .

 , ot information.
 which take each voxel as responses and clinical variables such „ . .... . , . .

 r _ · · , Our new regression method effectively exploits the array
 as age and gender as predictors. They generate a statistical para- . . , . , , . . ., ,

 . c , . / ° „ , structure in imaging data, and substantially reduces the dimen
 metric map of test statistics or »-values across all voxels (Wors- ,. . . , . , . . . . .. ,

 , . , , . , „ , sionahty, which in turn leads to efficient estimation and pre
 ley et al. 2004; Lazar 2008). A maior drawback is that all voxels ,. . . . , ,. , . ,
 J . , . ,. . „ , diction. The method works for general array-valued covariates

 are treated as independent units and important spatially correla- ,, , . .
 ,, ,, ,, , .χ,, , τ , , and/or any combination of them, and thus it is applicable to a va

 tion is ignored (Polzehl, Voss, and Tabelow 2010; Yue, Loh, and ... , ... ..... , „
 T. , ■ ,. , π, , , . nety of imaging modalities, for example, EEG, MRI, and fMRI.
 Lindquist 2010; Li et al. 2011). The second type ot solutions . . ,· . ,· j , //-.T »jn f
 , , ^ . , , , . , „ . , ^ , It is embedded in the generalized linear model (GLM) frame

 adopts the functional data analysis approach. Reiss and Ogden . . , . , ,.
 ,, , , „ ; , r . ,, . work, so it works for both continuous and discrete responses.

 (2010) notably extended functional regression model to incor- ... , . , . ,, , , , . . , r ... ... ,
 . , . ,. „ We develop a highly scalable algorithm for maximum likelihood

 porate two-dimensional images as predictors. Generalizations . . .... τ-, „ . , · ,· .. . . , n
 F . , ,,. 7 ,· · ,· , estimation (MLE), as well as statistical inferential tools. Regu
 to three-dimensional and higher dimensional images, however, . . , . .. . ,. ., ...

 ^ , . . , , . , . , , _ .. . lanzed tensor regression is also investigated to identity regions
 are far from trivial and require substantial research. The third r. ·.·... > ι· · ι «·

 1 , , „ of interest in brains that are relevant to a clinical response. This
 category employs a two-stage strategy. These methods first carry , . ,. , . . ,, , .

 b J r J region selection problem corresponds to variable selection in
 the usual vector-valued regression.
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 trends and demands of using brain images for disease diagnosis an outer product, b\ ο b2 ο · · · ο bo, of D vectors bd e Rp<' is
 and prediction, for characterization of subjective human experi- a p\ χ · ■ · χ ρ ο array with entries (b\ ob2o ■■■ a bD)ly..lD —

 ence, and for understanding association between brain regions Πα=ι bdid·
 and cognitive outcomes. Our tensor regression framework of- Tensor decomposition plays a central role in our proposed
 fers a systematic solution to this family of problems. Moreover, tensor regression in Section 2.3. An array Β e Rp,x 'xp°
 the framework warrants potential solutions to address questions admits a rank-R decomposition if

 such as multimodality imaging analysis, multiphenotype anal- R
 ysis, and imaging genetics (Friston 2009; Casey et al. 2010), β _ ß(r) 0 ... 0 ß(r) (1)
 all of which largely remain as open challenges. Second, from a
 statistical methodology point of view, our proposal develops a
 general statistical framework for regression with array covari- where ßd e Rp,i, d = l,...,D,r = l,...,R are all column
 ates. A large number of models and extensions, for example, vectors, and Β cannot be written as a sum of less than R
 quasi-likelihood models (McCullagh and Neider 1983) are po- outer products. For convenience, the decomposition is often
 tential outcomes within this framework. It can also be viewed represented by a shorthand, Β — [[Bi,..., Bo ||, where Bd —

 as a logic extension from the classical vector-valued covariate Iß'/'' ■ ·■> ßd 'l e WdXR (Kolda 2006; Kolda and Bader 2009).
 regression to functional covariate regression and then to array- The following well-known result relates the mode-d matriciza
 valued covariate regression. tion and the vec operator of an array to its rank-/? decomposition.

 The rest of the article is organized as follows. Section 2 be- Lemma 1. If a tensor Β e IRP' admits a rank-/? decom

 gins with a review of matrix/array properties, and then develops position (1) then
 the tensor regression models. Section 3 presents an efficient al- τ
 gorithm for MLE. Section 4 provides theoretical results such as Β (Α) = Bd(B ο © · · · © Ba+i © Bd- ι © · · · © B\) and
 identifiability, consistency, and asymptotic normality. Section vec Β = (Bo © ■ ■ ■ © B[)1r.
 5 discusses regularization including region selection. Section 6
 presents numerical results. Section 7 concludes with a discus- Throughout the article, we adopt the following notations,
 sion of future extensions. Technical proofs are delegated to the Τ is a univariate response variable, Ζ e RPo denotes a pq
 supplementary material. dimensional vector of covariates, such as age and sex, and

 X e W'x"'xpD is a D-dimensional array-valued predictor. For
 instance, for MRI, D = 3, representing the three-dimensional

 2. MODEL structure of an image, whereas for fMRI, D = 4, with an ad

 2 1 Preliminaries ditional time dimension. The lower-case triplets (y,·, Jt;, z,·),
 i = 1,... ,n denote the independent, observed sample instances

 Multidimensional array, also called tensor, plays a central of (Υ, X, Z).

 2.2 Motivation and Basic Model

 y6 — b(6)
 + c(y,0)}, (2)

 role in our approach and we start with a brief summary of
 notation and a few results for matrix/array operations. Extensive

 references can be found in the survey article (Kolda and Bader To motivate our model, we first start with a vector-valued X

 2009). In this article, we use the terms multidimensional array and absorb Ζ into X. In the classical GLM (McCullagh and
 and tensor interchangeably. Neider 1983) setting, Y belongs to an exponential family with
 Given two matrices A = [fl| ...«„] e R",x" and B= probability mass function or density

 \b\ ... bq] e Rpx?, the Kronecker product is the mp-by-nq ma

 trix A <g> Β = [a1 © Β a\ ® Β ... an <g> Β ]. If A and Β have p(y\d, φ) = exp
 the same number of columns η = q, then the Khatri-Rao prod- α W
 uct (Rao and Mitra 1971) is defined as the mp-by-n columnwise where θ and φ > 0 denote the natural and dispersion parameters.
 Kronecker product A © Β = [αϊ © b\ a2 © b2 · · · «« ® bn ]. The classical GLM relates a vector-valued X e Rp to the mean

 If n = q = 1, then A © Β = A® B. Some useful operations μ = E(Y\X) via g(ß) -η = a + βτΧ, where g(-) is a strictly
 transform a tensor into a matrix/vector. The vec(B) operator increasing link function, and η denotes the linear systematic part
 stacks the entries of a //-dimensional tensor Β e Wx 'xpD with intercept α and the coefficient vector β e W.
 into a column vector. Specifically, an entry bh...iD maps to the Next, for a matrix-valued covariate X e Ri,,xp2 (D = 2), it

 /th entry of vec B, in which j = 1 + Y^d=l(id — 1)Πα'='ι Pd'· is intuitive to consider a GLM model with the systematic part
 For instance, when D = 2, the matrix entry maps to po- given by

 sition j = 1 + i, - 1 + (i2 - Y)p\ = i\ + (i2 ~ l)/>i, which is _ ^ T
 consistent with the more familiar vec operation on a ma- 1 2'
 trix. The mode-d matricization, B(d), maps a tensor Β into a where β t e RP/ and ß2 e RP2, respectively. The bilinear form
 Pd x Πα ,,d pd' matrix such that the (i i,..., in) element of the β] Χ β2 is a natural extension of the linear term ßJ X in the
 array Β maps to the (id, j) element of the matrix B{d), where j — classical GLM with a vector covariate X. It is interesting to

 1 — 1) Πα "<ά'4"φά Pd"· With d = 1, we observe note that, this bilinear form was first proposed by Li, Kim,
 that vec Β is the same as vectorizing the mode-1 matricization and Altman (2010) in the context of dimension reduction, and
 B(l). The mode-(d,d') matricization B(dd-} e Rpjp^xn,cwPd" then employed by Hung and Wang (2011) in the logistic regres
 is defined in a similar fashion (Kolda 2006). We also intro- sion with matrix-valued covariates (D — 2). Moreover, note that
 duce an operator that turns vectors into an array. Specifically, β]Χβ2 = (ß2 <8 β \ )Tvec(Ar).
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 Now for a conventional vector-valued covariate Ζ and a gen- most flexible GLM suggests a linear systematic part

 eral array-valued X € Wx"'xpD, we propose a GLM with the T
 systematic part given by Siß) = a + Υ Ζ + (Β, X).

 The issue with this model is that Β has the same number of

 giß) = a + yJZ + (ßD <g) ■ · · <g> /?,)Tvec(X), (3) parameters, Πλ=ι Pd> as which is ultrahigh dimensional and
 far exceeds the usual sample size. Then a natural idea is to ap

 where y e W° and ßd g R" for d = 1,..., D. This is our Proximate B wlthless parameters. If Β admits a rank-1 decom
 basic model for regression with array covariates. The key ad- Pos'h°n (1), that is, Β — β\ ο β2 ° ■■■ ο ßD, where ßd e R ,
 vantage of model (3) is that it dramatically reduces the dimen- t'len ^ Lemma 1, we have

 sionality of the tensor component, from the order of \\d pd vec β _ Vec(/J ο β ο ■ ■ ■ ο β )
 to the order of Pd■ Take MRI imaging as an example, the
 size of a typical image is 2563 = 16,777,216. If we simply

 β0Θ···Θβ] = ßD®---®ßt

 turn X into a vector and fit a GLM, this brutal force solution jn other words, model (3) is indeed a data-driven model with a
 is over 16 million-dimensional, and the computation is practi- rank-l approximation to the general signal array Β This obser
 cally infeasible. In contrast, the multilinear model (3) is only vation motivates us to consider a more flexible tensor regression
 256 + 256 -I- 256 = 768-dimensional. The reduction in dimen- model.

 sion, and consequently in computational cost, is substantial. Specifically, we propose a family of rank-R generalized linear
 A critical question then is whether such a massive reduc- tensor regression models, in which the systematic part of GLM

 tion in the number of parameters would limit the capac- is 0f the form
 ity of model (3) to capture regions of interest with specific

 shapes. The illustrative example in Figure 1 provides some , . _ ^ TZ + / ß(r) ο ß(r> ο ο ß(r> Χ)
 clues. In Figure 1, we present several two-dimensional images S ^ a Y \ x ' ° 2 D ' /
 Β e R64x64 (shown in the first column), along with the esti- T „ .

 a · u αϊ <"2\ r tu α ι ι u ι a u = ö + y Ζ + ((Bp Q ■ · ■ Ο Β \) Iß, vecX), (4) mated images by model (3) (in the second column labeled by '
 TR(1)). Specifically, we simulated 1000 univariate responses y, where Bd = · · ·, € ΚΛ,χβ, BD Q ■ ■ ■ Q B\ e
 according to a normal model with mean μ,· = yJz, + (B, xt), ΚΠ,Α,χ« is the Khatri-Rao product and 1R is the vector of
 where y — I5. The inner product between two arrays is defined ρ ones. Equivalently, we assume that the tensor regression
 as (Β, X) — (vec B, vec A) = ßii..jDXil..jD. The coeffi- parameter admits a rank-R decomposition Β = ]) Β Β ι>\\.
 cient array Β is binary, with the true signal region equal to one When R = ^ it redUces to model (3). A few remarks on (4)
 and the rest zero. The regular covariate z, and image covariate are jn or(ier. First, since our formulation only deals with the
 xι are randomly generated with all elements being independent linear predictor part of the model, it easily extends to the
 standard normals. Our goal is to see if model (3) can identify quasi-likelihood models (McCullagh and Neider 1983) where
 the true signal region in Β using data (y,·, z, , X/). Before exam- more general mean-variance relation is assumed. Second,
 ining the outcome, we make two remarks about this illustration. for simplicity, we only discuss exponential family with a
 First, our problem differs from the usual edge detection or ob- univariate response. Extension to multivariate exponential
 ject recognition in imaging processing (Qiu 2005, 2007). In our familyj such as muitinomial logit model, is straightforward,
 setup, all elements of the image X follow the same distribution. Thirdi due to the (JEM setup (2), we call (4) a generalized
 The signal region is defined through the coefficient image ß and linear tensor regression model. However, we should bear in
 needs to be inferred from the association between Y and X after mind that the systematic component η is a polynomial rather
 adjusting for Z. Second, the classical GLM is difficult to apply ^an linear in the parameters Bd. Finally, the rank-R tensor
 in this example if we simply treat vec(A) as a covariate vector, decomposition (1) is called canonical decomposition or parallel
 since the sample size n = 1000 is much less than the number factors (CANDECOMP/PARAFAC, or CP) in psychometrics
 of parameters ρ = 5 + 64 χ 64 = 4, 101. Back to Figure 1, the (Kolda and Bader 2009). In that sense, model (4) can be viewed
 second column clearly demonstrates the ability of model (3) in as a superviseci version of the classical CP decomposition for
 identifying the rectangular type region (parallel to the image multidimensional arrays.
 edges). On the other hand, since the parameter vector ßd in The number of parameters in model (4) is po + R pd,
 a rank-1 model is only able to capture the accumulative signal which is stiU substantially smaller than p0 + Πd Pd- With such
 along the d\h dimension of the array variate X, it is unsurprising a massjve reduction in dimensionality, however, it provides a
 that it does not perform well for signals that are far away from reasonable approximation to many low-rank signals. Return
 "square," such as "triangle,' "disk," "T-shape, and butterfly. jng to the previous illustration, in Figure 1, images TR(R) are
 This motivates us to develop a more flexible tensor regression tbe recovered signals by the rank-R tensor regression (in third
 model in the next section. and fourth columns). The "square" signal can be perfectly re

 _ „ . , covered by a rank-1 model, whereas rank-2 and -3 regressions
 2.3 Tensor Regression Model , , ^™ K 7, · , 3 show signs of overfitting. The T-shape and cross signals
 We start with an alternative view of the basic model (3), which can be perfectly recovered by a rank-2 regression. "Triangle,"

 will lead to its generalization. Consider a D-dimensional array "disk," and "butterfly" shapes cannot be exactly recovered by
 variate X € Wx"'xpD, and a full coefficient array Β of same any low-rank approximations; however, a rank-3 tensor regres
 size that captures the effects of each array element. Then the sion already yields a fairly informative recovery. Clearly, the
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 TR(1) TR(2) TR(3)
 True Signal BIC=1.7e+03 BIC=2.34e+03 BIC=3,01e+03

 20 40 60 20 40 60

 TR(2) TR(3)
 BlC=2.51e+03 BIC=3.1e+03

 20 40 60 20 40 60

 TR(2) TR(3)
 BIC=2.47e+03 BIC=3.12e+03

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=3.42e+04 BIC=1.48e+04 BIC=8.41e+03

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=3.46e+04 BIC=1.68e+04 BIC=1.11e+04

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=1.61e+05 BIC=8.84e+04 BIC=5.28e+04

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=1.7e+03 BIC=2.34e+03 BIC=3.01e+03

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=3.42e+04 BIC=1.48e+04 BIC=8.41e+03

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=3.46e+04 BIC=1.68e+04 BIC=1.11e+04

 20 40 60 20 40 60 20 40 60 20 40 60

 TR(1) TR(2) TR(3)
 True Signal BIC=1.61e+05 BIC=8.84e+04 BIC=5.28e+04

 20 40 60 20 40 60 20 40 60 20 40 60

 Figure 1. True and recovered image signals by tensor regression. The matrix variate has size 64 χ 64 with entries generated as independent
 standard normals. The regression coefficient for each entry is either 0 (white) or 1 (black). The sample size is 1000. TR(/?) means estimate from
 the rank-/? tensor regression.
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 general tensor regression model (4) is able to capture signifi- block update of Algorithm 1 is strictly concave, and (iii) the set
 cantly more tensor signals than the basic model (3). of stationary points (modulo scaling and permutation indeter

 3. ESTIMATION
 minacy) of ί(θ) are isolated. We have the following results.

 We pursue the ML route for parameter estimation in model 1. (Global convergence) The sequence 0(ί) = (α(ί), y(n,
 (4). Given η iid data {(y,·, *,·, z,·), i = 1,..., n], the log- B({\ B(jj) generated by Algorithm I converges to a
 likelihood function for (2) is stationary point of 1(θ).

 " θ bW " 2· (Local convergence) Let 0(oo) = (αίοο), y(0O), B\°°\ ...,
 l(a, γ, Β ι,..., BD) = ^ ' —— + ^c(y,·, φ), (5) B\be a strict local maximum of ί(θ). The iterates

 ;=i !=i generated by Algorithm 1 are locally attracted to 0(oo) for
 where Θ, is related to regression parameters (a, y, ΒD) sufficiently close to 0(oo).
 through (4). We propose an efficient algorithm for maximizing

 €(«, y,Bu..., Bd). A key observation is that although g(p) We make a few quick remarks Rrst; although a stationary
 in (4) is not linear in (B\,..., ΒD) jointly, it is linear in Bj p0jnt js not guaranteed to be even a local maximum (it can be a
 individually. This suggests alternately updating (α, y) and Bd, saddle point)> in practice the block relaxation algorithm almost

 always converges to at least a local maximum. In general, the
 Algorithm 1 Block relaxation algorithm for maximizing (5). algorithm should be run from multiple initializations to locate

 Initialize: (a(0), y(0)) = argmaxa ), i(a, y, 0,..., 0), B((J] e an excellent local maximum, especially for higher rank models
 Pd x R a random matrix for d = 1 ,...,£>. with limited sample size. Second, ί(θ) is not required to be
 repeat jointly concave in θ. Only the concavity in the blocks of variables

 for d = 1,..., D do is needed. This condition holds for all GLM with canonical link
 Bj + l) — argmaXß , y{,). B'{+1>,..., Bd^\ Bd, such as linear model, logistic model, and Poisson log-linear
 Η(ί) n('K model.
 Dd+1' · · · ' D '

 end for The above algorithm assumes a known rank when estimat
 („(»+U y(»+i)) = argmax 1{α, γ, B<'+I),..., B('D+X)) ing Β. Estimating an appropriate rank for our tensor model (4)

 until I(0(,+1)) — t(0uy) < e is of practical importance. It can be formulated as a model
 selection problem, and we adopt the usual model section
 criterion, for example, Bayesian information criterion (BIC),

 d = 1,..., D, while keeping other components fixed. It yields + log(n)p^ where Pe is the effective number of pa
 a so-called block relaxation algorithm (de Leeuw 1994; Lange rameters for model (4). Pe = R{pi + pi) _ R2 for D = 2> and
 2010). An appealing feature of this algonthm is that at each iter- ^ = Pd _ D + \) fox D ■> 2. Returning to the illustra
 ation, updating a block Bj is simply a classical GLM problem. tjve example in Section 2.2, we fitted a rank-1, -2, and -3 tensor
 To see this, when updating Bd e Wd , we rewrite the array mo(}eiS) respectively, to various signal shapes. The correspond
 inner product in (4) as jng va]ues are shown in Figure 1. The criterion is seen

 (R \ correctly estimating the rank for square as 1, and the rank for Τ ß\r> ο β'p ο ■ ■ ■ ο β1^, Χ Ι and cross as 2. The true ranks for disk, triangle, and butterfly are
 r=i / above 3, and their BIC values at rank 3 are smallest compared

 = <Bd, X(d)(BD Θ · · · Ο Bd+1 Θ Bd-\ Θ ■ ■ · Θ B\)). to those at 1 and 2.

 Consequently, the problem turns into a traditional GLM regres
 sion with Rpd parameters, and the estimation procedure breaks 4- THEORY
 into a sequence of low-dimensional GLM optimizations and is We study the statistical properties of MLE for the tensor re
 extremely easy to implement using ready statistical softwares gression model defined by (2) and (4). For simplicity, we omit
 such as R, S+, SAS, and Matlab. The full estimation proce- the intercept a and the covariate part yJZ, though the conclu
 dure is summarized in Algorithm 1. For the Gaussian models, sions generalize to an arbitrary combination of covariates. In this
 it reduces to the alternating least-square procedure (de Leeuw, afficle, we adopt the usual asymptotic setup with a fixed number

 Young, and Takane 1976). 0f parameters ρ and a diverging sample size n, because this is
 As the block relaxation algorithm monotonically increases an important first step toward a comprehensive understanding

 the objective function, it is numerically stable and the conver- 0f the theoretical properties of the proposed model,
 gence of objective values έ(θ'η) is guaranteed whenever ί(θ)
 is bounded from above. Therefore, the stopping rule of Algo- 4.1 Score and Information
 rithm 1 is well defined. We denote the algorithmic map by M, ... . , . c . „to. „(,4.11 . , „ , „ _ . ,, We first derive the score and information for the tensor re
 that is, Μ(θ ) — θ , with θ = (α, γ, Β ι,..., Β d) collect- , , ,. , . . - . . , . . , „ ^ . _ ., ., gression model, which are essential for statistical estimation and
 ing all parameters. Convergence properties of Algorithm 1 are . „ . ,. , , , , . , 6 . , . . . , inference. The following standard calculus notations are used.
 summarize in Proposition . por a sca|ar function/, V/ is the (column) gradient vector,

 Proposition 1. Assume (i) the log-likelihood function ί(θ) df = [V/]T is the differential, and d2 f is the Hessian matrix,
 is continuous, coercive, that is, the set {θ : ΚΘ) > ί(θαϊ>)} is For a multivariate function g : R'' i-^ R9, Dg e R'/xp denotes
 compact, and bounded above, (ii) the objective function in each the Jacobian matrix holding partial derivatives 3g,/9x;.
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 We start from the Jacobian and Hessian of the systematic part 3. The Fisher information matrix is

 V — giß) in (4). The proof is given in the Appendix. j BD) = E[-H{BX BD)]
 Lemma 2. =Var [V£(ßi,.... BD)di(Bu BD)\

 1. The gradient Vij(Bi, ...,BD)e R is = jD]T(vecA:)(vecA:)T
 νη(Βι,..., Β D) = \Ji J2 ... /D]T(vecX), x[J\...JD]· (9)

 where Jd e PdXPdR is the Jacobian
 Remark 2. For canonical link, θ = η, θ'(η) = 1, θ"(η) — 0,

 Jd = DB(Bd) = Π d[(BD Θ · · · Θ Bd+1 Θ ßd_i ancj the second term of Hessian vanishes. For the classical GLM

 Θ · · · Θ B\) <g> IPJ (6) with linear systematic part (D = 1), ά2η(Β\,., BD) is zero
 D πη and thus the third term of Hessian vanishes. For the classical

 and Π, is the (ΓΙ/=, PdYby-fEUi Pd) permutation ma- GLM (D = 1} with canonical link, both the second and third
 trix that reorders vecB(d) to obtain vecB, that is, vecΒ = terms of ^ Hessian yanish and thus ^ Hessian .g nonstochas.

 tic, coinciding with the information matrix. \ld vecB(d).

 2. The Hessian ά2η(Β\,..., BD) e RRYd=iPd^Y.d=iPd bas
 entries

 4.2 Identifiability

 h(id,r),(id>,r') 1 \r—r'.άφά'\ ^ Xj, jD J~[ ßjjn, Before studying asymptotic property, we need to deal with the
 jd='d,jd'='d' d"J=d,d'

 identifiability issue. The parameterization in the tensor model

 and can be partitioned in D2 blocks as is nonidentifiable due to two complications. Consider a rank
 R decomposition of an array, ß = fl ß ι,..., ß β Jj. The first
 complication is the indeterminacy of Β due to scaling and
 permutation:

 / 0 * * *\

 Η 2i 0 * *

 \Hd ι Hm ·■· 0/
 1. Scaling: Β = [[ß ι Λ ι,..., ΒρΑρ^ for any diagonal ma

 trices Ad = diag(k<n, · ■ ·, kdR), d = 1,..., D, such that
 Π<ixdr = Iforr = Ι,.,.,β.

 The block Hdd> e R?"R*P'R has pdpd< R nonzero elements 2. Permutation: Β = IB ι Π,..., Β D Π] for any R-by-R per
 that can be retrieved from the matrix X(dd>){BD Θ · · · Θ mutation matrix Π.
 Bd+i Θ Bd-i Θ · · · Θ ßd'+i Ο ß<f-i Θ · ■ · Θ ßi), . .
 where XW) is the mode-fo, d') matricization of X. For the matnx case (D = 2>' a further complication is the non

 singular transformation indeterminacy: B\B2 — B\00 B\
 Remark 1. The Hessian ά2η is highly sparse and structured, for any R-by-R nonsingular matrix Ο. Note the scaling and per

 An entry in ά2η(Β\,..., Βυ) is nonzero only if it belongs to mutation indeterminacy is subsumed in the nonsingular trans
 different directions d but the same outer product r. formation indeterminacy. The singular value decomposition of

 Let e(Bl,...,BD\y,x) = lnp(y\x,Bu...,BD) be the a matrix is unique because it imposes orthonormality constraint
 log-density. Next result derives the score function, Hessian, and on co'umns ^aclor ,nalr'ces'
 Fisher information of the tensor regression model. To deal with this complication, it is necessary to adopt

 a specific constrained parameterization to fix the scaling
 Proposition 2. Consider the tensor regression model defined and permutation indeterminacy. For D > 2, we need to put

 by (2) and (4). (D — 1)J? restrictions on the parameters ß and apparently there
 1. The score function (or score vector) is is an infinite number of ways t0 do this"In this article' we adoPl

 the following convention. B\,..., βΰ_ι are scaled such that

 V£(ßj Bjj) = ~ ^\jί JD]J(vecX) ßdl — l^at's' ^ first rows are ones. This in turn determines
 (7)

 entries in the first row of Bp and fixes scaling indeterminacy.
 To fix the permutation indeterminacy, we assume that the first

 with Jd, d = 1 ,...,£), defined by (6). row entries of ΒD are distinct and arranged in descending order
 2. The Hessian of the log-density £ is ßm > · · · > ßm- The resulting parameter space is

 mT vi B = {(Bu...,BD):ß%=l, for ri = 1,..., ΰ, H(Bu...,Bd)= —([Ji...JD I'vecX) 1 ai
 j j r = l,...,Ä,and^ >···>^ , x ([/i.../D]TvecX)T

 (y _ which is open and convex. The formulas for score, Hessian
 Η j (Μ1 ·' · vecX) and information in Proposition 2 require changes accordingly,

 x ([ J J ]TvecX)T l^at 'S' entrtes the first rows of Bd, d = 1,..., D — 1,
 ( 1 wf ι are fixed at ones and their corresponding entries, rows and

 + ά2η(Β\%..., Bd), columns in score, Hessian and information need to be deleted.

 (8)  Treatment for the D = 2 case is similar and omitted for brevity.
 We emphasize that our choice of the restricted space ß is

 with ά2η defined in Lemma 2. arbitrary and exclude many arrays that might be of interest,
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 for example, arrays with any entries in the first rows of Bd, [j{ JD]TvecXj e RR(T.dPd-D+i)j _ j The require
 d = \ ,, D — 1, equal to zeros or with ties in the first row of ment on sample size is greatly lessened by imposing structure
 ΒD. However, the set of such exceptional arrays has Lebesgue 0n the arrays,
 measure zero. In specific applications, subject knowledge may

 suggest alternative constraints on the parameters. Remark 4. Although global identifiability is hard to check
 The second complication comes from possible nonunique- for a finite sample, a parameter point Β e Β is asymptotically

 ness of decomposition when D > 2 even after adjusting scaling and globally identifiable as far as it admits a unique decompo
 and permutation indeterminacy. The next proposition collects sition up to scaling and permutation and ]T"=1(vec jc,)(vecx, )T
 some recent results that give easy-to-check conditions for the has full rank for η > n0, or, when considered stochasti
 uniqueness (up to scaling and permutation) of decomposition, cally, E[(vec X)(vec A)TJ has full rank. To see this, whenever

 The first two are useful for checking uniqueness of a given ten- , (Vec jc, )(vec x, )T has full rank, the full coefficient array is
 sor, while the latter two give general conditions for uniqueness globally identifiable and thus the decomposition is identifiable
 almost everywhere in the D = 3 or 4 case. whenever it is unique.

 Proposition 3. Suppose that a ü-dimensional array Be ^ ,· · ., . e .■ ,, e ,· ,· , , Generalizing the concept of estimable functions for linear
 Rf'x 'xtO has rank/?. , . „ ,. a(r)

 models, we call any linear combination of (jc,, 2^r=i ρ, ο ··· ο
 1. (Sufficiency; Sidiropoulos and Bro 2000) The decom- ß'o), i = 1,...,«, an estimable function. We can estimate es
 position (1) is unique up to scaling and permutation if timable or collection of estimable functions even when the pa
 Σ°=\ kBd >2R + (D- 1), where kA is the k-rank of a rameters are not identifiable.
 matrix A, that is, the maximum value k such that any k
 columns are linearly independent. symptotics

 2. (Necessity; Liu and Sidiropoulos 2001) If the de- The asymptotics for tensor regression follow from those for
 composition (1) is unique up to scaling and permu- MLE or M-estimation. The key observation is that the nonlinear
 tation, then mina=i D rank(B ι Ο···© Bj-i Θ Bd+\ part of tensor model (4) is a degree-D polynomial of parameters
 Θ ■ · · Θ Bd) — R, which in tum implies that and the collection of polynomials {(Β, Χ), Β e Β} forms a
 min^=irank(ß<f)) > R. Vapnik-Cervonenkis class. Then standard uniform convergence

 3. (de Lathauwer 2006) When D — 3, R < p-$, and R(R — theory for M-estimation (van der Vaart 1998) applies.
 1) < PiiPi — l)Pi(P2 — l)/2, the decomposition (1) is
 unique for almost all such tensors except on a set of Theorem 1 (Consistency). Assume B0 = [B0i, ■ · ·. ßonD €
 Lebesgue measure zero. Β is (globally) identifiable up to permutation and the array co

 4. (de Lathauwer 2006) When D = 4, R < p4, and variates X; are iid from a bounded distribution. The MLE is
 /?(/? — 1) < p\P2PsOp\P2Pz — Ρ ι P2 — Pi Pi ~ P2P3 — consistent, that is, Bn converges to B0 (modulo permutation) in
 Pi — Pi — Pi + 3)/4, the decomposition (1) is unique probability, in the following models: (1) normal tensor regres
 for almost all such tensors except on a set of Lebesgue sion with a compact parameter space Bq c B : (2) binary tensor
 measure zero. regression; and (3) Poisson tensor regression with a compact

 „ . . parameter space Β ο C Β.
 Next we give a sufficient and necessary condition for local

 identifiability. The proof follows from a classical result (Rothen- Remark 5 (Misspecified rank) In practice it is rare that the
 berg 1971) that relates local identifiability to the Fisher infor- £me regression coefficient ßtrue € R"'* 'is exactly a low
 mation matrix. rank tensor. However, the MLE of the rank-/? tensor model
 Proposition 4 (Identifiability). Given iid data points converges to the maximizer of function M(B) = ?«tnje In ρβ

 {(y,·, χ,·), i = 1,...,«} from the tensor regression model. Let or equivalently P«tnj, 1 n(pß/PBmj- In other words, the MLE is
 ßo e Β be a parameter point and assume there exists an open consistently estimating the best rank-/? approximation of Blme
 neighborhood of BQ in which the information matrix has a con- 'n sense °f Kullback-Leibler distance,
 stant rank. Then Β ο is locally identifiable up to permutation if
 and only if To establish the asymptotic normality of Bn, we note that the

 log-likelihood function of tensor regression model is quadratic
 mean differentiable (q.m.d.).

 /(-So) = [/1 · · · Jd]J Σ ^-γ— (vec χi )(vec χ,· )T iti ai
 x [/1... Jd]

 Lemma 3. Tensor regression model is q.m.d.

 is nonsingular Theorem 2 (Asymptotic normality). For an interior point
 Bq = [[Bob · · · > ΒodI e Β with nonsingular information ma

 Remark 3. Proposition 4 explains the merit of tensor regres- trix /(B0i,..., Bod) (9) and B„ is consistent,
 sion from another angle. For identifiability, the classical linear
 regression requires vec jc, elR^dPdJ = 1,to be linearly ~Jn[\ec(Bn\,..., BnD) — vec(Boi,..., Bod)]
 independent to estimate all parameters, which requires a sam
 ple size η > ["[^ pd. The more parsimonious tensor regression converges in distribution to a normal with mean zero and co
 only requires linearly independence of the "collapsed" vectors variance /_1 (Bqi , · ■ ·, Bod)·
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 5. REGULARIZED ESTIMATION efficient array Β e rT/a* without considering any structured

 Sample size in typical neuroimaging studies is often limited, decomposition as in our models. That is, one simply treats vec*
 Even for a low-rank tensor model, it is likely that the number as the Predictor vector as employed in the classical total varia
 of parameters exceeds the sample size. As such the ρ > η chal- tion regularization in image denoising and recovery. However,
 lenge is often the rule rather than the exception in neuroimaging for the brain ίπι« data' we should bear in mind the dl"
 analysis. Regulation is essential to handle ρ > n, and is mensionality of the imaging arrays. For instance, to the best
 also useful for stabilizing the estimates and improving their risk of our knowledge, no software is able to deal with fused lasso
 property when ρ < η. We emphasize that there are a large num- or even simPle lasso on 64 = 262'144 or 256" = 16'777'216
 ber of regularization techniques for different purposes. Here, we variables· This ultrahi§h dimensionality certainly corrupts the
 illustrate with using sparsity regularization for identifying sub- statistical Parties of the regularized estimates too. Second,
 regions that are associated with the response traits. This problem Penalization is only one form of regularization. In specific ap
 can be viewed as an analog of variable selection in the tradi- Plications, prior knowledge often suggests various constraints
 tional vector-valued covariates. Toward that end, we maximize amonS Parameters, which may be exploited to regularize param
 a regularized log-likelihood function eter estimate' For instance'for MRI lma^ data'somet,mes il

 may be reasonable to impose symmetry on the parameters along

 ® (r) the coronal plane, which effectively reduces the dimensionality
 f(a, γ, B\,Bd) — 2_^ Ρχ(|ßdi |> P)> by pdR/2. In many applications, nonnegativity of parameter

 d= ι r= ι <=i values is also enforced.
 where Ρλ(\β\, ρ) is a scalar penalty function, ρ is the penalty
 tuning parameter, and λ is an index for the penalty family. 6. NUMERICAL ANALYSIS
 Some widely used penalties include: power family (Frank and
 Friedman 1993), in which Ρλ(\β\, ρ) = ρ\β\\ λ e (0, 2], and We have camed out an extensive n™erical study to investi
 in particular lasso (Tibshirani 1996) (λ = 1) and ridge (λ = 2); §ate the finite samPle Performance of the proposed methods. In
 elastic net (Zou and Hastie 2005), in which Pk(\ßl p) = this sectl0n' we report selected results from synthetlc ™Ples
 ρ[(λ - l)ß2/2 + (2 - λ)\β\1 λ e [1, 2]; and SCAD (Fan and and an analysis of a real brain imaSin§ data"

 Li 2001), in which d/d\ß\Px(\ß\, p) = p{lm<p] + (λρ - 61 Two-Dimensional Shape Examples
 \β\)+/(λ — l)pl(|^|>P)}, λ > 2, among many others. Choice of
 penalty function and tuning parameters ρ and λ depends on We first elaborate on the illustrative example given in Sec
 particular purposes: prediction, unbiased estimation, or region tion 2.2 with selected two-dimensional shapes. We examine
 selection. the performance of the tensor model under a variety of sample

 Regularized estimation for tensor models incurs slight sizes and signal strengths, and compare the estimates with and
 changes in Algorithm 1. When updating Bd, we simply fit a without regularization. More specifically, the response is nor
 penalized GLM regression problem, mally distributed with mean, η = γ1 Ζ + (Β, Χ), and standard

 η , „·, ,,, „ι,, „, deviation σ. X is a 64 χ 64 two-dimensional matrix, Ζ is a n('+') _ aromav T(/v(9 ν(ί) Β1-+ ' ß( + ' Β,
 d 8 Bd \ < r ' ι > ■ · · > d-\ ' five-dimensional covariate vector, both of which have standard

 ^ normal entries, γ — (1, 1, 1, 1, 1)T, and Β is binary with the true
 Bd+i,. ·., ΒD) — 2_j 2^ Ρχ(Ißdi I' P)> signal region equal to one and the rest zero. We fit both a rank-3

 r=1 !=1 tensor model without regularization, and one with a lasso regu
 for which many software packages exist. Same paradigm cer- larization. For sample size, we examine n = 200, 300,400, 500,
 tainly applies to regularizations other than sparsity. The fitting and 750. Note that, for this example, the number of parameters
 procedure boils down to alternating regularized GLM regres- of a rank-3 model is 380 = 5 + 3 χ (64 + 64) — 32. As such,
 sion. The monotone ascent property of Algorithm 1 is retained there are multiple solutions when n = 200 or 300, and we ar
 under the modified algorithm. Convex penalties, such as elas- bitrarily choose one estimate. For signal strength, we vary the
 tic net and power family with λ > 1, tend to convexify the noise level σ = 50%, 20%, 10%, 5%, and 1% of the standard
 objective function and alleviate the local maximum problem, deviation of the mean η, respectively.
 On the other hand, concave penalty such as power family with We summarize the results in three plots: the snapshots of
 λ < 1 and SCAD produces more unbiased estimates but the estimates with varying sample size, the snapshots with vary
 regularized objective function is more ruggy and in practice ing signal strength, and the line plot of the average root mean
 the algorithm should be initialized from multiple start points to squared error (RMSE) for estimation of B. For space consider
 increase the chance of finding a global maximum. Many meth- ation, only the first plot is presented in Figure 2 (with 10% noise
 ods are available to guide the choice of the tuning parameter ρ level), and the rest in supplementary Section A. 1. We make the

 and/or λ for regularized GLM, notably Akaike information cri- following observations. First, estimation accuracy steadily in
 terion, BIC, and cross-validation. For instance, the recent work creases with the sample size, demonstrating consistency of the
 (Zhou, Armagan, and Dunson 2011) derives BIC-type criterion proposed method. This can be seen from both the snapshots with
 for GLM with possibly nonconcave penalties such as power improved quality and the decreasing RMSE. Similar patterns are
 family, which can be applied to regularized tensor regression observed with increasing signal strength. Second, regularization
 models in a straightforward way. clearly improves estimation, especially when the sample size is

 Two remarks are in order. First, it is conceptually possible limited. In practice, when the number of imaging subjects is
 to apply these regularization techniques directly to the full co- moderate, regularized tensor regression is recommended.
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 Figure 2. Snapshots of tensor estimation with varying sample size. The matrix variate has size 64 χ 64 with entries generated as independent
 standard normals. The regression coefficient for each entry is either 0 (white) or 1 (black).
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 For this example, we also examined the recovered signals Table 1. Tensor regression estimation for the ADHD data. Reported
 by regularized tensor regression with a fixed sample size η = are mean RMSE and its standard deviation (in parenthesis) of
 500 and varying penalty parameter. The results are reported in evaluation criteria based on 100 data replications
 supplementary Section A.2. ~ ~~ ~ I

 Signal Param. Normal Binomial Poisson

 One-ball γ 0.0639(0.0290) 0.2116(0.0959) 0.0577(0.0305)
 6.2 Attention Deficit Hyperactivity Disorder B q.0039 (0.0002) 0.0065 (0.0002) 0.0064 (0.0002)

 Data Analysis Two-ball γ 0.0711 (0.0310) 0.3119 (0.1586) 0.0711 (0.0307)
 Β 0.0058(0.0002) 0.0082(0.0003) 0.0083 (0.0003)

 We applied our methods to the attention deficit hyperactivity
 disorder (ADHD) data from the ADHD-200 Sample Initiative
 (http://fcon_1000.projects.nitrc.org/indi/adhd200/). ADHD is
 a common childhood disorder and can continue through ado- , „ „ , , , , ,
 ι α α ι,ι. a c . ι ι . . and all of whose (90 + /)th element equal to sin(y7r/14) tor lescence and adulthood. Symptoms include difficulty in staying Λ ,
 r , , . _ . ,.rc . . „ ... ,,· /= 0,1,..., 14. This corresponds to a single-ball signal in a
 focused and paying attention, difficulty in controlling behavior, , ' 1 , ~ , . ■ , „ ,

 j .· ·. tl a . ... , a ' r , »ΓΜΤΤ-. three-dimensional space. The second admits a rank-2 decompo

 ™r y· Th,e,dalaf,,ha W"S »«"«*£ h ?" »·'<·». β, € B, 4 R256*2 ,„<1 B, € R«.» All 200 Global Competition datasets. It consists of 776 subjects, , „ , . _ , , . . , ; ,
 ... ,n, , , , , ηθΓ ,· j λτλτττα u· „ the first columns of Bd have their (90 + /)th element equal to

 with 491 normal controls and 285 combined ADHD subjects. . , ^ , , " , , v J' , , . 7, Λη
 . ι ... 1Λη . sin(/7Γ/14), and the second columns ot Bd have their (140 +
 Among them, there are 442 males with mean age 12.0 years and . . . . ,. .. r , ,; _ .

 a a a ■ .■ τ ι a AO π f ι *. ι / )th element equal to stni/Tr/14) tor 7 = 0, 1,..., 14. lhis
 standard deviation 3.1 years, and 287 females with mean age J . . , „ . ... . ..
 ,, „ j . a a a ■ .■ o c π7 α λι mimics a two-ball signal in the three-dimensional space. We
 11.9 years and standard deviation 3.5 years. We removed 47 , fc , , _T „ , , .r .
 ..■ . a <- · · u · iv then generate the response through the GLM models: for the nor subiects due to the missing observations or poor image quality. , , , ' ,, , , .

 r> .■ .. ,.,ηι , T. . ,, , · ■ . mal model, Υ ~ NormaKu, 1), where μ = η; for the binomial Resting state fMRIs and Tl-weighted images were acquired , , ' n
 c . .. ™ „1 · , , . , model, Υ ~ Bernoullifn), with ρ — 1/[1 + exp(—0.1?))]; and for each subject. The Τ1-weighted images were preprocessed „ . .
 . . a a . · 1 a- \n , . ■ α η«-2 for the Poisson model, Υ ~ Poission(/r), with μ = exp(0.01?j). by standard steps including AC (anterior commissure) and PC m , . , , ,
 . , . , ,. ,n , . λ υ .· Table 1 summanzes the average RMSE and its standard devi
 (postenor commissure) correction, N2 bias field correction, . ,fc , ,
 f „ . . . ν · u ν ,■ , ,, ation out of 100 data replications. We see that the normal and skull-stnpping, intensity inhomogeneity correction, cerebellum , ...

 , . . , . . ... Poisson responses both have competitive performance, whereas
 removal, segmentation, and registration. After segmentation, , . . , . ' . ™ „

 , . . .. . . .· the binomial case is relatively more challenging. The two-ball
 the brains were segmented into tour different tissues: gray , . / , „ · ,

 ,r„, , ν .. . · , . signal is more challenging than a one-ball signal, and overall
 matter (GM), white matter (WM), ventricle (VN), and cere- ,6 , , .. 6
 , , ,, .,™r, ... . , , , . , ■ the tensor models work well across different response types and
 brospinal fluid (CSF). We quantified the local volumetric group . r
 differences by generating RAVENS maps (Davatzikos et al. 1 erent S18na s
 2001) for the whole brain and each of the segmented tissue type 6.2.2 Regularized Estimation. Next we focus on the ability
 (GM, WM, VN, and CSF), respectively, using the deformation 0f the regularized tensor regression model to identify relevant
 field we obtained during registration. RAVENS methodology regions in brain associated with the response. This is analo
 is based on a volume-preserving spatial transformation, which g0Us to the variable selection problem in the traditional re
 ensures that no volumetric information is lost during the gression with vector-valued covariates. We employ the two-ball
 process of spatial normalization, since this process changes an signal and the normal model in Section 6.2.1. Figure 3 shows
 individual's brain morphology to conform it to the morphology images with the true signal, the unregularized tensor regres
 of a template. In addition to image covariates, we include sion estimate, and the regularized tensor regression estimates
 the subjects' age, gender, and whole brain volume as regular with a lasso penalty, respectively, overlaid on an image of an
 covariates. One scientific question of interest is to understand arbitrarily chosen subject, or on a three-dimensional render
 association between the disease outcome and the brain image jng of a template. The plots clearly show that the true sparse
 patterns after adjustment for the clinical and demographical signal regions can be well recovered through regularization.
 variables. We first examined the case with real image covariates
 and simulated responses. The goal is to study the empirical
 performance of our methods under various response models. 6·23 Real Data Analysis. Finally, we analyze the ADHD
 We then showed the performance of the regularized estimation data with the observed binary diagnosis status as the response,
 in terms of region selection. Finally, we applied the method to ^ΙΙε<^ a rank-3 tensor logistic regression model, since in
 the data with the true observed binary response. Practice il is rare that the true siSnal would follow an exact

 reduced rank formulation. We also applied the regularized esti
 6.2.1 Real Image Covariates and Simulated Response. We mation using a lasso penalty. Figure 4 shows the results. Inspect

 first consider a number of GLMs with the real brain image ing Figure 4 reveals two regions of interest: left temporal lobe
 covariates, where η = γ1 Ζ + (Β, Χ), the signal tensor Β ad- white matter and the splenium that connects parietal and oc
 mits a certain structure, γ = (1,1, 1)τ, Χ denotes the three- cipital cortices across the midline in the corpus callosum. The
 dimensional MRI image with dimension 256 χ 256 χ 198, and anatomical disturbance in the temporal lobe has been consis
 Z denotes the vector of age, gender, and whole brain volume. We tently revealed and its interpretation would be consistent with a
 consider two structures for Β. The first admits a rank-1 decom- finer-grained analysis of the morphological features of the corti
 position, with B\ e JR256xI, B2 e R256xl, and B3 e ]RI98xl, cal surface, which reported prominent volume reductions in the

 Table 1. Tensor regression estimation for the ADHD data. Reported
 are mean RMSE and its standard deviation (in parenthesis) of

 evaluation criteria based on 100 data replications

 Param. Normal Binomial Poisson

 One-ball γ 0.0639(0.0290) 0.2116(0.0959) 0.0577(0.0305)
 Β 0.0039(0.0002) 0.0065 (0.0002) 0.0064(0.0002)

 Two-ball γ 0.0711 (0.0310) 0.3119(0.1586) 0.0711 (0.0307)
 Β 0.0058(0.0002) 0.0082(0.0003) 0.0083 (0.0003)
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 True Signal (a) (b) 7. DISCUSSION

 We have proposed a tensor decomposition-based approach
 for regression modeling with array covariates. The curse of di
 mensionality is lessened by imposing a low-rank approximation

 |ΐΓ '* ' # * 1^· to the extremely high-dimensional full coefficient array. This al
 Cf. % lows development of a fast estimation algorithm and regulariza

 ^;ΗΒ|ϋΐ1?φϊ? tion. Numerical analysis demonstrates that, despite its massive
 Mt reduction, the method works well in recovering various geomet

 ΗΛ·^^^^^^Η||Η||Η||·|ΜΗ|Η||Η as well as natural shape images. Although there have been
 previous imaging studies using tensor structure (Li, Du, and

 Unpenalized estimation (a) (b) Lin 2005; Park and Savvides 2007), our proposal, to the best of
 ri our knowledge, is the first that integrates tensor decomposition

 within a statistical regression (supervised learning) framework.
 A key motivation of our work is the recent emergence of

 ■SSjSf « large-scale neuroimaging data. Traditional imaging studies usu
 E" · ally have only a handful of subjects. More recently, however,

 E**,». SSrJJ »4^ a number of large-scale brain imaging studies are accumulat
 ·\;··βή?ζ .. ing imaging data from a much larger number of subjects. For

 BäJ instance, the Attention Deficit Hyperactivity Disorder Sample
 *w Initiative (ADHD 2012) consists of 776 participants from eight

 imaging centers with both MRI and fMRI images, as well as

 Lasso estimation (a) (b) their clinical information. The Alzheimer's Disease Neuroimag
 ing Initiative (ADNI 2012) database, which includes over 3000
 participants with MRI, fMRI, PET, and genomics data. Our

 . .Dps proposed tensor regression model was motivated by and aims
 to address the computational and modeling challenges of such

 ' ^ *" "* *Jk large-scale imaging data. Meanwhile, our approach is equally
 '·λ·': t>Vt, * Jjjjj' applicable to smaller scale imaging dataset, for example, images

 ■L ..Χ?ψ"? acquired from a single lab with a moderate number of subjects.
 • In that scenario, the regularization strategy outlined in Section

 5 is expected to play a central role in scientific discovery.
 The classical large η asymptotics in Section 4 may seem ir

 Figure 3. Region selection. The true signal regions are colored in relevant for imaging data with a limited sample size. However,
 red, the estimated signal regions are in green, and the overlapped re- k outlines some basic properties of the proposed tensor regres
 gions are in yellow. The left panel is the true or estimated signal . iiji ^·ιι · ι * τ

 , ., , , , , . , , , . ,fc sion model and has practical relevance in several aspects. For
 overlaid on a randomly selected subject, and the right panel is a three- . , . ,, , , , , ι , ·

 . r.., . ,· «. j ■ , , ·. instance, by choosing a small rank such that the model size pe is
 dimensional rendering or the true or estimated signal overlaid on the J ° ^
 template effectively smaller than η, we know that, under the specified con

 ditions, the tensor regression model is consistently estimating
 the best rank-/? approximation to the full model in the sense of

 temporal and frontal cortices in children with ADHD compared Kullback-Leibler distance. Moreover, the regular asymptotics
 with matched controls (Sowell et al. 2003). Moreover, a reduced js useful for testing significance of a low-rank sparse model in
 size of the splenium is the most reliable finding in the corpus a replication study. Classical hypothesis tests such as likelihood
 callosum (Valera et al. 2007). ratio test can be formulated based on the asymptotic normality

 Μ *Μ0 * * Χ ι ■ r. ft a
 •Sir«#·# *'
 γ*η· *
 Jj» ·Γ
 • . ■* ·"

 ψ 5

 * \ m
 (a)

 True Signal (a)

 Lasso estimation (a) (b)

 Figure 3. Region selection. The true signal regions are colored in
 red, the estimated signal regions are in green, and the overlapped re
 gions are in yellow. The left panel is the true or estimated signal
 overlaid on a randomly selected subject, and the right panel is a three
 dimensional rendering of the true or estimated signal overlaid on the
 template.

 >ιιΐ·'·ι
 V ■

 4^-ψφ' A
 -Ρ Ι* J Γ
 '- · * ν
 ~ It 2?'"

 (a)

 Figure 4. Application to the ADHD data. Panel (a) is the unpenalized estimate overlaid on a randomly selected subject; (b) is the regularized
 estimate overlaid on a randomly selected subject; (c) is a selected slice of the regularized estimate overlaid on the template; and (d) is a
 three-dimensional rendering of the regularized estimate overlaid on the template.
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 of the tensor estimates established in Section 4. The explicit
 formula for score and information in Section 4.1 and the iden

 tifiability issue discussed in Section 4.2 are not only useful for
 asymptotic theory but also for computation.

 Regularization plays a crucial role in practical applications,
 as the challenge of ρ > η is the rule rather than the exception in

 neuroimaging analysis. We consider the tensor regression pre
 sented in this article an analog of the hard thresholding in clas
 sical regression, where the rank of the model is fixed. Currently,

 we are also investigating another line of regularization through
 "soft thresholding." That is, we estimate the tensor regression
 model without fixing the rank but instead subject to a convex
 regularization of the rank of the tensor parameter. Results along
 this line will be reported elsewhere.

 In real imaging analysis, the signal is hardly of an exact
 low-rank structure. However, given the limited sample size, a
 low-rank estimate often provides a reasonable approximation to
 the true tensor regression parameter, even when the truth is of
 a high rank. This can be seen from our numerical experiments,
 where a rank-3 model yields an informative recovery of a but
 terfly shape in Figure 1, and a two-ball structure in Figure 3.
 We also note that, our proposed regularized tensor model often
 yields a significantly better recovery than the classical regular
 ized regression model. This is partly verified in an experiment
 comparing our solution to a classical lasso with vectorized im
 age covariates. The results are given in supplementary Section
 A.3.

 The scale and complexity of neuroimaging data require
 the estimation algorithm to be highly scalable, efficient, and
 stable. The methods in this article are implemented in an
 efficient Matlab toolbox, and the run time is remarkably fast.
 For instance, the median run time of fitting a rank-3 model to
 the two-dimensional triangle shape in Figure 1 was about 5
 sec. Fitting a rank-3 logistic model to the three-dimensional
 ADHD data in Section 6.2.3 took about 285 sec for 10 runs

 from 10 random starting points, averaging < 30 sec per run.
 Supplementary Section A.4 contains further numerical results
 to study the algorithm stability with respect to starting values as
 well as computing time. All results were obtained on a standard
 laptop computer with a 2.6 GHz Intel i7 CPU.

 We view the method of this article as a first step toward a
 more general area of array regression analysis, and the idea can
 be extended to a wide range of problems. We describe a few
 potential future directions here. First, although we only present
 results for models with a conventional covariate vector and an

 array covariate, the framework applies to arbitrary combina
 tion of array covariates. This provides a promising approach to
 the analysis of multimodality data, which becomes increasingly
 available in modern neuroimaging and medical studies. Second,
 we remark that our modeling approach and algorithm equally
 apply to many general loss functions occurring in classification
 and prediction. For example, for a binary response Y e {0, 1},
 the hinge loss takes the form

 Σ
 ί=1

 1 -y;  + yTZi + ( Σ ßV 0 ßl ' 0 · · · 0 ß{D' xi
 V r=l

 and should play an important role in support vector machines
 with array variates. Third, in this article, rotation has not been

 explicitly considered in the modeling. When prior knowledge
 indicates, sometimes it is prudent to work in polar coordinates.
 For example, the "disk" signal in Figure 1 can be effectively
 captured by a rank-1 outer product if the image is coded in polar
 coordinates. A diagonal signal array has full rank and cannot be
 approximated by any lower rank array, but if changed to polar
 coordinates, the rank reduces to one. Some of these extensions

 are currently under investigation.

 SUPPLEMENTARY MATERIALS

 Supplementary materials contains additional numerical re
 sults as indicated in Section 6, and all technical proofs.

 [Received March 2012. Revised November 2012.]
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