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 Statistical Analysis of Diffusion Tensors in
 Diffusion-Weighted Magnetic Resonance Imaging Data
 Hongtu Zhu, Heping Zhang, Joseph G. Ibrahim, and Bradley S. Peterson

 Diffusion tensor imaging has been widely used to reconstruct the structure and orientation of fibers in biological tissues, particularly in
 the white matter of the brain, because it can track the effective diffusion of water along those fibers. The raw diffusion-weighted images
 from which diffusion tensors are estimated, however, inherently contain noise. Noise in the images produces uncertainty in the estimation
 of the tensors (which are 3x3 positive-definite matrices) and of their derived quantities, including eigenvalues, eigenvectors, and the
 fiber pathways that are reconstructed based on those tensor elements. The aim of this article is to provide a comprehensive theoretical
 framework of statistical inference for quantifying the effects of noise on diffusion tensors, on their eigenvalues and eigenvectors, and on
 their morphological classification. We propose a semiparametric model to account for noise in diffusion-weighted images. We then develop
 a one-step, weighted least squares estimate of the tensors and justify use of the one-step estimates based on our theoretical framework and

 computational results. We also quantify the effects of noise on the eigenvalues and eigenvectors of the estimated tensors by establishing
 their limiting distributions. We construct pseudo-likelihood ratio statistics to classify tensor morphologies. Simulation studies show that our

 theoretical results can accurately predict the stochastic behavior of the estimated eigenvalues and eigenvectors, as well as the bias that is
 introduced by sorting the eigenvalues by their magnitudes. Implementation of these methods is illustrated in a diffusion-weighted dataset
 from seven healthy human subjects.

 KEY WORDS: Diffusion tensor; Eigenvalues; Eigenvectors; Principal direction; Random matrices; Weighted least squares.

 1. INTRODUCTION

 Diffusion Tensor Imaging (DTI) tracks the effective diffusion
 of water in the human brain in vivo. Because water tends to dif

 fuse along the pathways of white-matter fibers, tracking its dif
 fusion with DTI allows investigators to map the microstructure
 and organization of those pathways (Basser and Jones 2002;
 Le Bihan 2003; Kingsley 2006a-c). DTI geometrically char
 acterizes diffusion within each voxel of an imaging space as
 a 3 x 3 diffusion tensor D, with three eigenvalue-eigenvector
 pairs {(?/, v/) : / = 1, 2, 3} quantifying the direction and degree
 of diffusivity, respectively, where X\ > ? 2 > A3. Many tractog
 raphy algorithms attempt to reconstruct fiber tracts by consec
 utively connecting the principal directions (vi) of the diffusion
 tensors (DTs) in adjacent voxels (Conturo et al. 1999; Xu, Mori,
 Solaiyappan, van Zijl, and Davatzikos 2002). Statistical analy
 sis of estimated DTI measures (e.g., eigenvalues and eigenvec
 tors) and fiber tracts can provide a quantitative assessment for
 the integrity of anatomical connectivity in white matter. In turn,
 the results from these statistical analyses can be used to under
 stand better the development and disturbances of white matter
 in the central nervous system. DTI has been used to study a

 wide array of neurological and neuropsychiatrie illnesses (Lim
 and Helpern 2002; Brain Development Cooperative Group and
 Evans 2006).
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 DTs are estimated from the raw data contained in diffusion

 weighted (DW) images. The process of transforming DW im
 ages into estimated DTs that can be used for accurate track
 ing of fiber pathways entails a number of steps. First, DW im
 ages inherently contain varying amounts of noise that must be
 modeled appropriately if DTs are to be estimated accurately;
 failure to do so may lead to a biased estimate of DTs and to
 an incorrect estimate of their covariance matrices. After appro
 priately modeling the noise in DW images and estimating the
 tensors, we must then quantify the effects of noise on the es
 timated eigenspace components. Because many algorithms for
 fiber tracking reconstruct the directions of fiber pathways based
 on the principal directions of diffusion, quantifying the effects
 of noise on these eigenspace components in particular is cru
 cially important for the accurate tracking of fibers. However,
 because the noise-induced stochastic behavior of the princi
 pal direction of a tensor is primarily determined by the over
 all morphology of the tensor, we must first classify that mor
 phology, which is typically designated as nondegenerate (in
 which all eigenvalues differ), oblate (X\ = A 2 > A3), prolate
 (Ai > ?2 = A3), or isotropic (X\ = ?2 = A.3). When the effects
 of noise on the eigenspace components have been assessed and
 the morphologies of the DTs have been classified, fiber tracking
 can begin.

 Three statistical questions emerge from this process of trans
 forming diffusion-weighted images into estimated DTs and
 eigenspace components: (1) How can we obtain an accurate es
 timate of the diffusion tensor and its covariance matrix when

 the diffusion-weighted magnetic resonance (MR) images con
 tain various noise components, including random and struc
 tured noise (such as noise from bulk motion or cardiac pulsa
 tion)? (2) How can we quantify the effects of noise on the DTs,
 including their eigenvalues and eigenvectors? (3) Does the pres
 ence of the noise that is inherent in DW images affect in any
 way our morphological classifications of DTs and, if so, how?
 In this article, we will address these three questions systemati
 cally and rigorously within a statistical theoretical framework.
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 Much effort has been devoted to modeling appropriately the
 noise components of DW images so as to improve the accu
 racy of estimating at each voxel a diffusion tensor and its de
 rived quantities, such as its principal direction. In the presence
 of random noise only, the signal intensity in DW images follows
 a Rician distribution (Henkelman 1985; Gudbjartsson and Patz
 1995). In the presence of only a small amount of random noise

 within DW images, the log-transformed signal intensity can
 be approximated by a weighted Gaussian distribution (Basser,
 Mattiello, and Le Bihan 1994; Anderson 2001; Salvador et al.
 2005). However, in addition to random noise, DW images al
 ways contain varying amounts of noise from other sources (e.g.,
 susceptibility artifacts and rigid-body motion). Although some
 postprocessing techniques, including image coregistration, may
 be applied to correct for the presence of the noise from other
 sources, these techniques can significantly alter the properties
 of the noise in DW images, including its distribution and vari
 ance (Rohde, Barnett, Basser, and Pierpaoli 2005). Thus, the
 distribution of noise in DW images will likely deviate from both
 the Gaussian and Rician distributions (Rohde, Barnett, Basser,

 Marenco, and Pierpaoli 2004), and any strategy for modeling of
 noise in the postprocessed DW images must extend beyond the
 sole application of Gaussian and Rician distributions.
 Given that noise in DW images also introduces uncer

 tainty into the eigenvalues and eigenvectors of the DTs (Jones
 2003; Lazar and Alexander 2003), numerical simulations have
 been used increasingly to quantify uncertainty in the three
 eigenvalue-eigenvector pairs of the estimated tensors, as well
 as to assess how these estimated eigenspace components ulti
 mately influence the performance of tractography algorithms.
 These simulations have shown, for example, that estimates of
 the largest eigenvalue in a tensor usually overestimate the true
 value of A] and that estimates of the smallest eigenvalue usu
 ally underestimate A3 (Pierpaoli and Basser 1996). These dif
 ferences between the estimated and true eigenvalues, referred
 to as "sorting bias," subsequently bias the estimation of invari
 ant measures that are calculated from the values of these esti

 mated eigenvalues (Pierpaoli and Basser 1996; Basser and Pa
 jevic 2000). Although previous investigators have derived first
 and second-order expansions of the estimated eigenvalues and
 eigenvectors for nondegenerate tensors (Anderson 2001), their
 results cannot predict the bias observed in degenerate tensors
 and their derived quantities, such as eigenvalues (Basser and
 Pajevic 2003). A nonparametric bootstrapping method (Efron
 1979; Efron and Tibshirani 1993; Basser and Jones 2002,
 p. 465; Pajevic and Basser 2003) has also been used to quantify
 numerically the effects of noise on the eigenvalues and eigen
 vectors, and fiber tracts. However, because bootstrapping meth
 ods do rely on asymptotic results (Shao and Tu 1995), one can
 question whether approximating the uncertainty of eigenvalues
 and eigenvectors, and particularly the trajectories of fiber tracts
 using the bootstrapping methods, is ultimately valid. Therefore,
 mathematically quantifying the effects of noise on the eigenval
 ues and eigenvectors of the diffusion tensors and fiber tracts is
 of paramount importance.

 Numerous invariant measures of anisotropy have been devel
 oped for the classification of tensor morphologies (Basser 1997;
 Skare, Li, Nordell, and Ingvar 2000; Hasan, Basser, Parker, and
 Alexander 2001). Examples include Fractional Anisotropy (FA;

 Basser 1997), for which small values indicate that the diffusion
 tensor is nearly isotropic. Comparing a specific invariant mea
 sure with a predefined fixed value, or "threshold," is often used
 to determine whether a tensor is degenerate within a particular
 voxel and, therefore, whether a tractography algorithm should
 terminate, signaling the end of that particular fiber pathway
 (Mori and van Zijl 2002; Lazar and Alexander 2005). Thresh
 olds are often selected arbitrarily (a common FA threshold, for
 example, is .20; Jones 2003), producing either large Type I or
 Type II errors in classifying tensor morphologies (Zhu et al.
 2006). Therefore, developing sensitive measures of tensor mor
 phology, as well as a rigorous and rational strategy for deter
 mining thresholds of these measures that capture within a single
 scalar index one of several of the most salient features of that

 morphology, is critially important for the correct morphological
 classification of diffusion tensors and, ultimately, for the valid
 reconstruction of fiber tracts.

 We propose herein a set of three solutions for modeling
 noise in DW images. First, we propose use of a semiparamet
 ric model, which allows for a large class of distributions for
 the noise component, to fit the log-transformed signal inten
 sities in diffusion-weighted MR data. Second, we propose a
 one-step Weighted Least Squares (WLS) estimate of the dif
 fusion tensors in this semiparametric model (Carroll, Wu, and
 Ruppert 1988). Calculating the one-step WLS estimate of the
 tensors across all voxels in an imaging volume is computation
 ally highly efficient, which is valuable when employing com
 putationally intensive statistical methods such as nonparamet
 ric bootstrapping. Third, under the semiparametric model, we
 quantify the effects of noise on the tensor estimation by estab
 lishing a strong convergence rate and by obtaining the covari
 ance matrix of the one-step WLS estimate of the tensor.
 We statistically quantify the effects of noise on the eigen

 values and eigenvectors of the estimated tensors. Noise can in
 troduce error into estimation of these components and into the
 classification of tensor morphology; therefore, even if a tensor
 in reality has equal eigenvalues (i.e., even if it is "degenerate"),
 noise makes those estimated tensors distinct in their estimated

 values. Thus, degenerate tensors can always be estimated and
 classified as nondegenerate, yielding erroneous principal direc
 tions of diffusion. Fiber tracking based on these erroneous prin
 cipal directions will, in turn, produce fiber pathways that are
 incorrectly reconstructed. However, because the distinctness of
 the three estimated eigenvalues is insufficient for quantifying
 the effects of noise on all eigenspace components of the tensors,
 we must derive the asymptotic expansions and limiting distribu
 tions of the eigenvalues and eigenvectors of both the degenerate
 and nondegenerate diffusion tensors.
 We reformulate the morphological classification problem

 within a hypothesis testing framework so as to provide a means
 of estimating confidence when classifying the morphology of
 any given tensor. We develop three sensitive measures of tensor
 morphology using pseudo-likelihood ratio statistics, and then
 determine rigorous thresholds of those statistics based on their
 limiting distributions under the null hypothesis.

 Section 2 presents solutions to the statistical issues we have
 just outlined. In Section 3 we conduct simulation studies to
 evaluate the effects of noise on estimation of eigenvalues and
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 eigenvectors, and we assess the finite performance of the one
 step WLS estimate of the tensors and the pseudo-likelihood ra
 tio statistics. Section 4 illustrates an application of the proposed

 methods in a real dataset. We present concluding remarks in
 Section 5.

 2. THEORY

 2.1 Heteroscedastic Linear Model

 We usually acquire n diffusion-weighted images for each
 subject, with each image containing TV voxels, and each of those
 voxels consisting of n diffusion-weighted measurements. Let
 {(Si,Ti,bi):i = 1,..., n] be n diffusion-weighted measure

 ments at a single voxel in the human brain, where Si denotes
 the signal intensity of the MR image, r? = (r?5 i, r^2, ^,3)r is the

 /th direction of the diffusion gradient such that rzrr, = 1, and
 b[ is the corresponding b factor of each /th diffusion-weighted
 MR image. The b factor denotes the magnitude of the diffusion
 gradients (Stejskal and Tanner 1965; Anderson 2001; Kingsley
 2006b).

 In magnetic resonance imaging, we often need to character
 ize random noise in the magnitude of the observed signal in
 tensity. The magnitude is generated by the square root of the
 sum of two squared numbers. If these two numbers are inde
 pendent normal random variables, then their magnitude follows
 a Rician distribution (Henkelman 1985; Gudbjartsson and Patz

 1995; Rowe 2005). Specifically, S? = JR2 + if is the magni
 tude of the complex-data (R?, I i) in a given voxel at the /th
 acquisition for i ? 1,..., n. Let 0; be the phase data in a given
 voxel such that R? = Si sin(0/) and // = 5/ cos(0/). If the sig
 nal intensities contain only random noise, then R? and 7Z are
 independent and follow Gaussian distributions with the same
 variance o2 and with means ?Rj and ?ij, respectively. Thus,
 using the Jacobian transformation, the joint density of (Si, 0?)
 can be written as

 p(Si,(j)i) = ?^r exp{-.5or"2(S| sin(0?) - ?Rj)2 ?tig1

 - .5a~2(Si cos(0/) - ?ij)2}.

 Integrating out 0/, we obtain a Rician distribution with parame
 ters ?i and a2, which is given by

 p(Si\?hG2) = -Uxp{-.5a-2(S2 + /x2)}?o

 xl(S/>0), (1)

 where ?i = J?2R ? + ?] ? , 1(0 is an indicator function, and
 Bq(z) denotes the zeroth-order modified Bessel function of the
 first kind. For diffusion-weighted images, a simple model of

 diffusion assumes ?i ? So exp(?b/r^Dr/), where D is a 3 x 3
 diffusion tensor and So is the signal intensity in the absence
 of any diffusion-weighted gradient. The distribution of log (S1;)
 has been shown to be well approximated by a Gaussian distri
 bution with mean log/x/ and variance cr2/?2 (Salvador et al.
 2005) when the value of ?i/cr is moderate and relatively large
 (e.g., greater than 5), which is the case in most current imaging
 studies.

 ?iSi

 We consider a heteroscedastic linear model to fit the log
 transformed signal intensities log 5/ as follows:

 \ogSi=logS0-birjDri+rii=zj0+exp(-zT0)cr i (2)
 for i = 1,... ,n, where 0T = (log So, ?T)> m ? exp(-z;rf9)a6/,
 and the errors e? are independent random variables that have
 zero means and finite variances. We define ?T = (D\\, D\2,

 D\3,D22,D23,D33) and zf = (1,-M^P 2rz-,ir,,2, 2r?,ir/,3,
 r;22, 2r/,2r/,3, r23)r)r. We set Var(6i) at 1 for identifiability
 purposes. Model (2) allows a large class of distributions for e?,
 including the Gaussian distribution, and different distributions
 and variances for differing 6/. If all the e? are standard Gaussian
 random variables, then model (2) reduces to a Gaussian model
 (Anderson 2001; Salvador et al. 2005).

 The WLS algorithm for model (2) can be summarized as fol
 lows:

 In step 1, set k = 0 and select an initial estimate #^)s such

 as the ordinary least squares estimate #ls ? !i=\ zi x
 zfr1^! 3/logSi.
 In step 2, calculate ] = exp(2zzrrJ^) for / = 1,..., n.
 In step 3, update 0^k) to #(/:+1) by using

 ^+? = ^[><*V) ?of z, log*. (3) \z = l / 1=1
 In step 4, repeat steps 2 and 3 for ko iterations and obtain
 0(*O)#

 In step 5, estimate a1 = ??=1(log# ~ zf^o))2^o)/
 (n-7).

 The WLS estimates are computationally simple in that they
 require simple algebraic manipulations; they also have some
 good statistical properties, such as robustness against small mis
 specifications in the variances of the errors (Carroll and Rup
 pert 1982a,b; Carroll et al. 1988). Moreover, for any reason
 able 6^0), the number of iterations ko in the algorithm can be as
 small as ko ? 1, because all WLS estimates ?9^o) for any ko > 1
 are asymptotically equivalent (Carroll and Ruppert 1982a). The
 second-order asymptotic expansion of 6^ reveals that only
 one iteration starting from #ls is needed to obtain an efficient
 estimate of 0 under certain conditions (Carroll et al. 1988). Nu
 merically, when n = 30, results from a simulation study in Sec
 tion 3.1 reveal that the WLS estimates 6^ and 0^ are very
 close. Thus, we can use #ls as an initial estimate and take 6^
 as the final WLS estimate of 0.

 We introduce some notation to characterize the properties of

 the WLS estimates of diffusion tensors. Let #J = (log So*, /3j)
 be the true value of 0 ; let D* denote the diffusion tensor cor

 responding to ?*\ and let || || denote the Euclidean norm of a

 vector or a matrix. We also define An = Y%=\ zizJ? Bn(?) ?
 E^z.zf exp(2zf?), Gn{?) = ??=i*?zf exp(4zfc?)?(^),
 and Fn(0) = Y!?=\ z/zf exp(4zf 6>)e?(<9)2, where e,-(0) =
 (\ogSi-zfO)2.
 We quantify the effects of noise on a diffusion tensor by es

 tablishing its strong consistency rate and asymptotic normal
 ity. We obtain the following theorems, whose detailed proofs
 can be found in a supplementary technical report available at
 http://www. bios. une. edu/^hzhu/DTIreport.pdf.
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 Theorem 1. (a) If assumptions (C1)-(C3) in the Appendix
 are satisfied and ||?(0) - 0*11 < 8' for any fixed 8' > 0, then

 ^)-^=?({[logAmin(A/?)l1+5Amin(A/7)}1/2) a.s. (4)
 for any 8 > 0 and k>\, where Amin(A77) is the minimum eigen
 value of An.

 (b) Under assumptions (C1)-(C5), for any k > 2, we have

 [G?@k))]-l,2B?@<k))@k>-9>)^LN(0,h) (5)
 as n ?> oo, where I7 is the 7x7 identity matrix and ->L de
 notes convergence in distribution. If 6{{)) = 0^$, then (5) holds
 for any k>\.

 (c) Under assumptions (C1)-(C6), for any k > 2, we have

 Gn(0*yl/2Fn(frk))Gn(0*)-1/2 -I7 - 07

 in probability (elementwise), (6)

 where O7 is a 7 x 7 matrix with all zero entries.

 Theorem 1 explicitly gives the strong convergence rate and
 the covariance matrix of 6{k). If Amjn(A/7) is 0(n), then 6{k)
 converges almost surely to 6* at the rate of o(n~^2(logn)l/2+?)
 for any 8 > 0. The covariance matrix of 0^k) under model (2)
 differs from that of the WLS estimate under the Gaussian model

 with homogeneous variance (Anderson 2001; Kingsley 2006c).
 However, according to Theorem 1(b) and (c), the covariance
 matrix of 0^ under model (2) can be consistently estimated by
 [Bn(0(k))r] FniO^^iBni^)]-1. Furthermore, we propose an
 empirically better estimator of Cov[#(A)], denoted by E(A), as
 follows:

 [Bn(?k))]  ?zf z, exp(4z,r?(A))(l0g^ - *l&k)?
 u=\

 0-', (k)\
 [B?(?W)]-\ (7)

 where t? ? co] z;r(^y=1 &? zyzp lz?. Compared with
 [Bn(6{k))rl Ftl(0(k))[Bn(0(k))]-\ the estimate in (7) is bet
 ter because we have explicitly accounted for the variability in
 the estimated residuals e?(0(^) (MacKinnon and White 1985).

 2.2 Effects of Noise on Eigenvalues and Eigenvectors

 We consider a decomposition of D as D = TArT, where
 A = diag(Ai, A2, A3) and r = (vj, V2, V3) is an orthogonal ma
 trix. Geometrically, diffusion tensors can be represented as an
 ellipsoid describing three eigenvectors {v/,/ = 1,2,3} scaled
 with the square root of their corresponding eigenvalues {A/, / =
 1, 2, 3}. An elongated ellipsoid represents high diffusivity in the

 principal direction v\ associated with X\, which may be inter
 preted as the dominant orientation of fibers passing through that
 particular voxel. However, in isotropic tensors, the principal dif
 fusion could be any direction in three-dimensional space; in
 oblate tensors, any direction on the plane orthogonal to V3 could
 be the principal direction. Currently, those oblate and isotropic
 tensors pose a significant challenge for existing algorithms for
 fiber tracking (Mori and van Zijl 2002; Parker, Haroon, and

 Wheeler-Kingshott 2003).
 In practice, we can only obtain D and its three eigenvalue

 eigenvector pairs denoted by {(m/, e,-) : / = 1,2, 3}, such that

 m\ >m2>m3. Thus, D == EMEr, where M = diag(ra\,rri2,
 m3) and E = (ei,e2,e3) is an orthogonal matrix. Because of
 the presence of noise that is inherent in diffusion-weighted MR
 images, {(ra7, e7) : / = 1,2, 3} are generally different from the
 true eigenvalue-eigenvector pairs {(A./, v7) : / = 1,2,3}. For in
 stance, previous simulation studies have shown that the esti

 mated eigenvalues {m? : / = 1, 2, 3} are always distinct regard
 less of the presence of degenerate and nondegenerate tensors
 (Pierpaoli and Basser 1996; Basser and Pajevic 2000). Falsely
 attributing distinct directionality to the principal directions of
 the tensors that are in reality degenerate will wreak havoc for
 the current algorithms for fiber tracking. The distinctness of
 {mi :i = 1, 2, 3} has not yet been investigated theoretically.

 In the following, we establish the distinctness of the three
 eigenvalues for D, which are determined by 0(1) starting from
 0LS.

 Theorem 2. (a) If assumption (C7) in the Appendix is satis
 fied, then the three eigenvalues of D based on 0ls are distinct
 with probability 1 when n > 7.

 (b) If assumptions (C1)-(C3) and (C7) in the Appendix are
 satisfied and 0(O) = 0ls satisfies ||0ls ? 0*11 < <$' for a given
 8f > 0, then the eigenvalues of D based on 6^ are distinct with
 probability 1 when n > 7.

 Theorem 2 reveals that the distinctness of the estimated

 eigenvalues persists in all regions of an image in vivo, con
 firming the sorting bias (Pierpaoli and Basser 1996; Basser and
 Pajevic 2000). Therefore, we always conclude that m\ > m2>
 m3, and we obtain incorrect principal directions of diffusion
 within the regions that contain isotropic and oblate tensors.

 Because the distinctness of the estimated eigenvalues is
 not adequate for understanding the stochastic behavior of
 {(m/,e,):/ = 1,2,3}, we derive the limiting distributions of
 the eigenvalues and eigenvectors of D for both degenerate and
 nondegenerate tensors.

 We introduce the following notation. Recall that D = VAVT,
 rTDV = A, and D = EMEr. We use Vecs(U) to represent
 (?Al ^12, ?/i3, ^22, U23, U33V for any 3x3 symmetric ma
 trix U = (?/;/). Thus, using Theorem 1(b), we have

 u/7 = V^(T/2 - A) = v^(rrDr - A) -^L U, (8)
 where Vec(U) is a multivariate normal random vector with
 mean 0 and covariance matrix Eu- Furthermore, let C^ =
 r7E. Then T/z can be written as T? = T7Dr = C^MC? and
 eje =13.

 Theorem 3. If assumptions (C8) and (C9) in the Appen
 dix are satisfied and if D is an isotropic tensor, then the den
 sity of the limiting distribution of H/7 = diag(/z/7i, /z,72, ^?3) =

 y?diag(M ? ?I3) and E, denoted by p(h, C), is proportional
 to

 (h\ ? hif){h2 ? h^)(h\ ? hi)

 xexp ?Vecs(CrHC)rEu1Vecs(CTHC)L (9)

 where C = (c7y), a 3 x 3 matrix, satisfies CrC = I3 and ca > 0
 for / = 1,2,3 and h\ > /i2 > ^3, where H = diag(h) and
 h = (h\,h2,h3)T. In addition, E(h\) > E{h2) = 0 > E(h3)
 and E(h\ + ^2 + h3) = 0, where E denotes the expectation
 with respect to p(h, C) given in (9).
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 For the oblate tensor, we must introduce additional notation,
 as follows:

 V U ?3/ \IJ?,21 ^?,22/
 Mi 0 TJ = /Un Ui2 0r mar VU21 U22

 _ i^n,\ ? \ r _ fCnj\ C?,12
 \ 0T ^?,3/ " \C?,21 C?,22

 where Mi = diag(rai, m2),Hw,i = V^(Mi ? A1I2), and ^3 =
 y/n(m3 ?A3). In addition, we assume Cov[Vecs(Un)] = Eun >
 Var(U22) = Su22, and Cov(U12) = EUl2.

 Theorem 4. If assumptions (C8) and (C9) in the Appendix
 are satisfied and if D is an oblate tensor, then we can conclude
 that:

 (a) The density of the limiting distribution of diag(H?51 ) and
 Cn>n is proportional to

 (/z1-/i2)expMvecs(C[1HiCn)rEUi1iVecs(C[1H1Ci1)J,
 (10)

 where Cn = (en, C12; C21, c22) is a 2 x 2 matrix satisfying

 C^Cn = I2, en > 0, and C22 > 0, and Hi = diag(/*i, hi) such
 that h\ > hi. In addition, E(h\ + hi) = 0 and E(hi) < 0 <
 E(h\). In general,

 Cj(11HnilCnin =Un,n + n"1/2(M - A3)-1Un,12U[J2

 + op(n~V2). (11)
 (b) As n -> 00, /z?53 ->L U22 and

 ^3=U/7,22-^-1/2(A1-A3)-1U,r12Uw,i2 + op(^-1/2).
 (12)

 (c) V?ClMCnM = -y/?CTn?\ + 0p("_1) and

 C?,22 = 1 -rc_1(Ai - A3)"2Un,2iC^i1C??nUn,i2 + c>/?(n_1).

 Furthermore, ? V^C^21 can be written as

 (A1-A3)-1[l2-^-1/2(A1-A3)-1

 X (C^nH^iC?,!! -Un,22l2)]Uw,i2 + Op(n"1/2)- (13)

 Thus, both ?yfnCn,\2 and V^C^nCj^ converge to U12/
 (A 1 ? A3) in distribution as n -> 00.

 (d) The eigenvectors {e? : / ? 1, 2, 3} satisfy

 (e1,e2) = (vi,v2)C7; n +-?  X\ -A3

 V?(e3 -v3) = -(Xi -A3)"1(vi,v2)U?,12 + Op(l)

 = (vi,v2)?1/2C^
 (14)

 21

 .S/i-'^vaU^iC^nC?,!!^,^2

 + 0p(n-1/2).

 For the prolate tensor, we need to modify the corresponding
 six matrices introduced for the oblate tensor. In particular, we

 modify A, M, and H^ as follows:

 H" V ? H?J'
 where M2 = diag(m2, m3), hnj = ?Jn{m\ ? k\), and H?,2 =
 <Jn(M2 ? A.3I2). We use the same notation for \Jn, U, and Cn,
 although we have made several necessary modifications.

 Corollary J. If assumptions (C8) and (C9) are satisfied and
 if D is a prolate tensor, then we have the following results:

 (a) The density of the limiting distribution of diag(Hn,2) and
 C/7,22 is proportional to

 (A2 - A3) exp j - X- Vecs(C[2H2C22)r ?"? Vecs(CJ2H2C22) ),
 (15)

 where C22 = (?22, Q3; C32, C33) is a 2 x 2 matrix satisfying

 C22C22 = I2, C22 > 0, C33 > 0, and H2 = diag(/z2, A3) such that
 A 2 > A3. In addition, ?(A2 + A3) = 0 and E(h3) < 0 < E{h,2).
 In general,

 C?,22H?,2Cn522 =Un,22 ~^~ (^1 - ^2)_1U?,2lU^2i

 + ^(rc-1/2). (16)

 (b) As ft ? co, An>i ^L Un and

 A,,i =U?,n +?-1/2(Ai -?3)-1Un,i2U^12 + ^(ft-1/2).
 (17)

 (c) V?C^21Cn,22 = -V?CWti2 + ?p(ft-1) and

 Cw,n = 1 -ft_1(Xi -A.3)"2Un>i2Cjt22Cn>22U/i,2i +Op(n~l).

 Furthermore, <sfn~Cn,\2 can be written as

 (Ai - ?3)-1U,,i2[l2 + *~1/2(*1 - ^3)_1

 x (C/[,22H,,2C,,22-U,,nl2)]+^(ft-1/2). (18)

 Thus, both *Jn~Cn,\2 an<3 ? ^/?C^2\^n,22 converge to U12/
 (Ai ? A3) in distribution as n -> 00.

 (d) The eigenvectors {e? : / = 1, 2, 3} satisfy

 V^(ei - vi) = (Xi - X3yl (V2, v3)U?12 + 0/?(l)

 = (V2,V3)n1/2<12

 .5ft-1/2viU,,i2C,r22C,,22U,,2i2
 Ai -A3

 (19)
 + op(n-1'2),

 , , , ,rT ^1/2^UM2<22
 (e2, e3) = (v2, ?3)0; 22-^-?  Ai ?A3

 + op(n-^2).
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 For the nondegenerate tensor, we need to modify the six ma
 trices as follows:

 A = diag(Ai, ?2, A3), M = diag(rai, mi, m3),

 Un = diag(/i?,i, hn,2, ??,3), U = (Uij),

 \Jn = (Unjj), K^n = {Cnjj).

 In addition, we define cnjj = n~1^2 fnjj for / ^ j. Let X?j be
 A/ ? A7- for all /, j = 1, 2, 3.

 Corollary 2. If assumptions (C8) and (C9) are satisfied and
 if D is nondegenerate, then we have the following results:

 (a) Let on = VarCC///). Then /i?i? = ?/?,/,- + ^(1) ^L
 N(0,a//)for/ = 1,2, 3 and

 An,/ - ?/*,? +^"1/2L?d^7 +?p(w_1/2)- (2?)

 (b) c?i?? = 1 -n~x Y^j^i f2ji +op(n-{) and fnjj + fnji +
 n~l/2 fn,ki fn,kjUk ^ i, k ^ j) + op(n-x/2) =0 for/ < y and
 /, 7, /c = 1, 2, 3. Moreover, for i < j,k^i, and k j^ j,

 fnjj^ij = Unjj +Tl~ Un,kiUn,kj/'Xi,k

 -n-VHUnji-UnjjWnjj/kij

 + op(n-V2). (21)

 (c) The eigenvectors {e? : / = 1, 2, 3} satisfy

 \/n(?i -\i) = ^2^]Un,ijVj+op(l)

 + op(n-1/2). (22)

 Theorems 3 and 4 have several important implications for
 the analysis of diffusion tensor images. For instance, Theo
 rem 3 gives the explicit form of the joint limiting distribution
 of the estimated eigenvalues and eigenvectors for an isotropic
 tensor. Therefore, we can directly sample from (9) to approx
 imate the stochastic behavior of {(m/, e?) : / = 1, 2, 3} for an
 isotropic tensor. Theorem 3 also confirms that m\ overesti

 mates A, and m3 underestimates A for the isotropic tensor (Pier

 paoli and Basser 1996; Basser and Pajevic 2000). Explicitly,
 because mz- = A + V?(m? ? X)n~1^2 can be approximated by
 X + hiU~xl2, E(mi) may be close to A + E(hi)n~1^2 for / =
 1, 2, 3. Thus, we have E(m\) > A, E(mi) ^ X, and E{m^) < X
 using Theorem 3. Therefore, compared with m\ and m^, mi
 and tr(D)/3 are better estimates of A with smaller bias, be
 cause tr(D)/3 ? A + n_1/2(Ai + h2 + h3)/3, E(h2) = 0, and
 E(%2i=\ hi) = 0- We can also construct confidence intervals
 for the eigenvalues {A/ : / = 1, 2, 3}. For instance, for a nonde
 generate tensor, a 1 ? a confidence interval of A? is given by
 im - Zc?/iOii.mi + Za?CFii], where za? is an upper a/2 per
 centile of a standard normal distribution. Moreover, we can use

 (19) and (22) to quantify the variability of the true principal
 directions for the nondegenerate and prolate tensors.

 2.3 Classification of Tensor Morphologies

 Following the reasoning described in Zhu et al. (2006), we
 statistically test three hypotheses to determine the morphology
 of a tensor. We specify these hypotheses as follows:

 //0(1): kl=k3 vs. H{1): ?i#X3,

 tf0(2) \k\=k2 vs. H?2) : k{^k2, (23)

 H : ^2 = A3 vs. H?3): k2^k3.
 For a given significance level a, we can test these three hypothe

 ses at every voxel of the image. If we do not reject Hq , then
 we classify the diffusion tensor as isotropic; otherwise, we then

 (2)
 test the second and third hypotheses. If Hq is not rejected, but

 both Hq and Hq are rejected, then we classify the diffusion
 tensor as oblate because of the lack of evidence that this dif

 fusion tensor is not oblate. If both Hq and Hq are rejected, (3)
 but Hq is not rejected, then the diffusion tensor is classified as

 prolate. If all Hq (/ = 1, 2, 3) are rejected, then the diffusion
 tensor is classified as nondegenerate.

 For each of the three hypotheses, we develop a pseudo
 likelihood ratio test statistic based on a pseudo-log-likelihood
 function defined by

 n

 4(0|0ls) = - ? (log Sf -zf0)2exp(2zf0LS). (24)
 ;=i

 The parameter spaces for the three null hypotheses Hq (i =
 1, 2, 3) can be written as follows: 0(1) = {0 : k\ = k3} D 0,
 0(2) = {0 : k{ = k2} H 0, and 0(3) = {0 : k2 = k3} n 0, where
 0 = {0 : log So > ? oo, D > 0}. Let 0(i) be the maximizer of
 ^w(0|0ls) as 0 varies in Q(/). For each /, the pseudo-likelihood

 ratio statistic for testing Hq against Hx is defined as

 PLRT(i) = 2[ln(^\0LS) - lnm)\0Ls)l (25)
 In the following, we derive the limiting distributions of

 PLRT(/) for i = 1, 2, 3. Let X(i) (i = 1, 2, 3) be three weighted
 chi-squared random variables (a weighted chi-squared random
 variable is a linear combination of independent X\ random vari
 ables; Schott 2003).

 Theorem 5. Under assumptions (C1)-(C6) and (C10), the
 following results hold as n -? oo.

 (a) If #0(l) is true, then PLRT(l) -^L X(l).
 (b) For / = 2 and 3, PLRT(/) converges, in distribution, ei

 ther to X(i) for an anisotropic tensor D or to the maximum of
 ? (i)

 a weighted x process for an isotropic tensor D when Hq is
 true.

 (c) If Varfe) = a2 for i = 1,..., ft, then X(l) is a a2/2
 random variable and X(2) and X(3) follow a2/2 distributions.

 Theorem 5 characterizes the limiting distributions of
 PLRT(/) under the null hypotheses. In particular, if the vari
 ances of the 67 are homogeneous, then we can estimate a2 and

 use xf and /| as null distributions to test the three hypotheses
 in (23). However, if the homogeneous variance assumption on
 the 6/ is invalid, then we need to approximate the weighted x 2
 random variables X(i) for / = 1, 2, 3. The procedures for ap
 proximating X(i) can be found in the supplementary technical
 report.
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 3. SIMULATIONS

 We conducted three Monte Carlo simulations to illustrate and

 examine the accuracy of using the asymptotic results under dif
 fering signal-to-noise ratios (SNRs; see Sees. 3.1-3.3). First,
 we compared the stochastic behavior (e.g., bias) of the WLS
 estimate 0^ starting from 0^ = 0ls and evaluated the accu
 racy of using E(/co) in (7) as an estimate of Cov[0^o)] for ko = 1
 and ko = 5. Second, we used the results of Theorems 3 and 4 to
 predict the stochastic behavior of the estimated eigenvalues and
 eigenvectors for both degenerate and nondegenerate tensors at
 low to moderate SNRs (e.g., SNR > 5). Finally, we evaluated
 the Type I and Type II errors of PLRT(/) (/ ? 1, 2, 3) when used
 as test statistics for the classification of tensor morphologies.
 We generated the simulated diffusion-weighted images as

 follows. The value of So was fixed at 1,500, but the values
 of (Jo were varied to provide differing SNRs (SNR = So/ao),
 such as 5 and 10. Six differing SNRs {5, 10, 15,20,25,30}
 were selected for all Monte Carlo simulations. We used an

 imaging acquisition scheme {(bj, r7) : i = 1,..., 30} that con
 sists of m = 5 baseline images with b = 0 s/mm2 and n ?
 m = 25 directions of diffusion gradients arranged uniformly in
 three-dimensional space at b = 1,000 s/mm2 (Hardin, Sloane,
 and Smith 1994). For a given diffusion tensor D, X{ and
 yi were generated from a Gaussian random generator with
 mean 0 and standard deviation gq. Finally, we calculated S7 =

 w(Soexp(?birfDri) + x/)2 + yf as the resulting diffusion
 weighted data at the z'th acquisition.

 In all simulation studies, we used four diagonal diffusion
 tensors D. These four diagonal tensors Dz (i ? 1,2,3,4),
 whose three diagonal elements were, respectively, [.7, .7, .7],
 [.8, .8, .5], [1.0, .55, .55], and [.9, .7, .5] (units: 10~3 mm2/s),

 were selected to simulate diffusion-weighted data. The four dif
 fusion tensors D? (/ = 1, 2, 3, 4) were, respectively, isotropic,
 oblate, prolate, and nondegenerate in shape. For each z', the
 mean diffusivity k = tr(D?)/3 was set equal to .7 x
 10-3 mm2/s, a value typical in the human brain (Pierpaoli,
 Jezzard, Basser, Barnett, and Chiro 1996; Anderson 2001).

 3.1 Weighted Least Squares Estimates

 For each diffusion tensor at each SNR, 10,000 diffusion
 weighted dataseis were generated. Then, for each simulated
 diffusion-weighted dataset, we calculated the WLS estimates
 0^?) and their corresponding estimates of variance diag(E^o)),
 when ko = 1 and 5. We finally calculated the bias, the mean
 of the standard deviation estimates, and the root mean squared
 error obtained from the 10,000 estimates based on 10,000 sim

 ulated diffusion-weighted datasets.
 The one-step WLS estimate 0(1) is numerically close to the

 five-step WLS estimate 0(5) (see Table 1). Compared with
 ko = 1, the larger ko = 5 leads to less bias in the estimates when
 SNR = 5, but comparable bias in the estimates when SNR > 10.
 Compared with 0^, 0^ has larger root mean squared errors
 for all six SNRs. All relative efficiencies (the ratio of the mean

 of the standard deviation estimates to the root mean squared er
 ror; RMSE) are close to 1.0, indicating that diag(?(/co)) in (7) is
 an accurate estimate of diag(Cov[0^]). As expected, the root
 mean squared error decreases as the value of SNR increases.

 3.2 Stochastic Behavior of Eigenvalues
 and Eigenvectors

 We further evaluated the accuracy of the asymptotic re
 sults obtained for the estimated eigenvalues and eigenvec
 tors. For each diffusion tensor at each SNR, 10,000 diffusion
 weighted dataseis were simulated, and then we calculated the
 WLS estimates 0^ and their eigenvalue-eigenvector pairs
 {(mj,ej):j = 1,2,3}. Finally, we estimated the means and
 standard deviations of the eigenvalues and the bias E(mi) ? A/.
 For each diffusion tensor at each SNR, we also generated eigen
 values and eigenvectors from their asymptotic expansions in
 Theorems 3 and 4 (see the following paragraphs for a detailed
 description of the methods). Finally, we compared the results
 based on the asymptotic results in Theorems 3 and 4 to the em
 pirical results based on the 10,000 simulated dataseis for each
 diffusion tensor at each SNR.

 For the isotropic tensor Di, we used the following procedure
 to generate eigenvalues and eigenvectors from the density (9).

 We first used (7) and (8) to calculate the covariance matrix Eu,
 where the true diffusion tensor Dj was used. Then, we gener

 ated 10,000 3x3 symmetric matrices U(j) from a Gaussian ran
 dom generator, where Vecs(U<j)) followed a multivariate nor
 mal distribution with mean 0 and covariance matrix Eu- We

 then calculated a decomposition of U(j) as CJ\H(j)C(j) for
 each j, where C(7) and H(y) satisfied the conditions specified in
 Theorem 3. Thus, we obtained {h(j)j : / ? 1, 2, 3}, the diagonal
 elements of H(7), and the three eigenvectors {e^/ : / = 1, 2, 3}
 associated with each column of C(7). Finally, we obtained
 {rri(j)j = .7 + n~l/2h(j)j :/ = 1, 2, 3} and {e^-y :/ = 1, 2, 3}
 for all j ? 1,..., Jo, where Jo ? 10,000; moreover, for each /,
 we approximated E(mi) by the mean value of all rri(j)j.

 For each of the diffusion tensors D; (/ = 2, 3, 4), we used
 the following procedure to generate eigenvalues and eigenvec
 tors according to the asymptotic results in Theorem 4. For sim
 plicity, we only give detailed information for the oblate ten
 sor D2 as follows. We calculated Eu for D2 using (7) and (8),
 and then we generated Gaussian random matrices {U(7) : j =
 1,..., Jo). Using (11), we obtained both the first-order and
 the second-order approximations of C^n and H?j. For the
 first-order approximation, we decomposed U(;-),n directly into
 C?-x j 1H(y)? 1 C(7)511, whereas, for the second-order approxima

 tion, we decomposed U(7-),h +n~l/2(X\ ? X3)~]U(j)^iXJ?-^ 12
 into C?-, nH(7-)iiC(j)5ii, where U(j),ki (kj = 1,2) are sub

 matrices of U(j). Subsequently, we obtained first- and second
 order approximations of {wi(_/),/ = X\ + n~l/2h(j)j :/ = 1, 2}
 for j = 1,..., Jo, and we calculated the mean values of m^y
 for / = 1,2. We further substituted U(;) into (12) to ob

 tain /z0-),3 = U0-),22 - n~l/2(X\ - ^3)_1U[;.)a2U0-),i2 and cal
 culated m(7)53 = .5 + n~l/2h(j),3 for all j. We substituted
 U(j)(i2 and the second-order approximation of C^n into
 (14) to obtain the first- and second-order approximations of
 G(j),\ as follows: For the first-order approximation, e^j was
 approximated by the normalized vector of (vi,V2)CJ.x nu,
 whereas, for the second-order approximation, e^i was ap
 proximated by the normalized vector of (vi, V2)CJ\ uu +

 n-V2v3\JTij)A2ClJ)uu, where ur = (1, 0).
 Figure 1 summarizes the results for the isotropic tensor Di.

 Based on the simulated DW data, the mean value of m\ was
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 Table 1. Bias (xl0~3), RMSE (x 10"2), and SD (x 10-2) of two selected components of 0^o) starting from f^0) =?LS for k0 = 1 and 5

 ko ? 1 ^0 ? 5 ^0 ? 1 ^0 = 5
 SNR Bias RMSE SD Bias RMSE SD Bias RMSE SD Bias RMSE SD

 D: [Dn, ?>i2, ?>i3, ?>22, D23, D33] = [.7, 0, 0, .7, 0, .7] (units: x 10~3 mm2/s)

 ?H =.7 Z>i3=0
 5 -13.37 21.51 20.58 -8.74 22.76 20.66 -.50 15.25 14.69 -.52 16.54 14.77
 10 -1.06 10.86 10.60 -.79 11.00 10.61 -.25 7.91 7.64 -.26 8.06 7.65
 15 -.16 7.14 7.05 -.10 7.18 7.05 -1.32 5.21 5.08 -1.33 5.30 5.08
 20 -.14 5.41 5.27 -.13 5.43 5.27 .43 3.91 3.80 .43 3.93 3.80
 25 -.05 4.34 4.22 -.05 4.35 4.22 -.38 3.14 3.06 -.38 3.15 3.06
 30 .04 3.62 3.52 .04 3.62 3.52 .21 2.50 2.55 .21 2.61 2.55

 D: [Du , D12, ?>13, D22i D23, D33] = [.8, 0, 0, .8, 0, .5] (units: x 10~3 mm2/s)

 Dn=.8 L>13=0
 5 -19.67 21.97 21.40 -7.39 23.59 21.60 .03 14.78 14.60 .26 15.91 14.32
 10 -2.11 11.37 11.06 .06 11.55 11.08 .30 7.59 7.36 .36 7.71 7.36
 15 -1.17 7.57 7.37 -.30 7.68 7.38 -2.18 5.02 4.91 -.39 5.05 4.91
 20 -.94 5.65 5.55 -.48 5.67 5.55 .36 3.76 3.67 .33 3.77 3.67
 25 -.54 4.49 4.43 -.25 4.50 4.43 .33 2.99 2.95 .33 3.00 2.95
 30 .39 3.78 3.68 .59 3.78 3.68 .06 2.53 2.46 .06 2.53 2.46

 D: [D] i, ?>i2, Dn, D22, D23, D33] = [1.0, 0, 0, .55, 0, .55] (units: x 10"3 mm2/s)

 Dn = 1.0 L>13=0
 5 -47.43 23.64 22.86 -18.80 25.95 23.29 .10 15.52 15.08 .16 16.91 15.20
 10 -5.94 12.41 12.17 1.18 12.73 12.24 -.01 8.08 7.89 -.02 8.25 7.90
 15 -3.99 8.30 8.09 -1.05 8.39 8.11 -.55 5.34 5.22 -.54 5.39 5.22
 20 -2.05 6.25 6.08 -.43 6.28 6.09 .02 4.02 3.94 .03 4.04 3.94
 25 -1.45 4.97 4.86 -.44 4.98 4.87 1.15 3.27 3.14 1.16 3.28 3.14
 30 -1.28 4.12 4.05 -.57 4.13 4.05 -.33 2.66 2.62 -.33 2.67 2.62

 D: [Du, D12, ?>13, D22, D23, D33] = [.9, 0, 0, .7, 0, .5] (units: x 10~3 mm2/s)

 DU=.9 D13=0
 5 -33.75 23.00 22.24 -13.62 24.93 22.55 -2.58 15.20 14.68 -2.79 16.49 14.75
 10 -4.29 11.84 11.57 .15 12.09 11.61 .31 7.79 7.53 .34 7.93 7.54
 15 -2.11 7.90 7.73 -.31 7.96 7.74 -.48 5.13 5.04 -.47 5.17 5.04
 20 -1.84 5.93 5.80 -.83 5.96 5.80 -.19 3.90 3.77 -.18 3.92 3.77
 25 -.27 4.68 4.64 .35 4.69 4.64 -.19 3.10 3.01 -.18 3.11 3.01
 30 -.58 4.03 3.87 -.14 4.04 3.87 .43 2.56 2.51 .43 2.57 2.51

 NOTE: Bias denotes the bias of the mean of the WLS estimates; RMSE denotes the root mean-squared error; SD denotes the mean of the standard deviation estimates. Six different
 SNRs {5, 10, 15, 20, 25, 30} and 10,000 simulated datasets were used for each case. Only diagonal diffusion tensors were considered.

 greater than .7, that of m2 was close to 0.7, and that of ra3 was
 smaller than .7 [Fig. 1(a)]. As expected, we observed that the
 bias of mi (the mean value of m? ? k) decreased as the SNR
 increased. In contrast, based on the generated eigenvalues using
 the asymptotic results in Theorem 3, the bias of the estimated
 eigenvalues at all SNRs can be predicted accurately [Fig. 1(a)].
 Besides the bias, inspecting the Q-Q plot of raz- against m (_/),;
 [Fig. 1(b)] revealed that the limiting density (9) can accurately
 predict the stochastic behavior of mi at SNR ? 20. In terms of
 eigenvectors, at SNR = 20, the distribution of ei estimated from
 the simulated DW data was a uniform distribution on the unit

 sphere [Figs. 1(c) and 1(d)] and was close to the distribution of
 the generated ei based on Theorem 3 [Figs. 1(e) and 1(f)].
 Figure 2 summarizes the results for Dz (/ = 2, 3,4) as fol

 lows. First, for the oblate tensor D2, the second-order approxi
 mation of mi (i = 1, 2) performed better than the first-order ap

 proximation of m? (/ = 1, 2) when SNR < 10, whereas both the
 first- and second-order approximations of raz (/ = 1, 2) were
 accurate when SNR > 10 [Fig. 2(a)]. The prediction of bias for
 m3 based on (12) was highly accurate at all SNRs [Fig. 2(a)].
 Moreover, in terms of ei, the second-order approximation of
 ei led to a better prediction of the simulated distribution of ei
 at SNR = 20 than did the first-order approximation of ei, be
 cause the second-order approximation accounted for additional
 variation along V3, while the first-order approximation did not
 [Figs. 2(b) and 2(c)]. Second, for the prolate tensor D3, the
 second-order approximations of m? were accurate at all SNRs
 [Fig. 2(d)]. The second-order approximation of ei led to ac
 curate predictions even at small SNRs and the discrepancies
 between the first-order and second-order approximations were
 negligible when SNR > 10 [Fig. 2(e)]. Moreover, the first-order
 approximation of ei provided a good prediction of the estimated
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 Estimated m l

 Figure 1. Results from a simulation study of the tensor Di = JI3 (units: 10-3 mm2/s). (a) shows E(m?) = X + n~xl2E{Ji{) (i = 1,2, 3)
 and the mean value of the estimated eigenvalues m? (i = 1,2,3) as a function of SNR from 5 to 30 based on 10,000 simulated
 DW datasets. (d) shows the Q-Q plot of the estimated eigenvalues m\ based on 10,000 simulated DW datasets against eigenvalues

 {rri(j)\ = .7 + n-1/2/i(y)i : j = 1,..., 10,000} at SNR = 20, where the /*(;), 1 are simulated from the limiting density (9). (b) and (c) show
 the angle histogram plots of 0 and (j) based on 10,000 simulated DW datasets at SNR = 20, respectively, where 0 [0, 2n] and 0 e [0, n] are
 subcomponents of (1,0,0), the spherical coordinate of e\. (e) and (f) show the angle histogram plots of 0 and <p based on 10,000ei that are
 simulated from the limiting density (9).

 principal directions at SNR = 20 [Fig. 2(f)]. Finally, for the
 nondegenerate tensor D4, the second-order approximations of
 nti (i = 1,2,3) were accurate at all SNRs [Fig. 2(g)]. In addi
 tion, the first-order approximation of ei was relatively accurate
 for SNRs > 15 [Figs. 2(h) and 2(i)].

 3.3 Type I and II Error Rates of PLRT(/)

 We evaluated the performance of each of the PLRT(/) when
 used as the test statistics for the three hypotheses pertaining
 to the classifications of tensor morphologies (e.g., isotropic or
 not). Different diagonal tensors D? (i = 1,2, 3,4), whose three
 diagonal elements were, respectively, [.7, .7, .7], [.8, .8, .5],
 [1.0, .55, .55], and [.9, .7, .5] (units: 10-3 mm2/s), were cho
 sen for the various test statistics, because each PLRT(0 was
 developed for diffusion tensors with different morphologies un
 der the null hypothesis. To evaluate PLRT(l), we chose three
 diagonal diffusion tensors whose three diagonal elements were,
 respectively, Di, D2, and D4 (units: 10-3 mm2/s). To evaluate
 PLRT(2), we chose three other diagonal tensors whose three
 diagonal elements were, respectively, given by D2, D4, and D3
 (units: 10-3 mm2/s). To evaluate PLRT(3), we chose three
 other tensors whose three diagonal elements were D3, D2, and
 D4 (units: 10~3 mm2/s), respectively. For each simulation, two
 significance levels, 5% and 1%, were considered and 10,000
 replications were used to estimate the nominal significance lev
 els (or rejection rates). For a fixed a, if the Type I rejection rate
 is smaller than a, then the test is conservative, whereas if the

 Type I rejection rate is greater than a, then the test is anticon
 servative, or liberal.

 Under the null hypothesis, the estimated significance lev
 els of the PLRT(/) were reasonably close to the nominal sig

 nificance levels for this small sample of 30 DW images (Ta
 ble 2). Overall, although the Type I errors for the three test
 statistics were not excessive, these results indicate that the use

 of the scaled chi-squared distribution as a simple and reason
 able approximation to the distribution of PLRT(/) under the
 null hypothesis requires further improvement for small sam
 ple sizes. Finding a better approximation to the distribution
 PLRT(0 under the null hypothesis warrants further research.
 Moreover, as expected, statistical power increased with the de
 gree of anisotropy and the SNR values.

 4. APPLICATION

 We acquired diffusion-weighted MR images of the brains of
 seven healthy adult volunteers (four men and three women; all
 right handed; mean age 28 ? 4.2 years) on a GE 3.0-T whole
 body magnetic resonance imaging (MRI) scanner (Milwaukee,

 WI). The imaging acquisition scheme {(Z?/, r/) : / = 1,..., 30}
 consisted of m = 5 baseline images with b = 0 s/mm2 and
 n?m = 25 directions of diffusion gradients that were arranged
 uniformly in three-dimensional space at b = 1,000 s/mm2
 (Hardin et al. 1994). Each diffusion-weighted image contained
 256 x 256 x 34 voxels.

 For each subject, we used a heteroscedastic linear model (2)
 to construct the diffusion tensors. We subsequently calculated
 at each voxel the WLS estimate ^1}, the SNR (So/a), three
 eigenvalue-eigenvector pairs {(m?, e?) : i = 1,2,3}, the invari
 ant measures, including CL = (m\ ? mi)/I\, CP = 2(ra2 ?

 m3)//i, RA = y/l - 3/2/f2, and FA = j\ - h(lf - 2I2)-\
 and our three test statistics PLRT(/) and their associated p val
 ues, where m\ >mi> m3, I\ = tr(D), Ii = raira2 + raira3 +

This content downloaded from 
�����������152.2.176.242 on Wed, 30 Aug 2023 00:18:02 +00:00������������ 

All use subject to https://about.jstor.org/terms



 1094  Journal of the American Statistical Association, December 2007

 Signal-to-noise Ratio Signal-to-noise Ratio

 Figure 2. Results from a simulation study of three diagonal tensors D; (i = 2,3,4). (a)-(c) summarize results for D2: [.8, .8, .5] (units:
 10"3 mm2/s); (d)-(f) are for D3: [1.0, .55, .55] (units: 10-3 mm2/s); and (g)-(i) are for D4: [.9, .7, .5] (units: 10-3 mm2/s). Moreover,
 10,000 simulated datasets were used for all cases, (a) shows the first- and second-order approximations of E(m?) (i = 1,2), the second-order
 approximation of E(m3), and the mean value of ra? (i = 1,2, 3) as a function of the SNRs from 5 to 30. At SNR = 20, (b) shows the scatterplots

 of ei (blue points) and e(y)ti (yellow points) simulated from the first-order approximation, whereas (c) shows the scatterplots of ei (blue points)
 and e(j)51 (yellow points) simulated from the second-order approximation, (d) and (g) show the second-order approximations of ?(m,- ) (1 = 1, 3)
 and the mean value of ra; (i = 1, 2, 3) as a function of the SNRs from 5 to 30 for T)2 and D3, respectively, (e) and (h) show the mean value and
 the standard deviation of arccos(| (ei, vi ) |) for D2 and D3, respectively: For D2, ei is based on simulated datasets (blue squares), the first-order
 approximation (green triangles), or the second-order approximation (red circles); for D3, ei is based on either simulated datasets (blue squares)

 or the first-order approximation (red circles), (f) and (i) show the scatterplots of the estimated e\ (blue points) and eigenvectors er/),i (yellow
 points) simulated from the first-order approximation for D2 and D3, respectively, at SNR = 20.

 mim?,, and I3 = m\mim3. We further set the significance level
 at 1% and used the p values of PLRT(/) (i = 1,2, 3) to classify
 the morphology of the DT at each voxel. Furthermore, based on
 the tensor morphology at each voxel, we constructed the con
 fidence intervals of the three eigenvalues and the confidence
 cones of ei using the asymptotic results in Theorems 3 and 4.

 We tracked fibers in a selected region of interest (ROI) using a
 commonly available software package (DTI Track 2005; Fillard
 2005).

 Using a single representative subject, we presented the maps
 of CL, CP, and FA, the -log10(/?) maps of PLRT(/) (/ =
 1, 2, 3), the map of morphological types, and the map of prin
 cipal directions at a selective slice in Figures 3(a)-3(h). In the
 ? log10(p) value maps of PLRT(/) (/ = 1, 2, 3), a voxel hav
 ing a p value less than .01, which corresponds to a ? log100?)
 value of greater than 2, was regarded as significant, and all

 (-logio(p)) vaiues greater than 8 were set equal to 8 to im
 prove the visualization of the ? log10(/?) values [Figs. 3(b),
 3(e), and 3(h)]. In the map of the tensor morphologies, a four
 color scheme was used to represent the four differing morpholo
 gies: blue for isotropic tensors, red for oblate tensors, yellow for
 prolate tensors, and white for nondegenerate tensors [Fig. 3(c)].

 We also superimposed the oblate voxels (in yellow) on a three
 color map of principal directions (green, inferior-superior; red,
 left-right; blue, anterior-posterior) [Fig. 3(f)].

 The ? log10(p) values of PLRT(/) (i = 1,2, 3) were more
 sensitive and specific in detecting degenerate and nondegen
 erate tensors [Figs. 3(b), 3(e), and 3(h)]. For instance, in the
 map of linear anisotropy measures [Fig. 3(d)], although red and
 white voxels had relatively large differences between k\ and
 ?2, whether the diffusion tensors represented in blue are truly
 oblate, however, is unclear. The ? log10Q?) maps of PLRT(2)
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 Table 2. Comparisons of the rejection rates for the test statistics PLRT(/) (/ = 1, 2, 3) under the single-tensor models

 Statistic: PLRT(l); D: [Dn, D22, D33] (units: 10"3 mm2/s)

 SNR

 H, (1).  [-7, .7, .7]  H$l):[.&,.&, .5]  H$l): [-9, .7, .5]

 a = .01  a = .05  a = .01  a = .05  a = .01  a = .05

 5
 10
 15
 20
 25
 30

 SNR

 .028
 .027
 .026
 .025
 .022
 .023

 .084
 .083
 .082
 .079
 .078
 .077

 .072
 .238
 .565
 .867
 .982
 .998

 .177
 .428
 .753
 .951
 .997

 1.000

 .077
 .286
 .678
 .933
 .996
 .999

 .189
 .493
 .848
 .979
 .999

 1.000

 Statistic: PLRT(2); D: [Dn,D22, D33] (units: 10"3 mm2/s)

 tf?2):[.8,.8,.5]  h[2):[.9,.1,.5]  T/^: [1.0, .55, .55]
 .01  .05  a = .01  a = .05  a  .01  of = .05

 5
 10
 15
 20
 25
 30

 SNR

 5
 10
 15
 20
 25
 30

 .019
 .017
 .014
 .015
 .013
 .014

 .063
 .062
 .057
 .061
 .056
 .057

 .017
 .055
 .166
 .348
 .565
 .761

 .060
 .151
 .344
 .562
 .771
 .905

 .033
 .274
 .754
 .975
 .999

 1.000

 .106
 .495
 .909
 .996

 1.000
 1.000

 Statistic: PLRT(3); D: [Dn,D22i D33] (units: 10~3 mm2/s)

 #0(3): [1.0, .55, .55]  ?fPM.8,.8,.5]  h[3):[.9,J,.5]
 a = .01

 .021
 .019
 .017
 .018
 .016
 .017

 a = .05

 .069
 .069
 .065
 .070
 .065
 .064

 a = .01

 .016
 .095
 .340
 .699
 .931
 .992

 ? = .05

 .062
 .231
 .574
 .873
 .984
 .999

 a = .01

 .015
 .072
 .212
 .442
 .687
 .859

 = .05

 .060
 .185
 .405
 .662
 .854
 .954

 NOTE: Six different SNRs {5, 10, 15, 20, 25, 30} and 10,000 simulated datasets were used for each case. Two significance levels, 5% and 1%, and only diagonal diffusion tensors were
 considered.

 for the oblate tensors [Fig. 3(e)], in contrast, identified many
 voxels that had large ? log10(p) values and had relatively small
 values of the linear anisotropy measure [Fig. 3(d)]. In the map
 of principal directions [Fig. 3(f)], oblate tensors occurred pri
 marily in voxels where fiber tracts cross, as well as along the
 boundaries of different tissue types.

 Tensor morphologies in a region of interest were exam
 ined to illustrate the proposed methods for tensor classification.
 The ROI [Figs. 4(a) and 4(b)] contained 900 (30 x 30) vox
 els representing diffusion tensors with differing morphologies.
 The percentage of the total that falls into each tensor group is
 as follows: 68.78% were nondegenerate, 13.78% were oblate,
 11.67% were prolate, and 5.77% were isotropic. We observed
 from a three-color map of principal directions [Fig. 4(c)] that
 three fibers oriented from left to right (red), two fibers oriented

 from inferior to superior (green), and oblate tensors (yellow
 points) were located primarily in voxels where fiber tracts cross.
 The tracking algorithm confirmed those three red fibers, two
 green fibers, and one blue fiber [Fig. 4(e)]. We further applied
 asymptotic results from Theorems 3 and 4 to a diffusion ten
 sor in a selected voxel of the ROI [the fourth ellipsoid from
 the right in the last row of Fig. 4(d)]. The three eigenvalues of

 the estimated diffusion tensor were calculated as .9631, .6722,

 and .5619 (units: 10~3 mm2/s), respectively. The p value of
 PLRT(l) is smaller than 10~8, the p value of PLRT(2) is
 10~7-27, and the p value of PLRT(3) is lO"1349. Thus, at the
 1% significance level, this tensor was classified as prolate in
 shape. Furthermore, the principal direction ei of the estimated
 diffusion tensor was calculated as either (.926, .229, .300) or
 -(.926, .229, .300). We also used (19) to construct a cone that
 approximated the distribution of the principal direction ei of
 this tensor [Fig. 4(f)], and we used (17) to construct al-a con

 fidence interval of Ai as [.9631 - .041 x Za/i, -9631 + .041 x

 After classifying the morphology of the DT at each voxel, we
 examined the histogram of mi, the plots of m\ versus mi and
 mi versus m3, and the histogram of FA for each morphologi
 cal class of tensors [Figs. 5(a)-5(p)]. For isotropic tensors, the
 histogram of m \ was skewed to the right and m \ was widely
 spread from .5 to 4.0 (units: 10-3 mm2/s) [Fig. 5(a)], whereas,
 for the other three classes of tensors, the histogram of m\ was
 bell shaped and mi was mainly distributed from .5 to 2.0 (units:
 10~3 mm2/s) [Figs. 5(e), 5(i), and 5(m); Pierpaoli et al. 1996].

 As expected, for degenerate tensors, the difference between two
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 Figure 3. Maps of invariant measures: (a) FA, (d) CL, and (g) CP; the -log10(p) value maps: (b) PLRT(l), (e) PLRT(2), and (h) PLRT(3);
 (c) map of tensor morphologies; and (f) map of principal directions at a selective slice from a single subject. Tensor morphologies in panel (c):

 white, nondegenerate; red, oblate; yellow, prolate; and blue, isotropic. Principal direction maps in panel (f): yellow, overlay indicates tensors
 having an oblate shape. The color scale in (b), (e), and (h) reflects the size of the values of ? log10(/?) with black to blue representing smaller
 values (0-1) and red to white representing larger values (1.88-8).

 consecutive eigenvalues was close to 0, even in the presence of
 the sorting bias [Figs. 5(b), 5(c), 5(f), and 5(g)]. For instance,
 the values ofm\?m2 were small for oblate tensors [Fig. 5(f)].
 For all classes of tensors, the differences between m2 and m3
 were relatively small, because all points (m2,m3) were posi
 tioned near the red line m2 = m3 [Figs. 5(c), 5(g), 5(k), and
 5(o)]. For many prolate and nondegenerate tensors, the val
 ues of m i were much larger than those of m2 [Figs. 5(j) and
 5(n)]. The histograms of the FA for all four classes of tensors
 were skewed to the right, and the median of the FA values in
 creased with the degree of anisotropy (nondegenerate > pro
 late > oblate > isotropic) [Figs. 5(d), 5(h), 5(1), and 5(p)].
 We also constructed 95% confidence intervals of the three

 eigenvalues, the true FA for nonisotropic tensors, and the true
 CL for prolate and nondegenerate tensors, and presented them
 at a selective slice of a representative subject in Figures 6(a)
 6(0). The three eigenvalues in each of the voxels containing
 cerebrospinal fluid were greater than 2.5 (10~3 mm2/s). Except
 for the voxels containing cerebrospinal fluid, m \ in most vox
 els ranged from .5 (10~3 mm2/s) to 1.5 (10~3 mm2/s) across
 the slice, whereas the second eigenvalue and the smallest eigen
 value in most of the voxels were smaller than 1.2 (10-3 mm2/s)

 [Figs. 6(a)-6(i)]. Because of the inherent sorting bias, the esti
 mated CL value was always larger than 0 for the oblate and
 isotropic tensors in probability (Thm. 2). Thus, we could not
 use the estimated CL value as a statistic to construct 95% con

 fidence intervals for the true CL (=0). However, in prolate and
 isotropic tensors, we applied the asymptotic results in Theorem
 4 to construct the 95% confidence intervals for the true CL. For

 FA in nonisotropic tensors, the delta method was used to con
 struct the 95% confidence intervals for true FA based on the

 asymptotic normality in Theorem 1(b) and a Taylor's series ex
 pansion (van der Vaart 1998; Zhu et al. 2006).

 We studied the prevalence of the four standard morphological
 classes of tensors (isotropic, oblate, prolate, and nondegenerate)
 in vivo in the seven adult brains using our statistical framework
 for the classification of tensor morphology. We determined the
 standard types of DTs using the test statistics PLRT(/) and their
 associated p values at the 1 % significance level for each of the
 three hypothesis tests. These percentages, shown in Table 3,
 were close to those obtained previously in Zhu et al. (2006).

 We calculated the means and standard deviations of eight
 quantities, including m? (/ = 1,2, 3), tr(D), CL, CP, RA, and
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 Figure 4. Maps of classified DT morphologies, (a) Within the ROI highlighted inside a black square; (b) the morphological map in the
 ROI; (c) the principal direction map within the ROI; (d) the ellipsoid map in the ROI; (e) the fiber tracts passing through the ROI; (f) the
 scatterplot of principal directions (yellow points) simulated from the first-order asymptotic expansion of ej and the estimated principal directions
 ei = ?(.926, .229, .300) (blue lines) for a selective tensor, whose ellipsoid is the fourth one from the right in the last row of (d).

 FA, within each morphological class for each subject and their
 means and standard deviations across the seven subjects. The
 cross-subject variations of these eight quantities were relatively
 small. The m,- (/ = 1,2, 3) and tr(D) in isotropic tensors were

 much larger than those in nonisotropic tensors. Because RA
 and FA were invariant measures for quantifying the difference
 among ra? (/ = 1,2, 3), the means of RA and FA increased with
 the degree of anisotropy, as expected. However, because CL
 only measured the difference between mi and m2, the means
 of CL in prolate and nondegenerate tensors were much larger
 than those in isotropic and oblate tensors. Similarly, because CP
 only measured the difference between m2 and m3, the means of
 CP in oblate and nondegenerate tensors were much larger than
 those in isotropic and prolate tensors.

 5. DISCUSSION

 We have presented a set of answers for three interrelated
 questions that are central to the statistical analysis of DTI data.
 First, we have proposed a heteroscedastic linear model to an
 alyze noise-laden diffusion-weighted MR images. To estimate
 the unknown parameter 0, we have used both theoretical re
 sults and numerical simulations to justify and support the use

 of the WLS estimate 0^ starting from #ls- We have also de
 rived an explicit form for estimating Cov(#(1)). For quantify
 ing the effects of noise on the eigenspace components of the

 DTs, we have established the asymptotic expansions and lim
 iting distributions of the estimated eigenvalues and eigenvec
 tors for both degenerate and nondegenerate tensors. Our asymp
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 Isotropie Tensors  Isotropie Tensors

 Figure 5. Maps of the histogram of mi, the plot of mi versus m2, the plot of m2 versus m3, and the histogram of FA for four morphological
 types from a single subject. Columns from left to right show the histogram of mi, the plot of mi versus m2, the plot of m2 versus m3, and the
 histogram of FA. Rows from top to bottom show isotropic [(a)-(d)], oblate [(e)-(h)], prolate [(i)-(l)], and nondegenerate tensors [(m)-(o)].

 totic results for estimated eigenvalues and eigenvectors agree
 with the results obtained using various Monte Carlo simula
 tions at relatively low to high SNRs. Finally, we have developed
 PLRT(0 to classify the morphology of DTs at each voxel as
 one of four standard types?nondegenerate, oblate, prolate, or
 isotropic. The null limiting distributions of PLRT(/) were used
 to determine rigorous statistical thresholds for the classification
 of tensor morphologies. In addition, we have demonstrated the
 effectiveness of our theoretical procedure by applying it to a
 real dataset to characterize the degree of uncertainty in the esti

 mated eigenvalues and eigenvectors at each voxel of the human
 brain in vivo.

 Our results differ substantially from those using a previous
 method (Behrens et al. 2003) and in several aspects. First, the
 previous method is a fully parametric approach that assumes
 a Gaussian distribution with homogeneous variance for the er
 ror components [see eq. (9) in Behrens et al. 2003], whereas
 ours is a semiparametric approach that allows a large class of
 distributions for the error components. The previous method is
 Bayesian and conducts statistical inference based on the pos
 terior distribution of parameters of interest, such as the largest
 eigenvalue, whereas ours is a frequentist approach that conducts
 statistical inference based on the asymptotic results (e.g., the as
 ymptotic distribution) .of the estimate and test statistic. Finally,

 the previous method estimates the probability of the existence
 of fiber tracts between any two points, whereas ours quantifies
 the effects of noise on the estimation of diffusion tensors, their

 eigenvalues and eigenvectors, and classification of tensor mor
 phologies.

 Our methods are useful for addressing other important issues
 in the field of diffusion tensor imaging. We discuss several of
 those here.

 Invariant Measures. Our results can be used to study the
 statistical properties (e.g., small-sample properties and limit
 ing distributions) of invariant measures derived from estimated
 eigenvalues and eigenvectors, including fractional anisotropy
 (Skare et al. 2000; Mori and van Zijl 2002). For instance, we
 can apply Theorems 3 and 4 to the derivation of the limit
 ing distribution of linear and planar anisotropy measures for
 both degenerate and nondegenerate tensors (Hasan et al. 2001).
 These statistical properties are useful for undertaking further
 statistical inference on the quantities derived from DTs, such as
 the calculation of their means, standard errors, and confidence

 intervals, as well as for determining rational and nonarbitrary
 thresholds for classifying the presence of anisotropy, which are
 required in tractography algorithms (Mori and van Zijl 2002;
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 Figure 6. Maps of (a)-(c) m\ and the 95% lower and upper confidence bounds of confidence intervals of k\ ; (d)-(f) m2 and the 95% lower
 and upper confidence bounds of confidence intervals of k2\ (g)-(i) m3 and the 95% lower and upper confidence bounds of confidence intervals
 of A3; (j)-(l) FA and the 95% lower and upper confidence bounds of confidence intervals of true FA for nonisotropic tensors; and (m)-(o) CL
 and the 95% lower and upper confidence bounds of confidence intervals of true CL for prolate and nondegenerate tensors at a selective slice
 from a single subject. The color scale in the first three rows reflects the size of the values of m? (1 = 1,2, 3) with black to blue representing
 smaller values (0-1.2) (units: 10~3 mm2/s) and red to white representing larger values (1.8-4) (units: 10-3 mm2/s), whereas the color scale in
 the last two rows reflects the size of the values of CL and FA with black to blue representing smaller values (0-.2) and red to white representing
 larger values (.4-1).

 Jones 2003). These statistical properties are also useful for de
 termining the minimum signal-to-noise ratio and number of
 acquisitions to discriminate accurately differences in invariant
 measures, such as FA, across fibers (e.g., in the corpus callosum
 and internal capsule).

 Acquisition Schemes. Our results can be used to study and
 select an optimal acquisition scheme, which minimizes cer
 tain design criteria (Jones, Horsfield, and Simmons 1999).

 For instance, to accurately estimate D accurately, we can use
 trfCov^1)]}, the trace of the covariance matrix of 0^\ to con
 struct a design criterion, and then we can numerically mini

 mize tr{Cov[0(1)]} by varying the number of acquisitions, b
 factors, and diffusion gradients. Furthermore, to estimate the
 principal direction of prolate and nondegenerate tensors accu
 rately, we can apply the results of (19) and (22) in Theorem 4
 to construct a design criterion, such as the trace of the covari
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 Table 3. The proportion, mean of eigenvalues, and mean of invariant measures of the DTs classified into four morphologies in seven adults
 subjects

 Per  mi mi mi,

 Tensor (%) Statistics units: 10~3 mm2/s tr(D) RA FA CL CP
 ISO 34.74 M.M. 1.424 1.287 1.159 3.859 .067 .115 .038 .073

 s.d. .100 .098 .095 .285 .005 .008 .003 .005
 3.45 M.sd. .716 .658 .614 1.960 .043 .070 .030 .056

 s.d. .051 .049 .047 .140 .004 .006 .003 .004
 OB 11.22 M.M. .993 .902 .662 2.557 .128 .215 .039 .206

 s.d. .048 .049 .053 .145 .010 .015 .003 .015
 1.21 M.sd. .383 .367 .356 1.086 .064 .102 .024 .111

 s.d. .065 .065 .062 .193 .004 .005 .002 .006
 PRO 27.88 M.M. 1.164 .750 .650 2.562 .201 .315 .174 .084

 s.d. .034 .029 .030 .088 .009 .014 .007 .006
 .48 M.sd. .476 .384 .373 1.139 .145 .193 .140 .051

 s.d. .032 .046 .045 .123 .001 .002 .001 .004
 ND 26.15 M.M. 1.074 .685 .439 2.198 .265 .415 .182 .232

 s.d. .013 .018 .022 .046 .014 .019 .011 .011
 2.93 M.sd. .234 .182 .188 .490 .118 .154 .113 .099

 s.d. .012 .021 .022 .068 .006 .004 .007 .005

 NOTE: ISO, isotropic; OB, oblate; PRO, prolate; ND, nondegenerate; M.M., mean of means; s.d., standard deviation; M.sd. mean of standard deviations; RA, rational anisotropy; FA,
 fractional anisotropy; CL, linear shape; CP, planar shape.

 anee matrix of ei, and then we can optimize the acquisition
 scheme.

 Nonparametric Bootstrapping. Although nonparametric
 bootstrapping methods have been proposed for the analysis of
 eigenvalues, eigenvectors, and their associated invariant scalar
 indices, as well as for use even in tractography algorithms, no
 asymptotic results until now have been provided to support the
 appropriate statistical use of bootstrapping methods in this con
 text (Jones 2003; Pajevic and Basser 2003; Jones and Pierpaoli
 2005; Lazar and Alexander 2005). Our results in Theorems 1^4
 may help in establishing the validity of nonparametric boot
 strapping methods in the analysis of diffusion tensor images
 (Shao and Tu 1995; sec. 1.6). We will present the asymptotic
 properties of nonparametric bootstrapping methods used for
 DTI in a separate article.

 Relevance for Fiber-Tracking Algorithms. The uncertainty
 of the principal direction within each voxel has been developed
 into a general method for making probabilistically based maps
 of fiber tracts (Parker et al. 2003), even though a valid method
 for approximating the uncertainty of the principal direction has
 not been proposed in such a framework. We have, therefore, de
 veloped a method to statistically quantify the degree of uncer
 tainty in estimating the principal direction ei within each voxel
 when the diffusion tensor is either degenerate or nondegener
 ate. Therefore, we can produce more meaningful probabilistic
 maps for fiber tracts by combining the uncertainty of the prin
 cipal direction ei with the proposed method for constructing
 probabilistic maps of fiber tracts (Parker et al. 2003).

 Spatial Normalization. Our results are also useful for
 coregistering DTI datasets across individuals. Methods for spa
 tial normalization of diffusion tensor fields have been proposed
 based on the distribution of the principal direction within each
 voxel (Xu, Mori, Shen, van Zijl, and Davatzikos 2003). These

 methods, however, use the principal directions from neighbor
 ing voxels to approximate the distribution of the principal di
 rection in a given voxel. Our results show that the distribu
 tion of the principal directions can be approximated using only
 diffusion-weighted data within the voxel itself.

 Multiple-Tensor Models. Because our findings are limited
 to a model in which only a single tensor is present within each
 voxel, future investigations should consider developing models
 that account for the presence of multiple tensors within a single
 voxel (Alexander, Barker, and Arridge 2002; Frank 2002; Tuch
 et al. 2002; Wedeen, Hagmann, Tseng, Reese, and Weisskoff
 2005). The limited spatial resolution of DW images will always
 include multiple tensors within the same voxel, and this reality

 will, therefore, always be a challenge for developing statistical
 models for tensor estimation and fiber tracking in DTI datasets.
 How to appropriately estimate the number of tensors within
 each voxel, and how to quantify the effects of noise on those
 multiple tensors and their associated eigenvalues and eigenvec
 tors, remain daunting problems.
 We hope that statistical methods will play an important role

 in addressing these and other challenges in the field of diffusion
 tensor imaging.

 APPENDIX: ASSUMPTIONS

 The following assumptions are needed to facilitate development of
 our methods, although they are not the weakest possible conditions.

 (Cl) The errors rj( are independent and sup? Er?2 < oo.
 (C2) Xmin{An)^ oo.
 (C3) 0* is an interior point of @ and sup? ?>? < oo.

 (C4) limc^oosupi E[rifl{\rn\ > C}] = 0 and inf? E[rif] > 0,
 where l(-) denotes the indicator function.

 (C5) maxi</<^ zj(An)_1z; -> 0 as n -> oo.
 (C6) sup? E[r)j] < oo.
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 (C7) Y^i^i zizJ ls always positive definite for n > 7, and the dis
 tribution of (log S\,..., log Sn) is absolutely continuous with respect
 to ^-dimensional Lebesgue measure.

 (C8) The three eigenvalues of D are distinct with probability 1.
 (C9) ^/n.Vec(D ? D) converges to a multivariate normal distribu

 tion with mean 0 and covariance matrix Yujj.
 (C10) Q,7 converges to a matrix Q, which satisfies 0 < A.min(Q) <

 1/2 ?i \P
 ^max(Q) < co, where Qn = Gn\*Bn^Gn\* and A.max(Q) denotes the
 maximum eigenvalue of Q.

 Comments. Conditions (Cl) and (C2) are sufficient and necessary
 conditions for 6^ to be strongly consistent (Lai, Robbins, and Wei
 1979; Chen, Hu, and Ying 1999). Condition (C3) is a natural condition
 to assume for diffusion tensor imaging, because the diffusion tensor is
 associated with the covariance matrix of a diffusion process and b?, the

 b factor, usually ranges from 0 to 3,000 s/mm2 (Kingsley 2006a-c).
 Conditions (C4)-(C6) are standard conditions to establish the asymp
 totic normality of 0^ for a linear heteroscedastic model (Eicker 1963;

 White 1980). Condition (C7) is similar to the condition that was used
 for the sample covariance matrix in Okamoto (1973; Anderson 2003).
 Conditions (C1)-(C7) are sufficient conditions for conditions (C8) and
 (C9). Condition (C10) is required to ensure the existence of the asymp
 totic distributions of PLRT(/).

 fReceived June 2006. Revised January 2007.]
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 Comment
 Armin Schwartzman

 1. INITIAL REMARKS

 This interesting and timely article attempts an important
 goal: to formalize the inference about diffusion tensors from
 diffusion weighted images in a single subject in the presence
 of measurement and artifact noise. The article's main contribu
 tions are:

 A heteroscedastic linear model to account for noise in

 diffusion-weighted MRI data along with theoretical sup
 port for the use of a (one-step) weighted least squares al
 gorithm to solve it.
 Asymptotic distributions of the estimated eigenstructure
 of the diffusion tensor under degenerate and nondegener
 ate cases, in addition to pseudolikelihood ratio tests for
 classifying each tensor into one of those cases.

 As the authors explain, inferences about the diffusion ten
 sor in a single subject are usually based on quantities derived
 from the tensor, the most common being scalar functions of the
 eigenvalues such as fractional anysotropy (FA) and trace, and
 the principal diffusion direction (PDD), the eigenvector corre
 sponding to the largest eigenvalue. Whereas standard statistics
 are often used to analyze the scalar quantities, formal modeling
 of the PDD is not usually seen. Perhaps this is because statis
 tical methods for unit vectors in three-dimensional space are
 not as widely known in the general scientific community, even
 though they have been studied extensively in the field of direc
 tional statistics (Mardia and Jupp 2005).

 Especially because tractography algorithms are based on the
 PDD, it is important to have a characterization of the uncer
 tainty in that vector as a result of noise. The authors provide
 this in an asymptotic sense as the number of measurements
 gets large. When the true tensor is oblate (i.e., the two largest
 eigenvalues are equal) or isotropic (i.e., all three eigenvalues are
 equal), the PDD is not defined, making the uncertainty infinite.

 Armin Schwartzman is Assistant Professor, Department of Biostatistics,
 Harvard School of Public Health and Dana-Farber Cancer Institute, Boston,
 MA 02115 (E-mail: armins@hsph.harvard.edu).

 Algorithms often deal with this problem by thresholding a func
 tion of the eigenvalues such as FA or CL (Westin et al. 2002),
 the idea being that if the tensor is not sufficiently anisotropic,
 then the PDD is not to be trusted. Instead of numerically try
 ing appropriate thresholds, the authors mathematically derive
 the uncertainty and provide formal tests to classify whether the
 tensor is isotropic, oblate, prolate, or fully anisotropic.

 A difficulty with the article is that the mathematical results
 obscure how the obtained quantities actually can be computed
 and used in practice. More specifically, theorem 1 proves the
 asymptotic normality of 0 and provides a way to estimate the
 asymptotic covariance, whereas the results of section 2.2 give
 the asymptotic distribution of the eigenstructure of the tensor as

 a function of the asymptotic covarianees E(/, Stj,,, and ?u22
 However, the results do not explain how these parameters de
 pend on the underlying true diffusion and noise parameters.
 Clearly, the asymptotic covariances depend on the acquisition
 scheme z\,... ,zn. The authors have preferred to give general
 results and to not commit themselves to particular acquisitions.

 Admittedly, general analytical expressions are difficult to ob
 tain, so a solution offered by the authors is to compute the as
 ymptotic covariances by simulation, which is what they imple
 ment in section 3. The particular acquisition used by the authors
 in their simulation consists of m = 5 baseline images with b = 0
 and n ? m = 25 directions of diffusion gradients arranged uni
 formly in three-dimensional space with b ^ 0. In this comment,
 I hope to provide some insight into the asymptotic covariance
 parameters, based on an asymptotic version of this acquisition
 scheme. Specifically, I derive analytic forms of the asymptotic
 covariances of 0 and U, Un, and Un. It turns out that these
 provide a surprising answer to the question of what is the opti
 mal ratio between the number of measurements at b = 0 versus

 the number of measurements at b ^ 0.

 ? 2007 American Statistical Association
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 DOI 10.1198/016214507000001193

This content downloaded from 
�����������152.2.176.242 on Wed, 30 Aug 2023 00:18:02 +00:00������������ 

All use subject to https://about.jstor.org/terms



 Schwartzman: Comment 1103

 2. ACQUISITION

 As the authors mention in section 5, their results can be used

 to design acquisition schemes. The key conditions for theo
 rem 1 that are affected by the acquisition scheme are (C2) and
 (C5), so it makes sense to ask when these hold. First, note
 that if bi = b constant for all / = 1,..., n, then An is not in
 vertible for any n and has an eigenvalue 0 with eigenvector
 (b, 1, 0, 0, 1,0, l)r/\/3 + b2. For this reason, it is common in

 DWI to make some measurements, say m of them, at b = 0, and
 the remaining n?m measurements at a constant value b > 0. In
 their simulation, the authors use m ? 5 and n ? m = 25. A ques
 tion that may be asked is what is a good proportion between the
 two.

 Let r be a random unit vector on the sphere and define
 x = (r2, 2r\r2, 2r\r3, r2, 2r2r3, r2)T. Let r; beiid samples from
 the distribution of r and, without loss of generality, assume
 that bi = 0 for / = 1,..., m and b? = b (constant) for / =
 m + 1, ..., n. Suppose both m,n -> oo but m/n -> y, where,
 by definition, 0 < y < 1. The strong law of large numbers
 applies because the sphere is bounded. Thus An/n -> Ay =
 E(zzT), where z is a random vector that takes the value
 (l,0,0,0,0,0,0)r with probability y and (1, -bxT)T with
 probability 1 ? y. Here Ay can be written as

 -A ->A =( 1 -^-Y)bE(xTY
 n n ~* y V -Ml - Y)E(x) (1 - y)b2E(xxT) y

 When y ? 0, Ay has a zero eigenvalue corresponding to the
 same eigenvector (b, 1,0,0, 1,0, 1)T/V3 + b2 as An. When
 y ? 1, Ay is obviously noninvertible. Therefore, a necessary
 condition for Ay to be invertible is that 0 < y < 1. That this
 is also a sufficient condition is proved next when r is uniform
 on the sphere. The principle is somehow clearer when proved
 for general dimension p (in DWI, p = 3). In addition, presen
 tation is easier if the elements of x are reordered as was done

 by Salvador et al. (2005), as follows.

 Proposition 1. Let r = (r\,..., rp)T be a random unit vector
 uniformly distributed on the (p ? 1)-dimensional sphere, and let
 x be the p(p + l)/2-dimensional vector x = (r2,..., r2 2r\r2,

 ..., 2rp-\rp)T formed by taking the p squared diagonals of r
 and then twice all p(p ? l)/2 pairs of off-diagonals of r. Then

 the matrix Ay defined by the right side of (1) is positive definite
 if and only if 0 < y < 1.

 Proof. By symmetry, all of the odd moments of r are 0. The

 relevant even moments are E(r2) = l/p, E(rf) = 3/(p(p +
 2)), and E(rfr2) = l/(p(p + 2)) for / ^ j (Mardia and Jupp

 2005, p. 186). Therefore, E(xT) = (lTp/p,0T), where lp de
 notes a vector of l's of length p and 0T fills in up to length
 p(p + l)/2. In addition,

 T 1 /2Ip + lpl? 0 \ E(xxT) =-I p p p , (2) p(p + 2)\ 0 4lp(p-i)/2j
 with inverse

 (Eixx1 )) =

 2Ip-21/,lJ/(/> + 2) 0 N
 0 Ip(p-l)/2,

 (3)

 and, interestingly, E(xT)(E(xxT))~l = (lTp,0T), so that
 E(xT)(E(xxT))~l E(x) ? 1. Replacing in (1) and using the for
 mula for the determinant of a partitioned matrix (Schott 2005,

 p. 250), we get \Ay\ = y(l ? y)b2\E(xxT)\, which is positive
 if and only if 0 < y < 1.

 Once 0 < y < 1 has been established, an asymptotically
 equivalent acquisition scheme is to sample the iid z? 's as

 _ ? ( 1, 0r)T with probability y

 1(1, ?bxJ)T with probability 1 ? y,

 where 0r fills in up to length p(p + l)/2 and the x/'s are iid
 samples of x according to the distribution of r.

 From the authors' theorem la, the rate of convergence of
 the estimate 0^ depends on the smallest eigenvalue Xm[n(An).
 The larger this eigenvalue, the faster the convergence. Because

 Ay has finite positive eigenvalues, the foregoing acquisition
 scheme with uniform r is one in which Xm\n(An) grows as
 0(n), as the authors suggest at the end of section 2.1. This is
 simulated in Figure 1 using y ? 1/6, the proportion used by the
 authors in their simulation.

 The proportion y can be chosen to maximize the asymptotic

 smallest eigenvalue A.min(AK). This is simulated in Figure 2.
 The figure shows that Xm\n(Ay) has a sharp maximum at y =
 4/9, substantially higher than 1/6.

 3. ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

 To better understand the results of the authors' section 2.2,

 explicit expressions for ?# and X?y can be obtained as follows.
 Assume that the acquisition scheme where the z/'s are iid as
 in (4). For simplicity, suppose the measurement errors are ho

 moscedastic. Appealing to the strong law of large numbers as
 before, we have

 1 1 "
 -Bn = - Vz/zf exp(2zf0) -^By = E(zzT exp(2zr#)), n n ??'

 and similarly, as stated in theorem lc, (l/n)Gn and (\/n)Fn
 converge to the same limit Fy = E(zzT exp(4zr#) x
 exp(?2zT0)a2e2) = a2By. Using Slutsky's theorem, the au
 thors' equation (5) becomes j?(6{k) - 6*) -^L N(0, ?#),
 where E0 = B~xFyB-x = a2B~\ Because 0 = (So, ?T)T
 and ? = vecs(D), assumption (C9) holds under the conditions
 of theorem 1, and X?> is equal to the 6 x 6 lower diagonal block
 of S?.

 When D is isotropic, two simplifications occur. First, V = I3,
 A = XI3, and the authors' equation (8) reads Vn = y/n(T) ?
 D) -> U. Thus Hu = X??>. Second, according to the acquisi
 tion scheme (4), z7 0 = log So with probability y and zT6 =
 log So ? brT (Al3)r = log So ? bX with probability 1 ? y ; thus

 B =S2( Y + ^-Y)e~2bX -d-y)e-2bxbE(xT)\
 y ? V -(1 - y)e~2bxbE(x) (1 - y)e~2bxb2E(xxT) ) '

 (6)

 Note that By = Sq Ay when X = 0, where Ay is as given by (1).
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 Figure 1. (a) Smallest eigenvalue km[n(An) as a function of
 the number of samples n for spatially uniform acquisition using
 y = 1/6. (b) Smallest eigenvalue km[n(An)/n. The convergence is to

 A.min(Ay) = .0373.

 0.08

 0.2 0.4 0.6 0.8

 proportion of samples at b=0

 Figure 2. Smallest eigenvalue km[n(Ay) as a function of the pro
 portion y of samples with b = 0 for spatially uniform acquisition. The
 maximum occurs at y = 4/9.

 Recall that Hjj is the lower 6x6 diagonal block of Yq =
 o2B~x. Applying the Schur inversion formula for block matri
 ces (Schott 2005, p. 247) to (6) and deleting the first row and
 first column gives

 2 / ( J7twT\\-l
 E u

 Jo

 +

 (E(xxT)Y
 S2b2\(l-y)e-2bx

 (E(xxT))-lE(x)E(xT)(E(xxT)y
 y + (1 - y)e~2bx((l - E(xT)(E(xxT))-{E(x)),

 (7)
 Expression (7) is valid for any distribution of r on the sphere

 and demonstrates the dependence on the signal-to-noise ratio
 and the advantage of using high values of b in the acquisition.

 When r is uniform, expressions (2) and (3) reduce (7) explicitly
 to

 p(p + 2)a2e2bx f2lp-Cp(y)lplTp 0 ?>u = 4S2b2(\-y) V 0 lp(p-\)/2
 with Cp(y) = 2/(p + 2) - e~2bx(l - y)/y. In particular for
 DWI (p = 3), we get

 \5a2e2bx f2l3-C3(y)l3l? 0\
 Yu = 4S2b2(l-y){ 0 I3J' (8)

 with C3{y) = 2/5 - e~2bx{\ - y)/y.
 From this calculation, we learn that when D is isotropic,

 the diagonal entries of the estimation residuals \Jn = ^/n(D ?
 ?.I3) ?> U [the covariance of which is indicated by the upper
 3x3 diagonal block in (8)] are asymptotically uncorrelated
 with the off-diagonal entries (the covariance of which is in
 dicated by the lower 3x3 diagonal block). The correlation
 between the diagonal entries of U themselves is symmetric
 with respect to those entries, as expected from the isotropy.
 In particular, the diagonal entries of U become uncorrelated
 [C3(y) = 0] when the fraction y is chosen to be equal to

 1

 Y0~ \+2e2bx/(p + 2Y
 are positively correlated when y < yo and negatively correlated
 if y > yo. Moreover, when y = yo, the diagonal entries of U
 have exactly twice the variance as the off-diagonal entries, and
 U has the distribution known in random matrix theory as the
 Gaussian orthogonal ensemble (Mehta 1991). This distribution
 has been proposed for modeling variability of diffusion tensors
 (Schwartzman 2006). Using bk = .1 as done by the authors
 gives yo = .381.

 Because the interest is usually in estimating D rather than
 So, the fraction y could be chosen to minimize the variance in
 the estimation of k as opposed to that of the vector 6. Using
 k = tr(D)/3 as the estimate of k (as the authors suggest at the
 end of sec. 2.2), we get from (8) that the asymptotic variance of
 ^Jn~(k ? k) is proportional to

 2-Cp<y) 2(p+l) e~2bx fp(y) = ?,-=, ,-..,-- +-, (9) \-y (p + 2)(l-y) y
 which is minimized at
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 Figure 3. Graph proportional to the asymptotic variance in the esti
 mation of the eigenvalues of D. The minimum occurs at y = .28.

 Again, using bX = .7 as done by the authors gives y* = .282
 (Fig. 3). This value is smaller than the optimal y obtained in
 the previous section, but the minimum is not as sharp.
 When D is not fully isotropic, the calculations are compli
 cated by the fact that they depend on the particular orientation
 in space of the anisotropic axes. However, it can be argued that
 if r is sampled uniformly, then the estimation variance should
 not depend on those axes. Then, without loss of generality, one
 may assume that F ? I3. Then again, we have that Hjj = ?#,
 and the required submatrices ?ui 1 and ?u22 can ^e ta^en as me
 appropriate submatrices of (8). Note that because of the sym
 metry, we get that in fact, Sun = ^u22- Similarly, the variance
 an in the authors' corollary 2 is equal to any one of the upper
 three diagonal entries of (8) and thus is also proportional to (9).
 Interestingly, the minimization problem in terms of y turns out
 to be the same as in the isotropic case.
 The distribution of the eigenvector matrices C, Cn, and C22
 in theorems 3 and 4 and corollaries 1 and 2 are more difficult

 to assess directly from the written densities. However, intuition
 dictates that C should be uniformly distributed on the orthogo
 nal group 0(3), whereas Cn and C22 should be uniformly dis
 tributed on the orthogonal group O (2) in the oblate and prolate
 cases. The authors did not write this observation explicitly, but
 their figures 1 and 2 support this conjecture. Figures 2(b) and

 2(f) make this clear for the oblate and prolate case. Similarly,
 the angle histogram plots in figure 1 indicate a uniform distri
 bution on the sphere, because the uniform density in spherical
 coordinates is sin(0)/(47r).

 4. SUMMARY AND FINAL REMARKS

 Using the authors' results, I have suggested a stochastic ac
 quisition scheme [eq. (4)] and derived from it analytical forms
 for the covariances ?# and S^. These formulas provide insight
 into the covariance between the entries of the estimated diffu

 sion tensor D and validate a model of variability for diffusion
 tensors proposed by Schwartzman (2006).
 In addition, using these formulas, I have calculated the opti

 mal fraction of measurements y * at b = 0 in two different ways.

 When the^objective is to optimize the rate of convergence of the
 estimate 0(k), the optimal fraction is 4/9. When the objective
 is to minimize the asymptotic variance of the estimate of the
 eigenvalues of D, the optimal fraction is .28, although this cri
 terion is less sensitive to departures of y from the optimum.
 Both values are higher than one would intuitively guess, be
 cause measurements at b = 0 do not provide information about
 D. This might be necessary to compensate for the singularity of
 the design when those measurements are not present.
 As a final remark, one issue that the authors overlook is the

 multiple-testing problem. This issue presents itself in two ways.
 First, it is present in the hierarchical testing scheme proposed in
 section 2.3. Classification of a diffusion tensor requires evalu
 ation of one, two, or three tests in a certain order, so p values

 need to be adjusted accordingly. Second, a large-scale multiple
 testing problem is present when the classification scheme is ap
 plied to the tens of thousands of voxels in the brain. Because
 of this, the marginal p values reported in Section 4 and Fig
 ure 3 are much lower than they would be were multiple testing
 corrections applied.
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 Comment
 Nicole A. Lazar

 1. INTRODUCTION

 Zhu, Zhang, Ibrahim, and Peterson (henceforth ZZIP) set an
 ambitious agenda of providing a statistical basis for understand
 ing the effect of noise on the diffusion tensors, obtained from

 Nicole A. Lazar is Associate Professor, Department of Statistics, University
 of Georgia, Athens, GA 30602 (E-mail: nlazar@stat.uga.edu).

 diffusion tensor imaging (DTI), which can be used to investi
 gate the structure of the brain. The problem arises because ex
 ploration of the neural pathways is based on classification of the
 tensors into one of four types: nondegenerate, oblate, prolate,

 ? 2007 American Statistical Association
 Journal of the American Statistical Association

 December 2007, Vol. 102, No. 480, Applications and Case Studies
 DOI 10.1198/016214507000001184
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 and isotropic. This categorization depends on the equality and
 inequality of the eigenvalues that define the tensor at each pixel.

 However in practice, as the authors show, the eigenvalues are
 always different. Furthermore, there is a "sorting bias" in that
 standard methods in the DTI literature tend to overestimate the

 largest eigenvalue and underestimate the smallest eigenvalue.
 Reliable inference regarding the diffusion patterns in the brain
 depends on the ability to detect when the eigenvalues truly are
 distinct, and, when they are, which ones differ.

 Deducing the structure of the brain, in the sense of identi
 fying the neural pathways followed when a particular cogni
 tive task is performed, goes hand in hand with the other central
 goal of neuroimaging?deducing brain function. Usually, this
 is framed as the rather crude question: "Where does activation
 take place?," although, more productively, we might ask the re
 lated question: "And how are regions of activation connected to
 each other?" This latter is a question of connectivity, and it has
 been suggested (see, e.g., Friston 1998) that in fact this is where
 the focus of functional neuroimaging should lie.

 The statistical challenge of the connectivity question is clear,
 because it involves, at some level, a notion of causality. Neu
 roscientists often would like to conclude more than simply that
 "region A and region B coactivate." Although such a finding
 might be of interest, the statement could be refined to declare
 that "region A and region B are in a connected network, so that
 the activation of one precedes the activation of the other, with
 the activation of the former potentially causing that of the lat
 ter." The problem with attempting statistical models that would
 help quantify such statements is that the temporal and/or spatial
 resolution of the data (depending on the particular functional
 imaging modality used) generally are not sufficiently high to
 support them. For instance, the temporal resolution of func
 tional magnetic resonance imaging (fMRI) is orders of mag
 nitude too slow to model the flow of activation from one re

 gion to another, let alone to infer causality. At best, then, with
 present technologies, we can hope to understand which regions
 are connected, but evidently not the mechanisms behind those
 connections.

 In this discussion, I focus on the following issues: (1) combi
 nations of modalities to help elucidate connectivity of brain net
 works; (2) visualization of complex, high-dimensional imaging
 data; and (3) distribution of the ordered eigenvalues.

 2. COMBINING MULTIPLE MODALITIES: DTI + fMRI

 The importance of understanding brain connectivity, coupled
 with the limitations of any single imaging modality, is one mo
 tivation for researchers to look at the possibilities inherent in
 combining multiple imaging modalities. Namely, by taking ad
 vantage of the strengths available from each, one can attempt
 to build a more complete picture of the neurologic processes at
 the requisite level of spatial and temporal detail. Often scientists
 will consider multiple functional imaging techniques in tandem,
 for instance, electroencephalography (EEG) and fMRI or mag
 netoencephalography (MEG) and fMRI. However, I wonder at
 the potential for combining instead a structural modality, such
 as diffusion tensor MRI, with a functional modality, such as
 fMRI. Here both techniques are based on magnetic resonance,
 and it is an intriguing possibility to ponder the power of putting
 them together.

 In general, if model-dti is the diffusion tensor model, such
 as that proposed by ZZIP (with parameter vector Odti), and
 model-fmri is the functional MRI model, which could be one

 of the many proposed in the literature (with parameter vec

 tor Ofmri), then the notion is to consider such formulations as
 response = f (Odti, Ofmri)- A number of challenges with this
 type of formulation present themselves:

 1. How to define response. DTI and fMRI measure different

 signals. These could perhaps be combined into a single
 response at each voxel; alternatively, response itself can
 be vector-valued, shifting to a multivariate setting. If the
 former approach is taken, one still has to decide how to
 combine the measured signals from the two modalities.

 2. The form of /( , ) Clearly, a wide range of models are
 available at this level; different models would place more
 or less emphasis on the structural side of the image or the
 functional. Modern nonparametric methods, such as gen
 eralized additive models, might be helpful here, although
 the size of the data sets would no doubt present difficul
 ties in computation and interpretation. Other possibilities
 would be to embed both the model-dti and the model-fmri

 in a hierarchical (Bayesian) framework, and to incorpo
 rate functional information directly into ZZIP's semipara
 metric model for DTI.

 3. Models for the correlation across voxels, necessary for a

 more complete understanding of the brain networks of in
 terest, are perforce more complicated now. Presumably,
 structure helps to dictate function at least to some ex
 tent, although I suspect that these types of correlations are

 largely unknown. How to examine the correlation struc
 ture both across and within modalities (BOLD fMRI and

 DTI) is a nontrivial problem; a detailed study of the cor
 relation structure of fMRI data alone is not easy.

 4. Visualization of results. ZZIP have some interesting
 graphics describing the distribution of tensor types in the

 brain, as well as the pathways deduced from their infer
 ential approach. Building in inference regarding function
 adds a dynamic aspect to the problem?function evolv
 ing and changing over time?and good graphical repre
 sentations become even more important. I am an advo
 cate of "statistical movies" in which the model(s) and
 its (their) estimates are plotted along some index (e.g.,
 time, Markov chain Monte Carlo run, iteration of EM al

 gorithm, as appropriate). Such visual inferential tools are
 underdeveloped in the neuroimaging community; a model

 which combines analyses of structure and dynamic func
 tion seems like an ideal testing ground for these ideas.

 Despite the difficulties, it is evident that a model that uses
 both structural information on neural pathways and functional
 information on neuronal activity in response to particular stim

 uli should yield valuable insight into the crucial question of
 connectivity. A dynamic component seems to be needed here,
 so I imagine that one would need to shy away from the stan
 dard analyses of fMRI data, which summarize an experiment in
 a static statistical parametric map.
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 3. VISUALIZATION OF IMAGING DATA

 Expanding on the last of the points listed in the preceding
 section, good, effective graphics are an essential part of un
 derstanding a sophisticated analysis, such as that suggested by
 ZZIR I particularly like the authors' figure 4(d) of the ellipsoid
 distribution in the region of interest, which presents a simple,
 yet rather elegant representation of the results. Due to its sim
 plicity, one could even "layer" other pieces of information on
 top of it or within it?some notion of standard error, for ex
 ample. Different shades of colors or different-sized ellipsoids
 or side-by-side plots of ellipsoid estimates with standard er
 rors, could be used for this purpose. This would be a variant of
 the authors' figure 6, which gives lower and upper "confidence
 brains" for some of the measures that ZZIP explore.
 In terms of dynamic visualization, I can think of several po
 tentially useful possibilities. For instance, one could plot the
 pathways determined by the DTI model, as in the authors' fig
 ure 4, and overlay on these the measured fMRI signal or some
 model of the fMRI signal at each time point. Alternatively, one
 could plot the signal only for that group of voxels detected as
 active by some measure, again over time or even statically. If we
 embed model-dti and model-fmri in a hierarchical framework,

 as conceptualized in the previous section, then the analysis path
 will dictate appropriate graphical representations; for example,
 a Bayesian analysis will admit plotting posterior probabilities
 (jointly or marginally) of activation and the various tensor mor
 phologies.
 Plotting structure and function together raises a multitude of
 other questions, for instance:

 Do the voxels that are declared active by the fMRI model
 line up at all with the pathways detected by the DTI

 model?
 Are clusters of active voxels "linked" by the diffusion ten
 sors?

 Do these links change over time, and if so, how?
 Is one type of tensor morphology more related to func
 tional activation than others?

 What do these connections tell us about the functional con

 nectivity in the brain?

 Good visualization tools also are critical for comparing and
 contrasting the results from multiple slices of the brain and mul
 tiple subjects, particularly the latter. It is quite common when
 reporting on the results of a functional neuroimaging analysis
 to show a "representative" slice or subject, yet how much more
 convincing would it be to show summary graphics for multi
 ple subjects, for example. This opens up a whole new array of
 questions, such as:

 How much variability is there in the pathways detected by
 model-dti?
 Do different subjects show the same patterns of tensor
 morphologies?
 Are some paths present for all, or nearly all, of the sub
 jects?
 Do these correspond to stronger or more consistent activa
 tion across subjects from model-fmri?

 How consistent are the connected networks from subject
 to subject?

 Cognitive neuroscientists are obviously interested in making
 general statements about groups of subjects; effective visualiza
 tion can be one tool for making these statements. I have done
 some work on combining the results from individual subject

 maps into group maps (Lazar, Luna, Sweeney, and Eddy 2002),
 but there remain many important issues to explore and develop.

 4. DISTRIBUTION OF ORDERED EIGENVALUES

 A basic element of ZZIP's approach is to use the (ordered)
 eigenvalues in the decision on how to classify the diffusion ten
 sor observed at each voxel. But, as they observe, there are three
 crucial difficulties with this approach. First, the eigenvalues will
 always be different from one another in any of the real DTI
 data sets in question; because several of the tensor classes are
 defined through equality of particular eigenvalues, this is prob
 lematic and leads to a question of statistical inference, namely:
 "How different is different?" The sorting bias mentioned ear
 lier makes this determination harder. These problems lead to
 the final difficulty?the distribution of the ordered eigenvalues
 is hard to derive, and thus the inferential question is difficult to
 address.

 ZZIP tackle the problem by building a model within which
 the distribution of the eigenvalues can be approximated; this
 also allows them to construct a sequence of hypothesis tests
 that yields the required classification at each pixel. They men
 tion early that the bootstrap does not yield satisfactory results
 for this problem, but do not give much detail. Efron and Tib
 shirani (1993) provided a general discussion of bootstrap for
 the evaluation of eigenvalues; however, they did not explicitly

 mention the sorting bias.
 To explore the performance of the bootstrap and the impor

 tance of the sorting bias more closely, I looked at a simple
 isotropic case. Namely, I generated three independent Normal
 samples of size n = 50, each with mean 0 and variance 4. This
 can be considered a random sample from N3(0, 4 * /), a spher
 ical distribution.

 Next, I considered two naive nonparametric bootstrap
 schemes, what I call "cases" and "units." In the "cases" scheme,

 the three samples were treated as 3 measurements on 50 indi
 viduals, and indices were sampled with replacement from inte
 gers 1-50. If, for example, the index "23" was chosen, then the
 23rd observation from each of the 3 samples was included in the
 bootstrap resample. In the "units" scheme, each of the 150 data
 points (50 in each of the 3 original samples) was considered
 a separate unit, and these were the candidates for resampling;
 thus indices were sampled with replacement from the integers
 1-150. The resampled units were then arranged in an array that
 reproduced the structure of the original data matrix. Evidently
 the cases scheme is the more realistic one for our purposes, be
 cause it mimics the situation in which multiple measurements
 are available for each observation. Finally, I obtained the eigen
 values of the covariance and correlation matrices of each boot

 strap resample under each of the two schemes. I examined the
 isotropic case, because this was the best test bed for assessing
 the severity of the sorting bias (with the smallest eigenvalue
 underestimated and the largest overestimated). Any scenario
 in which some of the eigenvalues are postulated a priori to be
 distinct should be easier to handle.
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 Bootstrap distributions, Scheme 1 :
 Eigenvalues of correlation matrix

 JL 0.0 0.5 1.0 1.5 2.0

 largest eigenvalue

 0.0 0.5 1.0 1.5 2.0

 second eigenvalue

 A. 0.5 1.0 1.5

 smallest eigenvalue

 Figure 1. Bootstrap distributions for each ordered eigenvalue, case-based resampling scheme. The left column shows the eigenvalues for the
 covariance matrix of the samples; the right column shows those for the correlation matrix.

 I now present some results graphically. Figure 1 shows the
 distribution for each of the eigenvalues separately, using the
 case-based resampling scheme; Figures 2 and 3 show the boot
 strap distributions of all three eigenvalues, along with the true
 values (denoted by "e") and the bootstrap means (denoted by
 "b"), for the covariance and correlation matrices. Figures 4, 5,
 and 6 show the same for the unit-based resampling. As can
 be seen, the sorting bias is a particularly serious problem for
 the case-based resampling: the means of the sorted eigenval
 ues are more extreme than the true values for both the covari

 n-1-1-1-1-1-r
 0 2 4 6 8 10 12

 eigenvalue

 Figure 2. Bootstrap distribution (Scheme 1) for the eigenvalues of
 the covariance matrix, case-based resampling scheme. Here "b" in
 dicates the bootstrap mean, and "e" is the eigenvalue in the original
 sample.

 anee and correlation matrices, and these are themselves already
 subject to a sorting bias. In other words, the case-based boot
 strap exacerbates the bias. On the other hand, unit-based re
 sampling appears to have a shrinkage effect. Indeed, for both
 sets of eigenvalues (covariance matrix and correlation matrix),
 the means of the sorted eigenvalues are less extreme than the
 true values. There is considerably more overlap of the boot
 strap distributions for the unit-based bootstrap, another indica
 tion that the estimation bias is not as severe in this scheme.

 Table 1 gives the actual eigenvalues for the two matrices, along

 eigenvalue

 Figure 3. Bootstrap distribution (Scheme 1) for the eigenvalues of
 the correlation matrix, case-based resampling scheme. Here "b" in
 dicates the bootstrap mean, and "e" is the eigenvalue in the original
 sample.
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 Bootstrap distributions, Scheme 2:
 Eigenvalues of covariance matrix

 4 6

 largest eigenvalue

 2 4 6

 second eigenvalue
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 smallest eigenvalue

 Bootstrap distributions, Scheme 2:
 Eigenvalues of correlation matrix

 4 JIIIIIL^_
 0.0 0.5 1.0 1.5 2.0

 largest eigenvalue

 0.0 0.5 1.0 1.5 2.0

 second eigenvalue

 0.5 1.0 1.5

 smallest eigenvalue

 Figure 4. Bootstrap distributions for each ordered eigenvalue, unit-based resampling scheme. The left column shows the eigenvalues for the
 covariance matrix of the samples; the right column shows those for the correlation matrix.

 with the bootstrap estimates from the case-based and unit-based
 analyses.

 5. CONCLUSION

 Mathematicians, statisticians, computer scientists, and engi
 neers have had much to say about brain science, particularly
 over the last two decades as imaging techniques have flourished
 and advanced. However, the need continues for sophisticated,
 realistic models that effectively use the information available
 from the data. Although progress has been made, there remains

 n-1-1-r
 2 4 6 8

 eigenvalue

 Figure 5. Bootstrap distribution (Scheme 2) for the eigenvalues of
 the covariance matrix, unit-based resampling scheme. Here "b" indi
 cates the bootstrap mean, and "e" is the eigenvalue in the original sam
 ple.

 room for improvement. The authors have made a valuable con
 tribution to the important problems of discovering and under
 standing the neural pathways of the brain. Knowledge of these
 systems is critical for modeling connectivity between function

 ing brain regions. As in any rich field of research, one question
 leads to another; even a partial solution brings us that much
 closer to some of the answers that have been eluding scientists
 for decades, while at the same time stimulating more questions

 for future investigators to ponder. I congratulate the authors on

 i i r
 0.5 1.0 1.5

 eigenvalue

 Figure 6. Bootstrap distribution (Scheme 2) for the eigenvalues of
 the correlation matrix, unit-based resampling scheme. Here "b" indi
 cates the bootstrap mean, and "e" is the eigenvalue in the original sam
 ple.
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 Table 1. True eigenvalues and bootstrap estimates based on
 resampling cases or units

 Covariance Correlation

 ?] ? 2 A3 k\ k2 A3
 True 6.357 3.961 2.509 1.353 1.001 .645
 Case mean 6.438 3.853 2.257 1.401 .985 .615
 Unit mean 5.484 4.163 3.059 1.218 .995 .786

 NOTE: The case-based scheme results in eigenvalue estimates that are even more extreme
 than the true values, an exacerbated sorting bias. The unit-based resampling ameliorates
 the bias problem to a limited extent: the first eigenvalue is still overestimated and the third
 is still underestimated, but the bias is not as large.

 an article that presents both possible solutions and stimulus for
 research in new directions.

 ADDITIONAL REFERENCES

 Efron, B.. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, Boca
 Raton. FL: Chapman & Hall/ CRC.

 Friston. K. J. (1998), "Imaging Neuroscience: Principles or Maps?'1 Proceed
 ings of the National Academy of Sciences USA, 95, 796-802.

 Lazar. N. A., Luna. B.. Sweeney. J. A., and Eddy. W. F. (2002). "Combining
 Brains: A Survey of Methods for Statistical Pooling of Information," Neu
 rolmage, 16.538-550.

 Rejoinder
 Hongtu Zhu, Heping Zhang, Joseph G. Ibrahim, and Bradley S. Peterson

 1. RESPONSE TO DR. SCHWARTZMAN

 Dr. Schwartzman presented several interesting findings on
 the acquisition and asymptotic distributions of eigenvalues and
 eigenvectors. Specifically, he developed a stochastic acquisi
 tion scheme and derived the analytical forms of the covari
 ance matrices E# and ??y. Based on these theoretical re
 sults, he obtained an optimal ratio for y and showed that
 y > 0 is a necessary condition to ensure the validity of our
 theorems 1-5. He also noted that for an isotropic tensor, C
 should be distributed uniformly on the orthogonal group 0(3)
 [figs. 1(c) and 1(d)], whereas similar observations should be
 valid for Ci i for the oblate tensor and for C22 for the prolate
 tensor [figs. 2(b) and 2(c)].

 Our results in theorem 1 can be used not only to choose
 the optimal ratio y, but also to select an optimal acqui
 sition scheme, including gradient directions and strengths
 of the diffusion gradients (Jones, Horsfield, and Simmons
 1999). To accurately estimate D and its associated measures
 (e.g., eigenvalues and eigenvectors), we can use tr{cov[0]} =
 tr{[Bn(0)]~l Fn(0)[Bn(0)]~1} to construct a design criterion.
 But, because Fn(0) involves the variance of background noise
 and this is unknown at the design stage, using tr(cov[#]} as a
 design criterion is not tractable. Instead, we suggest minimiz

 ing tr{[Bn(0)r1} directly. Letting z] = (l,xf ), Bn(0) can be
 written as Bu(0) ? S^ YH=\ zizJ exp(2x? ?). Because So is the
 signal intensity at baseline and because our interest is primarily

 Hongtu Zhu is Associate Professor of Biostatistics, Department of Biosta
 tistics and Biom?dical Research Imaging Center, University of North Carolina,
 Chapel Hill. NC 27599-7420 (E-mail: liz.hu@bios.unc.edu). Heping Zhang is
 Professor of Biostatistics, Department of Epidemiology and Public Health,
 Yale University School of Medicine. New Haven. CT 06520-8034 (E-mail:
 heping.z.hang@yale.edu). Joseph G. Ibrahim is Alumni Distinguished Pro
 fessor of Biostatistics. Department of Biostatistics, University of North Car
 olina, Chapel Hill. NC 27599-7420 (E-mail: ibrahim@bios.unc.edu). Bradley
 S. Peterson is Professor of Psychiatry. Department of Psychiatry. Columbia
 University Medical Center and the New York State Psychiatric Institute,
 1051 Riverside Drive, Unit 74, New York, NY 10032 (E-mail: petersob@
 childpsych.coluinbia.edu). We thank the editor for organizing the discussion
 of our article and the discussants for their stimulating comments and insightful
 contributions to this work.

 in the diffusion tensor, So can be dropped. Therefore, for n ac
 quisitions, and for a given diffusion tensor Dor^we minimize

 C(b,r|)8)=tr  ?z/zfexp(2xf)8)
 i = \

 (1)

 where b = (b\,..., b?) and r = (ri,..., r?). If we have a set
 of diffusion tensors {?k: : k ? 1, ..., Kq} from several regions of
 interest, then we can calculate the optimal (b, r) by solving

 *o

 (bopf, ropt) = argmin ^ C(b, r\?k). (2) ^r) k=\

 Moreover, because the gradient strengths b\ are determined by
 the parameters of the pulse sequence, such as the pulse separa
 tion time A, echo time (TE), and pulse duration 8 (Alexander
 and Barker 2005), we can incorporate these parameters into (2),
 and then optimize the pulse sequence parameters and the gradi
 ent directions simultaneously. Thus we have a general method
 for determining the optimal acquisition scheme.

 Two important issues pertaining to (2) are worth noting. The
 first issue is the importance of selecting the set of diffusion ten
 sors in (2), which may be extracted from either the existing
 diffusion tensor data or specific ROIs. The second issue is to
 numerically find the optimal solution of (2), for which we can
 use optimization methods, such as simulated annealing, conju
 gate gradient methods, quasi-Newton methods, and genetic al
 gorithms (Kirkpatrick, Gelatt, and Vecchi 1983; Mitchell 1996).

 We omit here the details of how to solve these two issues, de

 ferring them for presentation elsewhere.
 We conducted Monte Carlo simulations to compare the es

 timated DTI measures under two different imaging acquisi
 tion schemes, which we term traditional and optimal. Each of
 these acquisition schemes consisted of m = 3 baseline images,
 in which b ? 0 s/mm~, and n ? m = 12 images, in which

 ? 2007 American Statistical Association
 Journal of the American Statistical Association

 December 2007, Vol. 102, No. 480, Applications and Case Studies
 DOI 10.1198/016214507000001201
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 Table 2. Comparisons of the acquisition schemes

 True  1.7
 X2
 .2

 ^3
 .2

 RA
 .7143

 FA
 .8704

 arceos |(ei, vj)|
 .0  SNR

 Traditional acquisition: MM (SD)
 1.6469(429) -3778(223)
 1.7294(".277) 2973U12)
 1.7129(.i80) -2685(.075)
 1.7071(.130) 2522(.o56)
 1.7050(.103) 2417(.o44)
 1.7035(.o86) -2366(.o37)

 Optimal acquisition: Mean (SD)
 1.7477(.529) .3691(.226)
 1.7217(.234) .2959(.108)
 1.7081(.150) .2655(.o7i)
 1.7031 (.ii2) .2494(.o53)
 1.7032(.o89) 2403(.o42)
 1.7019(.o75) 2344(.o35)

 0486(.198)
 0706(.uo)
 T 166(073)
 1377(055)
 .1519(.043)
 .1602 (.036)

 (.193) 0478

 0843(099)
 1253(<o67)
 1445(.o50)
 1555(.041)
 1640(.o34)

 8187(.307)
 7473(.i23)
 7292(.o8i)
 7237(060)
 7203(048)
 7178(.o39)

 .8261(299)
 7401(.ni)
 7256(.o73)
 7210(.o55)
 7189(.043)
 7167(<o36)

 .8928(.i24)
 8809(.069)
 8753(.o47)
 8738(.o35)
 8726(>028)
 8715(.024)

 ->(.122)

 8781(.064)
 8738(.o43)
 8725(.o33)
 8720(026)
 8710(.022)

 .2560,
 .1298
 .0875
 .0651
 .0520
 .0434

 '(.149)
 (.070)
 (.049)
 (.036)
 '(.029)
 (.024)

 2210(.i42)
 1009(.o53)
 0666(035)
 0496(.o26)
 0400(.o2i)
 .0331 (.on)

 5
 10
 15
 20
 25
 30

 5
 10
 15
 20
 25
 30

 NOTE: Six different SNRs {5, 10, 15, 20, 25, 30} and 10,000 simulated data sets were used for each case. Estimated eigenvalues, RA, FA, and arceos |(e], \\)\ were calculated. MM
 denotes the mean of means, and SD denotes the standard deviation.

 b = 1,000 s/mm2. At b = 1,000 s/mm2, the traditional ac
 quisition involved 12 directions of diffusion gradients arranged
 uniformly in three-dimensional space, whereas the optimal ac
 quisition consisted of 12 gradient directions that were the so
 lution of (2) when D = diag(1.7, .2, .2). Six different Signal to

 Noise Ratios (SNRs) {5, 10, 15,20,25,30} were selected for
 all Monte Carlo simulations. For the given diffusion-tensor at
 each SNR and acquisition scheme, 10,000 diffusion-weighted
 data sets were generated. The weighted least squares estimates
 0^{\ their eigenvalue-eigenvector pairs, RA and FA values,
 and arceos |(ei, vi)|, where vi is the true principal direction
 V] = (1, 0, 0)r, were calculated. Compared with the traditional
 acquisition, the optimal acquisition leads to smaller biases and
 smaller standard deviations for most of the calculated DTI mea

 sures, at all SNRs (Table 1). In particular, the principal direc
 tions estimated from the optimal acquisition are much closer
 to the true principal direction at all SNRs than those estimated
 from the traditional acquisition.

 We agree in part with Dr. Schwartzman concerning the issue
 of multiple comparisons. Because three tests are performed on
 individual voxels, we could correct for multiple comparisons
 at each voxel by choosing a relatively small significance level.
 However, the problem of multiple comparisons over the entire
 cerebrum is not a central one for us, because we are not com

 paring voxels across the human brain simultaneously. Rather,
 our classification of tensor morphologies is a clustering method.

 We are primarily interested in determining the shape of the dif
 fusion tensor at each voxel of the image to enhance the tracking
 of fiber pathways. The question here is "Is this voxel degener
 ate?," not "Are there any degenerate voxels in the image?"

 2. RESPONSE TO DR. LAZAR

 Dr. Lazar presented three very important issues in the analy
 sis of DTI data sets. The first of these is the combination of

 DTI data with other imaging modalities, including functional
 magnetic resonance imaging (fMRI) and electroencephalog
 raphy (EEG), to identify and understand the neural networks
 of interacting brain regions. In various neuroimaging studies,

 fMRI has been widely used to investigate how various brain re
 gions functionally couple together and how they change their
 level of activation in response to specific stimuli and behavioral
 tasks. Recent fMRI studies have established that low-frequency
 (<.08 Hz) physiological fluctuations are temporally correlated
 between functionally related areas, such as motor, auditory, and
 visual cortices, likely reflecting the connectivity of those re
 gions (Lowe, Mock, and Sorenson 1998). Although various an
 alytical methods, such as independent component analysis, are
 improving rapidly (Rogers, Morgan, Newton, and Gore 2007),

 measuring the low-frequency correlations in fMRI data remains
 a challenging task (Lowe et al. 1998). Nevertheless, using a
 map of regions that are functionally connected together with
 DTI data may provide a direct measurement of the degree to
 which fiber tracts anatomically connecting those regions that
 are presumably "functionally connected." We agree that even
 tually combing DTI data with fMRI data may improve our
 understanding of the relationship between brain function and
 its structure (Kim and Kim 2005; Schonberg, Pianka, Hendler,
 Pasternak, and Assaf 2006).

 Dr. Lazar suggested a generic model for analytically combin
 ing DTI and fMRI data as follows:

 response = f (0dti, 0fmri), (3)

 where ddti is a map from the high-dimensional diffusion
 weighted images to summary data, such as fiber tracts; fymn
 is a map from the massive functional images to summary data;

 and /( , ) is a map for combining Odti and Ofind- Thus we have
 a hierarchical model from the raw DW and functional images
 at the bottom most level to the response variable at the top most
 level. We believe that this "response" should be a summary
 scalar or vector related to a specific scientific question, which
 should be formulated as a test of the equality/inequality of spe
 cific parameters/functions.

 This hierarchical model (3) may be applied at both the sub
 ject and population levels. For instance, suppose that the ques
 tion of interest is to investigate how a neural network, one that
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 permits interaction across several particular brain regions, dif
 fers across subjects or populations. Thus, for any subject, "re
 sponse' may be defined as the degree of connectedness among
 each of the various regions within the neural network, 6^ may
 be defined as the probability of the fiber tracts connecting those

 brain regions, 0fmr? may be defined as the path diagrams es
 tablished by using some statistical methods such as Granger
 causality (Goebel, Roebroeck, Kim, and Formisano 2003; Roe
 broeck, Formisano, and Goebel 2005), and /( , ) may be a
 parametric/nonparametric function. Furthermore, we may in
 corporate some covariates of interest (e.g., age, gender) into (3)
 and develop a general model for the relationship of structural
 and functional connections as

 response = / {6dn, 0fmri, x), (4)

 where x denotes a vector of covariates, such as age, gender,
 or diagnostic status. Furthermore, we need to develop compu
 tational algorithms for estimating the unknown parameters in
 (4) and to develop rigorous procedures for statistical inference,
 such as test statistics, to address specific hypotheses about the
 relationship of structural with functional connectivity.
 We agree wholeheartedly with Dr. Lazar's comments on the

 importance of developing effective techniques of visualization
 for understanding the effects of any imaging analytic proce
 dures. Tools for visualizing neuroimaging data can be imple
 mented in at least two ways. The first of these is to plot a bio
 logical measurement of interest, which is typically represented
 by an intensity value, a vector, or a matrix, such as a diffusion
 tensor, at each voxel of the image. Representing a long vector
 or a large matrix in a single voxel can be extremely difficult.
 Furthermore, we need to represent these biological measures
 of interest at multiple voxels of each brain (often at hundreds
 of thousands of voxels). Although plotting univariate measure
 ments in all voxels for each slice of an image is relatively
 simple, displaying multivariate imaging measurements together
 across multiple voxels [fig. 4(d)] is largely underdeveloped. The
 second way is to display imaging data from multiple biological
 measures from multiple individuals across multiple modalities.
 This display can be used to, for example, map brain variability
 across human populations, growth rates of brain tumors, and
 loss of brain tissue in patients with various neuropsychiatrie
 diseases (Gogtay et al. 2004; Jones 2004). For any formal data
 analysis, effective graphics are critical for imaging scientists to
 understand the imaging data at hand, to model inherent noise in
 the data, and to develop sophisticated models and methods of
 statistical inference. Analyzing the high-dimensional and com
 plex imaging data sets requires methodological development
 across multiple disciplines, including mathematics, statistics,
 physics, computer science, and neuroscience.

 Dr. Lazar emphasized the importance of classifying ten
 sor morphologies, which we partially addressed in our
 article, along with the difficulty of addressing inferential ques
 tions, such as the distributions of eigenvalues and eigen
 vectors, because of the presence of "sorting" bias. She also
 explored the performance of two nonparametric bootstrap
 methods (cases and units) under the presence of sorting bias.
 Her results clearly showed that the sorting bias truly influ
 enced both bootstrap methods, although the unit-based boot
 strap method seemed to perform better than the case-based one.

 She also pointed out our claims regarding the unsatisfactory
 results using bootstrap methods.
 We would like to clarify why some bootstrap methods can

 not avoid the sorting bias problem when characterizing the dis
 tributions of DT-related quantities (e.g., eigenvalues and eigen
 vectors). Bootstrapping methods, including repetition bootstrap
 and wild bootstrap, have recently received much attention in the
 DTI literature, because they may quantify numerically the ef
 fects of noise on the eigenvalues and eigenvectors as well as on
 the fidelity of fiber tracking (Pajevic and Basser 2003; Basser
 and Jones 2002; Whitcher, Tuch, Wisco, Sorenson, and Wang
 2007; Chung, Lu, and Henry 2006; Lazar and Alexander 2005).
 Our results, however, showed that some bootstrapping methods,
 including the wild bootstrap, are invalid for degenerate tensors.
 We show here only that the wild bootstrap fails to character

 ize the distribution of eigenvalues for isotropic tensors, but we
 will present the detailed derivations for all degenerate tensors
 elsewhere. For simplicity, we consider only the least squares es
 timator 6ls and its associated DT, t>is- According to theorems
 1 and 3, we can show that

 \Jn=Vn~(f>LS-kI3)^L\J
 and

 Hn -> Hls,

 where vecs(U) ~ N(0, T>ls) and His is a random variable, and
 its density p(h) is given by

 / (h\ -h2)(h2-h3)(hi -h3)

 x expj ? vecSvC^H^C)7^1 vecs(CrHL5C) dC.
 We generate a wild bootstrap sample {(?*, z/) : i = 1,..., n) as
 follows (Zhu et al. 2007):

 log(5;) = zf?L5 + fl/g/e?, (5)

 where at = 1/[1 - zf (?"=i z^zp^z/], st = logS/ - zj6LS
 and e* are independently and identically distributed as =b 1 with
 equal probability. After some calculations, we can show that

 In \ ? 1 n

 ?*s= y>zn y>iog(s*)
 v/=i / ;=i

 = qls + \^2zizI) YlZia i8i8i ,
 \i = l / i = \

 Thus, using the large-sample theorem of van der Vaart and
 Wellner (1996; secs. 2.9 and 3.6), we can prove that conditional
 on the data {(5/, z/) : / = 1,..., ?},

 \J* = ^n-(i>ls-DLS)^L\J,

 where D^ is the DT of 0^. Let ?* = PwUjP?r and DLS =
 PfJ An Pn denotes the spectral decomposition of D?s with A? =
 diag(T/r(D?s)), where \?/(M) denotes the vector of ordered
 eigenvalues of a matrix M. Finally, using theorems 4.1 and 4.2
 of Eaton and Tyler (1991), we can show that

 ^00 - {V(U7: + A?) - V(A?)} ^L 0, (6)
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 where An = y/?(An ? A.I3). Then, following the arguments of
 Eaton and Tyler (1991), we establish the proof of inconsistency
 of the wild bootstrap for isotropic tensors.
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