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1.  INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a nonin-

vasive and comprehensive method of assessing functional 

organizations of the human brain. By measuring blood 

oxygen level dependent (BOLD) signal changes, fMRI can 

map complex brain functions and estimate neural correla-

tions between different brain regions (Power et al., 2011). 

When the subject is performing a specific task, fMRI can 
detect brain signals and regions that link to the task 
(Ogawa et al., 1990), which is known as task-evoked fMRI. 
As an alternative, resting-state fMRI can observe brain sig-
nals during rest and measure intrinsic functional organiza-
tion without performing any tasks (Biswal et  al., 1995). 
Both task-evoked and resting-state fMRIs have been 
widely used in clinical and epidemiological neuroscience 
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research to explore the relationship between inter-individual 
variations in brain function and human traits. For example, 
resting-state functional abnormalities are frequently 
observed in neurological and psychiatric disorders, such 
as Alzheimer's disease (Agosta et  al., 2012), attention-
deficit/hyperactivity disorder (ADHD) (Posner et al., 2014), 
schizophrenia (Hu et al., 2017), and major depressive dis-
order (MDD) (Mulders et  al., 2015). fMRI has also been 
used to identify the influence of multi-system diseases and 
complex traits, such as diabetes (Macpherson et al., 2017), 
alcohol consumption (Ewing et  al., 2014), and dietary 
behaviors (Zhao et al., 2017), on brain functions.

A major limitation of most fMRI association studies has 
been their small sample size, which is usually less than 
one hundred or a few hundreds. As functional connectiv-
ity measures may be noisy and have large intra-subject 
variations (Elliott et al., 2020), it may be difficult to repli-
cate fMRI-trait associations found in small studies (Marek 
et al., 2022). This problem can be resolved statistically by 
increasing the sample size of fMRI studies, which can 
detect weaker signals and reduce the uncertainty of the 
results. For example, Marek et  al. (2022) showed that 
when the sample size is larger than 2,000, brain-behavioral 
phenotype associations can become more reproducible. 
However, the high assessment costs of fMRI may make 
it difficult to increase sample sizes sufficiently to collect 
the necessary data in every study. In the last few years, 
several large-scale fMRI datasets involving over 10,000 
subjects have become publicly available, including the 
Adolescent Brain Cognitive Development (Chaarani et al., 
2021) (ABCD), the Chinese Imaging Genetics (CHIMGEN) 
(Xu et al., 2020), and the UK Biobank (Miller et al., 2016) 
(UKB). Particularly, the UKB study collected a rich variety 
of human traits and disease variables (Bycroft et  al., 
2018), providing the opportunity to discover and validate 
fMRI-trait associations in a large-scale cohort.

Based on fMRI data from more than 40,000 subjects in 
the UKB study, we investigated resting-state and task-
evoked functional organizations and their associations 
with human traits and health outcomes. By processing 
raw fMRI images from the UKB study, we represented the 
brain as a functional network containing 360 brain areas 
in a parcellation (Glasser et  al., 2016) developed using 
the Human Connectome Project (Van Essen et al., 2013) 
(HCP) data (referred to as the Glasser360 atlas, Fig.  1, 
Fig.  S1, and Table  S1). The Glasser360 atlas contained 
64,620 (360 × 359/2) full correlation measures to represent 
the functional connections among 360 brain areas in 12 
functional networks (Ji et al., 2019): the primary visual, sec-
ondary visual, auditory, somatomotor, cingulo-opercular, 

default mode, dorsal attention, frontoparietal, language, 
posterior multimodal, ventral multimodal, and orbito-
affective networks. Compared to the functional connec-
tome data provided by the UKB study, which were 
generated from whole brain spatial independent compo-
nent analysis (ICA) (Alfaro-Almagro et al., 2018; Beckmann 
& Smith, 2004; Hyvarinen, 1999), the parcellation-based 
approach (like Glasser360) can provide more fine-grained 
details of brain functional organizations.

We explored brain-trait associations by performing a 
systematic analysis with 647 traits and diseases (selected 
to represent a wide range of traits and health conditions) 
using a discovery-validation design. Functional brain 
regions and networks were found to be strongly associ-
ated with a range of disorders and complex traits. In 
order to evaluate how the choice of parcellation may 
impact our results, we additionally applied another par-
cellation (Schaefer et  al., 2018) on the same datasets, 
which divided the brain into 200 regions, referred to as 
the Schaefer200 atlas (Fig. S2 and Table S2). We found 
that the two parcellations can yield similar conclusions 
and patterns, whereas the Glasser360 atlas can provide 
more biological insights due to its finer partitioning. We 
also explored the differences between resting-state and 
task-evoked functional organizations, as well as age- and 
sex-related effects. Numerous studies have investigated 
the impacts of age and sex disparities on brain structures 
and functions. However, the specific locations and pat-
terns of these identified differences can vary across stud-
ies (Ritchie et  al., 2018; Scheinost et  al., 2015). By 
leveraging parcellation-based data from the comprehen-
sive UKB study, our aim is to provide a more in-depth 
exploration of differences in resting-state functional con-
nectivity and their correlations with age and sex.

In order to facilitate the exploration of our extensive 
results obtained from large-scale fMRI data, we have 
developed an interactive browser tool, accessible at http://
fmriatlas​.org/. This tool acts as a gateway for users to nav-
igate and delve deeper into our research findings. While 
we will highlight several pivotal discoveries in the forth-
coming sections of the main body, we urge readers to con-
sult the Supplementary Materials and utilize our online tool 
for a more comprehensive understanding and discovery of 
additional patterns. It is worth noting that our bioinformat-
ics resource will be regularly updated and broadened to 
include new findings and data. Future updates will encom-
pass integration with new brain parcellations, alternative 
data processing pipelines, and the addition of future 
large-scale fMRI datasets. These improvements will fur-
ther augment the tool's functionality, keeping it current 

http://fmriatlas.org/
http://fmriatlas.org/
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and providing the research community with a continually 
updated platform for the exploration of fMRI data.

2.  MATERIALS AND METHODS

2.1.  Brain imaging data

We generated functional connectivity measures from the 
raw resting and task fMRI data downloaded from the 
UKB data categories 111 and 106, respectively. Details of 
image acquisition and preprocessing procedures were 
summarized in the Supplementary Note. We mapped the 

preprocessed images onto the Glasser360 atlas (Glasser 
et al., 2016), which projected the fMRI data onto a brain 
parcellation with 360 areas, resulting in a 360 × 360 func-
tional full correlation matrix for each subject (full correla-
tion). The Glasser360 atlas was originally a surface-based 
parcellation (Dickie et al., 2019), and has been converted 
into a volumetric atlas that is compatible with UKB data. 
The 360 brain functional areas were grouped into 12 
functional networks (Ji et al., 2019), including the primary 
visual, secondary visual, auditory, somatomotor, cingulo-
opercular, default mode, dorsal attention, frontoparietal, 

Fig. 1.  Illustration of functional areas and networks in the Glasser360 atlas. (A) Functional areas defined in the 
Glasser360 atlas (left hemisphere). See Table S1 for information on these areas and Figure S1 for maps of the whole brain 
(both hemispheres). Visual1, the primary visual network; Visual2, the secondary visual network. (B) Annotation of the 12 
functional networks in the human brain. The default mode network (bottom right) is further divided into seven clusters, 
mainly based on their physical locations.



4

B. Zhao, T. Li, Y. Li et al.	 Imaging Neuroscience, Volume 1, 2023

language, posterior multimodal, ventral multimodal, and 
orbito-affective (Table S1). The 64,620 (360 × 359/2) func-
tional connectivity measures were studied in our main 
analyses. These high-resolution fMRI traits provided fine 
details on cerebral cortex functional organization and 
allowed us to compare the resting and task-evoked func-
tional organizations.

To investigate the potential cross-parcellation vari-
ability, we also projected the fMRI data onto the Schae-
fer200 atlas (Schaefer et  al., 2018) and obtained the 
200 × 200 functional connectivity matrices (full correla-
tion, Table S2). The resting and task fMRI data from the 
HCP study were also used in our analysis. In addition to 
functional connectivity measures, we generated ampli-
tude measures for the brain functional areas in the 
Glasser360 atlas, which quantified the brain functional 
activity (Alfaro-Almagro et al., 2018; Bijsterbosch et al., 
2017; Zou et al., 2008). Precise mathematical definitions 
and previous examples of amplitude applications in UKB 
and HCP studies can be found in Bijsterbosch et  al. 
(2017).

2.2.  Consistency, reliability, and comparison of resting and task fMRI

Following the previous Glasser360 paper (Glasser et al., 
2016), we first checked the group mean maps of two inde-
pendent sets of UKB subjects (UKB phases 1 & 2 data and 
UKB phase 3 data). In the UKB phase 3 data, we removed 
the relatives of early phase subjects. We obtained the 
group means for each functional connectivity measure 
separately in the two datasets. To measure the similarity/
consistency of the two sets of group means, we calculated 
their Pearson correlation. For both the resting and task 
fMRI, the same analysis was conducted, and we also 
compared the group mean maps between resting and task 
fMRI by using Pearson correlation. Next, we evaluated the 
intra-subject reliability by using repeated images. We gen-
erated and compared the group mean maps for the origi-
nal visit and repeated visit separately as we did in the 
above two-phase analysis. For each functional connectiv-
ity measure, we also checked the individual-level differ-
ences by taking the Pearson correlation across all subjects 
with two visits. Finally, we repeated the group mean and 
intra-subject reliability analyses by using repeated scans in 
the HCP study.

2.3.  Age effects and sex differences analysis

Between 2006 and 2010, approximately half a million 
participants aged 40 to 69 were recruited for the UKB 

study. The UKB imaging study is an ongoing project to 
re-invite 100,000 UKB participants to collect multi-modal 
brain and body imaging data (Littlejohns et al., 2020). We 
used the UKB phases 1 to 4 data (released up through 
early 2021, n = 40,880 for resting fMRI and 34,671 for 
task fMRI) in our analysis. The age (at imaging) range of 
subjects was 44 to 82 (mean age  =  64.15, standard 
error = 7.74), and the proportion of females was 51.6%. 
In the age and sex analysis, we fitted the following model 
for each fMRI trait: y = x + z + xzα + wη+ %, where y is the 
standardized fMRI trait, x is the standardized age, z is 
the sex factor (0 for female and 1 for male), w is the set of 
adjusted covariates, β1 is the main effect of x on y, β2 is 
the main effect of z on y, α is the effect of age-sex inter-
action term xz on y, η represents effects of covariates, 
and % is the random error variable. We adjusted the fol-
lowing covariates: imaging site, head motion, head 
motion-squared, brain position, brain position-squared, 
volumetric scaling, height, weight, body mass index, heel 
bone mineral density, and the top 10 genetic principal 
components. For each continuous trait or covariate vari-
able, we removed values greater than five times the 
median absolute deviation from the median. These 
removed values will be treated as missing entries in the 
dataset. We performed the analysis in a discovery-
validation design and only reported the results that were 
significant in both discovery and validation datasets (at 
different significance levels). Specifically, as in previous 
studies (Zhao et al., 2022), we used the UKB white British 
subjects in phases 1 to 3 data (n = 33,795 for resting and 
28,907 for task) as our discovery sample. The assign-
ment of ancestry in UKB was based on self-reported eth-
nicity and has been verified in Bycroft et al. (2018). The 
UKB non-British subjects in phases 1 to 3 data and the 
individuals in newly released UKB phase 4 data (n = 5,961 
for resting and 4,884 for task, removed relatives of the 
discovery sample) were treated as the validation sample. 
We reported P values from the two-sided t test and 
focused on the results that were significant at the Bonfer-
roni significance level (7.73  ×  10-7, 0.05/64,620 for the 
Glasser360 atlas; and 2.51  ×  10-6, 0.05/19,900 for the 
Schaefer200 atlas) in the discovery dataset and were 
also significant at nominal significance level (0.05) in the 
validation dataset.

2.4.  Trait-fMRI association analysis

For each fMRI trait, we performed linear regression with 
647 phenotypes, which were selected to reflect a vari-
ety of traits and diseases across different domains 
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(Table  S3). Specifically, there were 24 mental health 
traits (Category 100060), 10 cognitive traits (Category 
100026), 12 physical activity traits (Category 100054), 6 
electronic device use traits (Category 100053), 8 sun 
exposure traits (Category 100055), 3 sexual factor traits 
(Category 100056), 3 social support traits (Category 
100061), 12 family history of diseases (Category 
100034), 21 diet traits (Category 100052), 9 alcohol 
drinking traits (Category 100051), 6 smoking traits 
(Category 100058), 34 blood biochemistry biomarkers 
(Category 17518), 3 blood pressure traits (Category 
100011), 3 spirometry traits (Category 100020), 20 early 
life factors (Categories 135, 100033, 100034, and 
100072), 9 greenspace and coastal proximity (Category 
151), 2 hand grip strength (Category 100019), 13 resi-
dential air pollution traits (Category 114), 5 residential 
noise pollution traits (Category 115), 2 body composi-
tion traits by impedance (Category 100009), 4 health 
and medical history traits (Category 100036), 3 female 
specific factors (Category 100069), 1 education trait 
(Category 100063), 48 curated disease phenotypes 
based on Dey et al. (2020), and 386 disease diagnoses 
coded according to the International Classification of 
Diseases (ICD-10, Category 2002). We selected all dis-
eases in Category 2002 that had at least 100 patients in 
our resting fMRI imaging cohort.

For all traits, we adjusted for the effects of age (at 
imaging), age-squared, sex, age-sex interaction, age-
squared-sex interaction, imaging site, head motion, 
head motion-squared, brain position, brain position-
squared, volumetric scaling, height, weight, body mass 
index, heel bone mineral density, and the top 10 
genetic principal components. Similar to the age and 
sex analysis, we used the UKB white British subjects in 
phases 1 to 3 data (n = 33,795 for resting and 28,907 
for task) as our discovery sample and validated our 
results in the hold-out independent validation dataset 
(n = 5,961 for resting and 4,884 for task, removed rela-
tives of the discovery sample). We reported P values 
from the two-sided t test and prioritized the results that 
were significant at the false discovery rate (FDR) level 
of 5% in the discovery dataset and were also signifi-
cant at the nominal significance level (0.05) in the vali-
dation dataset. In comparison to the conservative 
Bonferroni correction, the popular FDR multiple testing 
procedure (Benjamini & Hochberg, 1995) was more 
powerful and was consistent with the exploratory 
nature of our fMRI-trait analysis. Thus, we mainly used 
FDR multiple testing control in this paper and the sub-
set of associations that further passed the stringent 

Bonferroni significance level were also provided in  
our website.

2.5.  Prediction models with multiple data types

We built prediction models for fluid intelligence using 
multi-modality neuroimaging traits, including 64,620 
resting fMRI traits, 64,620 task fMRI traits, 215 DTI 
parameters from dMRI (Zhao et  al., 2021), and 101 
regional brain volumes from sMRI (Zhao et  al., 2019). 
After removing relatives according to Bycroft et  al. 
(2018), we randomly partitioned the white British imag-
ing subjects into three independent datasets: training 
(n = 20,270), validation (n = 6,764), and testing (n = 6,761). 
The effect sizes of imaging predictors were estimated 
from the training data (n  =  20,270). We removed the 
effects of age, age-squared, sex, age-sex interaction, 
age-squared-sex interaction, imaging site, head motion, 
head motion-squared, brain position, brain position-
squared, volumetric scaling, height, weight, body mass 
index, heel bone mineral density, and the top 10 genetic 
principal components.

We also integrated other data types into our prediction 
model, including genetic variants and several categories 
of traits studied in our trait-fMRI association analysis 
(Table S4). For non-neuroimaging traits, the effect sizes 
were estimated from all UKB white British subjects 
except for the ones in validation and testing data (after 
removing relatives). We adjusted for all the covariates 
listed above for neuroimaging traits, except for the 
imaging-specific variables including imaging site, head 
motion, volumetric scaling, and brain position. The 
genetic effects were estimated by fastGWA (Jiang et al., 
2019) and were aggregated using polygenic risk scores 
via lassosum (Mak et al., 2017). We downloaded imputed 
genotyping data (Category 100319) and performed the 
following quality controls (Zhao et al., 2019): 1) excluded 
subjects with more than 10% missing genotypes; 2) 
excluded variants with minor allele frequency less than 
0.01; 3) excluded variants with missing genotype rate 
larger than 10%; 4) excluded variants that failed the 
Hardy-Weinberg test at 1 ×  10-7 level; and 5) removed 
variants with imputation INFO score less than 0.8. All 
non-genetic predictors (including neuroimaging traits) 
were modeled using ridge regression via glmnet 
(Friedman et al., 2010) (R version 3.6.0). All model param-
eters were tuned in the validation dataset, and we evalu-
ated the prediction performance on the testing data by 
calculating the correlation between the predicted values 
and the observed ones.
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3.  RESULTS

3.1.  Consistency and reliability of the cerebral cortex functional 
organizations

We examined the consistency and reliability of functional 
connectivity using annotations from the Glasser360 atlas 
in the UKB study. As in Glasser et al. (2016), we first com-
pared the group means of two independent sets of UKB 
subjects: the UKB phases 1 and 2 data (imaging data 
released up through 2018 (Zhao et al., 2021), n = 17,374 
for resting and 15,891 for task) and the UKB phase 3 data 
(data released in early 2020, n = 16,852 for resting and 
13,232 for task, removing the relatives of subjects in early 
released data). Figure S3 illustrates the consistent spatial 
patterns of functional connectivity across the two inde-
pendent groups. Similar to previous studies of other data-
sets (Chaarani et al., 2021; Glasser et al., 2016; Herting 
et al., 2018), the group mean maps in the two indepen-
dent datasets of the UKB study were highly similar, with 
the correlation (r) across the 64,620 functional connectiv-
ity being 0.996 in resting fMRI and 0.994 in task fMRI. 
These results may suggest that the HCP-trained parcella-
tion can provide a set of well-defined and biologically 
meaningful brain functional traits in the UKB datasets.

Next, we evaluated the intra-subject reliability of the 
Glasser360 atlas using the repeat scans from the UKB 
repeat imaging visit (n = 2,771 for resting and 2,014 for 
task, average time between visits = 2 years). We performed 
two analyses. The first analysis is to compare the group 
mean maps of the original imaging visit to those of the 
repeat visit. Group means were highly consistent between 
the two visits, with a correlation of 0.997 and 0.994 for 
resting and task fMRIs, respectively (ranges across differ-
ent networks were [0.995, 0.999] for resting and [0.987, 
0.998] for task, Fig. S4). The second analysis quantified 
individual-level differences between the two visits. Specif-
ically, we evaluated the reliability of each functional con-
nectivity by calculating the correlation between two 
observations from all revisited individuals. Overall, the cor-
relation was r = 0.37 (standard error = 0.11) for resting fMRI 
and r = 0.31 (standard error = 0.08) for task fMRI (Fig. S5). 
The correlation of within-network connectivity was gener-
ally high in resting fMRI (Fig. 2A, mean r = 0.46). During 
task fMRI, the overall correlation was decreased (mean 
r  =  0.32) and the secondary visual and posterior multi-
modal networks exhibited higher functional connectivity 
on average than others. In addition, the connectivity within 
activated functional areas (defined by group-level Z-
statistic maps, Supplementary Note) showed a higher cor-
relation than that within nonactivated areas (Figs. 2B and 

S6A, mean r = 0.40 vs. 0.30, P < 2.2 × 10-16). The majority 
of the above-defined activations occurred in the second-
ary visual, dorsal attention, and somatomotor networks. 
Furthermore, we examined the reliability of amplitude 
measures of fMRI (Alfaro-Almagro et al., 2018; Bijsterbosch 
et al., 2017; Zou et al., 2008), which quantified the func-
tional activity within each of the 360 brain areas. The aver-
age amplitude correlation was r  =  0.60 (standard 
error  =  0.08) for resting fMRI and r  =  0.45 (standard 
error = 0.07) for task fMRI (Fig. 2C). In accordance with the 
findings in functional connectivity, the reliability of ampli-
tude measurements of activated areas in task fMRI was 
higher than that of nonactivated areas (Fig.  2D, mean 
r = 0.49 vs. 0.43, P = 1.1 × 10-12).

Finally, we compared the spatial patterns of UKB and 
HCP studies. The correlation between UKB and HCP was 
r = 0.90 for resting fMRI and r = 0.78 for task fMRI in the 
group mean analysis (Fig. S7). These results demonstrate 
a substantial level of overall consistency between the typ-
ical subjects in a healthy young adult cohort and those of 
middle age and older age. We also examined the reliability 
of functional connectivity in the Glasser360 atlas using 
the repeated scans in the HCP study (n = 1075, average 
time between two scans = 1 day). The average correlation 
was r = 0.40 (standard error = 0.09) for resting fMRI and 
r = 0.22 (standard error = 0.11) for task fMRI (the emotion 
task) (Fig. S6B). These results show that the two studies 
have similar reliability, suggesting that the quality of fMRI 
traits in the biobank-scale UKB study is comparable to 
that of the HCP project. Similar to the UKB study, the con-
nectivity among activated functional areas (defined by 
group-level Z-statistic maps, Supplementary Note) had 
higher reliability than the nonactivated connectivity in 
HCP task fMRI (Fig.  S6C, mean r  =  0.382 vs. 0.225, 
P < 2.2 × 10-16). In general, the excellent group mean map 
consistency, as well as the similar reliability between the 
UKB and the HCP studies, provides confidence that the 
Glasser360 atlas will be able to consistently annotate the 
functional organization of typical subjects in a healthy 
population. On the other hand, the relatively low intra-
subject reliability of fMRI matches previous findings (Elliott 
et al., 2020), which may suggest that a large sample size 
is needed to produce reproducible association results in 
downstream analyses (Marek et al., 2022).

3.2.  Comparison of resting-state and task-evoked functional 
organizations

The correlation between resting fMRI and task fMRI 
group mean maps was 0.754 in the UKB study and 0.782 
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in the HCP study, indicating the high degree of similarity 
between intrinsic and extrinsic functional organizations 
(Fig. S7). Resting-task differences were observed across 
different networks. For example, in the auditory network, 
task fMRI revealed stronger intra-hemispheric connec-
tions than resting fMRI (mean  =  0.482 vs. 0.314, 
P = 5.6 × 10-11), while the inter-hemispheric connections 
in task fMRI generally weakened (mean = 0.214 vs. 0.280, 
P = 8.0 × 10-6). Task-related changes were more complex 
in the default mode network. To summarize the patterns, 
we grouped the 77 areas in the default mode network 
into seven clusters, mainly based on their physical loca-
tions. We found that functional connectivity within the 
frontal, visual, and hippocampal clusters was stronger in 
task fMRI than in resting fMRI (mean = 0.314 vs. 0.384, 
P = 1.7 × 10-9), while the connectivity between the frontal 

and the other two clusters decreased (mean = 0.191 vs. 
0.086, P < 2.2 × 10-16). Moreover, the frontal cluster of the 
default mode network can be further divided into two 
subclusters: the first subcluster consisted of left/right 9a, 
9m, 9p, 8BL, 8Ad, and 8Av areas, mainly in the dorsolat-
eral superior frontal gyrus (referred to as the dorsolateral 
superior subcluster); and the second one included left/
right 10v, 10r, p32, a24, and 10d areas in the medial 
orbital superior frontal gyrus and pregenual anterior cin-
gulate cortex (referred to as the medial orbital superior 
subcluster). The dorsolateral superior subcluster had 
decreased connectivity with the areas in other clusters of 
the default mode network in task fMRI, especially those 
in the temporal cluster. On the other hand, the medial 
orbital superior subcluster had a greater level of connec-
tivity with a few other areas of the default mode network 

Fig. 2.  Reliability across brain functional areas and networks. (A) Comparison of reliability of functional connectivity 
across 12 brain functional networks in resting (left panel) and task (right panel) fMRI. (B) Comparison of reliability of 
functional connectivity between the activated areas (within activation) and the nonactivated areas (out of activation) in task 
fMRI. (C) Comparison of reliability of amplitude measures in resting (left panel) and task (right panel) fMRI. See Table S1 
for information of the labeled brain areas. (D) Comparison of reliability of amplitude measures between the activated areas 
(within activation) and the nonactivated areas (out of activation) in task fMRI.
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when performing the task, especially with the orbitofron-
tal complex (OFC) cluster and the neighboring 10pp area. 
Furthermore, the visual cluster maintained strong intra-
cluster connectivity during the task, whereas its connec-
tivity with the angular, frontal, and temporal clusters 
decreased (mean = 0.271 vs. 0.177, P < 2.2 × 10-16).

Several areas of the secondary visual network were 
less connected to other visual areas when the task was 
performed, including the left/right V6A (in the superior 
occipital), V6 (in the cuneus), VMV1 (in the lingual gyrus), 
and VMV2 (in the lingual and fusiform gyrus). Interest-
ingly, some of these visual areas, such as the left/right 
V6, had increased functional connectivity with the default 
mode network. There was also an increase in connec-
tions between the default mode network and other major 
cognitive networks, such as the cingulo-opercular and 
frontoparietal. For the somatomotor network, the insula-
related areas (including left/right Ig, FOP2, OP2-3, and 
right RI) had reduced connections with other somatomo-
tor areas in task fMRI. Similar to the auditory network, the 
inter-hemispheric connectivity in the cingulo-opercular 
network decreased in task fMRI. Additionally, we found 
that the dorsal attention, frontoparietal, and language 
networks had similar functional connectivity patterns in 
resting and task fMRI. In summary, our results confirm 
the similarity of functional structures between resting and 
task fMRI, while also identifying specific patterns of dif-
ferences. These network-specific patterns can be explored 
on our website http://fmriatlas​.org/.

3.3.  Age effects and sex differences in functional organizations

By using the large-scale fMRI data, we quantified the age 
and sex effect patterns on resting and task functional 
organizations. We used unrelated white British subjects 
in UKB phases 1 to 3 data release (until early 2020) as our 
discovery sample (n = 33,795 for resting and 28,907 for 
task) and validated the results in an independent hold-out 
dataset, which included non-British subjects in UKB 
phases 1 to 3 data release and all subjects in UKB phase 
4 data release (early 2021 release, removed the relatives 
of our discovery sample, n = 5,961 for resting and 4,884 
for task). The full list of the adjusted covariates can be 
found in the Methods section. Below, we highlighted the 
results passing the stringent Bonferroni significance level 
(7.73 × 10-7 = 0.05/64,620) in the discovery dataset and 
being significant at the nominal significance level (0.05) in 
the validation dataset.

There were widespread age effects on functional con-
nectivity of resting and task fMRI, and network- and area-

specific details were revealed (Fig. S8A-B). For example, 
as age increased, the connections within the auditory, 
secondary visual, somatomotor, language, and cingulo-
opercular networks were generally weaker. Some areas 
had particularly large age effects, such as the left/right 
PoI2 (the posterior insular area 2) areas in the cingulo-
opercular network. However, both positive and negative 
age effects were observed in the frontoparietal and 
default mode networks (Fig. S9). For example, the left/
right POS2 (the parieto-occipital sulcus area 2) areas in 
the frontoparietal network and left/right POS1 (the 
parieto-occipital sulcus area 1) areas in the default mode 
network had strong aging effects. Negative age effects in 
the default mode network were strongest in the hippo-
campal cluster, such as the left/right PHA1 (the parahip-
pocampal area 1) areas.

In task fMRI, age effects were different from those in 
resting fMRI. We highlighted a few patterns. First, the age 
effects in the auditory network were mainly on the inter-
hemispheric connections, where the connectivity between 
the left and right hemispheres decreased with aging. Sim-
ilarly, the inter-hemispheric connectivity between the 
auditory and cingulo-opercular networks declined as we 
aged. The age effects on intra-hemispheric connections 
were much weaker. Except for a few areas (such as the 
right 8Ad and right PEF), most areas in the cingulo-
opercular and default mode networks had reduced func-
tional connectivity with aging (Fig.  S10). On the other 
hand, most of the functional connectivity in the secondary 
visual network increased with aging, especially the left/
right V3A and V6A areas in the superior occipital gyrus. 
There were both positive and negative effects of aging on 
other networks, such as somatomotor, frontoparietal, and 
dorsal attention. Overall, these results describe the 
detailed age effect pattern for functional organizations at 
rest and during task performance.

We also examined the age effects on amplitude mea-
sures. In resting fMRI, age-related decreases in brain 
activity were observed in most brain areas, with the 
strongest effects in left and right PreS areas (the pre-
subiculum, a subarea of the parahippocampal region, 
β < -0.222, P < 5.01 × 10-193, Fig. 3A). In task fMRI, how-
ever, both strong positive and negative effects on brain 
activity were widely observed (Fig. 3B). Because wide-
spread age effects were detected on both functional 
connectivity and amplitude traits, we examined the con-
ditional age effects on functional connectivity traits after 
additionally including amplitude traits as covariates. After 
adjusting for amplitude traits, most of the age effects on 
functional connectivity traits became much smaller and 

http://fmriatlas.org/
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were not significant at the Bonferroni significance level, 
especially in resting fMRI (Fig.  S11). For example, 
although a few of the strongest amplitude-adjusted age 
effects remained significant, most of the other moderate 
amplitude-adjusted age effects failed to pass the Bonfer-
roni significance level in the default mode network. Over-
all, these results for amplitude traits indicate that age has 
a significant effect on the variation of amplitude traits 
across subjects, which may also be carried over to func-
tional connectivity traits (Bijsterbosch et al., 2017).

Functional connectivity patterns differed between 
males and females. We found widespread sex differ-
ences across different resting fMRI networks, with the 
strongest differences occurring in the somatomotor net-
work (Fig. S8C). Males had stronger functional connectiv-

ity in the somatomotor and auditory networks as well as 
a few specific areas, including the left/right VIP (in the 
superior parietal gyrus), LIPv (in the superior parietal 
gyrus), PH (in the inferior temporal gyrus), and V6A (in the 
superior occipital gyrus) of the secondary visual network, 
the left/right PFcm (in the superior temporal gyrus) and 
43 (in the rolandic operculum) of the cingulo-opercular 
network, the left/right a9-46v and p9-46v (both in the 
middle frontal gyrus) of the frontoparietal network, and 
the left/right PGp (in the middle occipital gyrus) of the 
dorsal attention network. In the default mode network, 
the sex difference had a complicated pattern. Specifi-
cally, males had stronger connectivity in the hippocampal 
and OFC clusters, especially in the left 47m area of the 
posterior orbital gyrus. On the other hand, females had 

Fig. 3.  Spatial pattern of age and sex effects on brain functional organizations. We illustrate the spatial pattern of 
age effects on amplitude measures in (A) for resting fMRI and in (B) for task fMRI. See Table S1 for information on the 
labeled brain areas. (C) and (D) display the spatial pattern of sex effects on amplitude measures of resting and task fMRI, 
respectively. We labeled the brain areas with the strongest age and sex effects in amplitude measures.



10

B. Zhao, T. Li, Y. Li et al.	 Imaging Neuroscience, Volume 1, 2023

stronger connectivity in many other areas of the default 
mode network (Fig. S12).

We observed significant sex differences in task fMRI 
within several brain regions. These include the right V6A 
(located in the superior occipital gyrus) and left VMV2 
(found in the lingual and fusiform gyrus) within the sec-
ondary visual network, the left/right PHA3 (situated in the 
fusiform gyrus) within the dorsal attention network, and 
the left/right RSC (located in the middle cingulate cortex) 
of the frontoparietal network (P  <  7.73  ×  10-7, refer to 
Fig. S13A-C). Within the language, auditory, and soma-
tomotor networks, males exhibited stronger functional 
connectivity than females in numerous brain regions 
(see Fig. S13D-F). Additionally, males had stronger con-
nectivity in the hippocampal and frontal areas of the 
default mode network, whereas females had stronger 
connectivity between the visual cluster and the frontal 
cluster (Fig. S14). As for the amplitude measures, females 
had stronger brain activity in many areas of the default 
mode network, whereas males had stronger brain activ-
ity in most other networks in resting fMRI (Fig. 3C). Sex 
differences were generally reduced in task fMRI ampli-
tude measurements (Fig. 3D). Lastly, we estimated the 
amplitude-adjusted sex effects on functional connectivity 
traits by additionally controlling for the amplitude traits as 
covariates. Similar to the findings of the age effects, the 
majority of amplitude-adjusted sex effects on functional 
connectivity traits can be explained by amplitude traits, 
such as in the somatomotor and default mode networks 
(Fig. S15).

3.4.  An atlas of trait associations with cerebral cortex functional 
areas

We aimed to explore the associations between resting 
and task functional organizations and 647 phenotypes. 
Similar to the age and sex analyses, we used unrelated 
white British subjects in UKB phases 1 to 3 data release 
as the discovery sample (n  =  33,795 for resting and 
28,907 for task) and validated the results in an indepen-
dent hold-out dataset (n = 5,961 for resting and 4,884 for 
task). We prioritized significant associations that sur-
vived at the FDR 5% level in the discovery sample and 
remained significant at the nominal significance level 
(0.05) in the validation sample. Among the 647 traits, 120 
had at least one significant association with resting fMRI 
functional connectivity measures, among which 82 fur-
ther survived the Bonferroni significance level (7.73 × 10-

7, 0.05/64,620) (Table S3). We detail below the patterns of 
associations relating to mental health, cognitive function, 

and disease status. For the complete set of results, please 
visit http://165​.227​.92​.206​/traitList​.html.

We observed strong associations between resting 
fMRI and multiple mental health traits, including risk-
taking, depression, MDD, and neuroticism. Enrichments 
in specific networks and brain areas were observed. For 
example, risk-taking (Data field 2040) was strongly posi-
tively associated with the somatomotor network and the 
connections between the somatomotor and visual net-
works (Fig. 4A). Risk-taking was also negatively associ-
ated with the functional connections of the default mode 
network. Functional connectivity of sensory/motor areas 
was recently found to be positively associated with risk-
taking (Rolls et al., 2022), and our findings were consis-
tent with the “sensory-motor-cognitive” mode of brain 
functional amplitude changes related to aging (Smith 
et al., 2020). In addition, depression was mostly associ-
ated with reduced connectivity in the somatomotor and 
cingulo-opercular networks (curated disease phenotype 
based on ICD-10 codes, Fig.  4B). Consistent patterns 
were also observed in MDD (ICD-10 code F329), nervous 
feelings (Data field 1970), seen doctor for nervous anxiety 
tension or depression (Data field 2090), neuroticism score 
(Data field 20127), and suffer from nerves (Data field 
2010).

Multiple cognitive traits were associated with func-
tional connectivity in fMRI, such as fluid intelligence (Data 
field 20016), the number of puzzles correctly solved 
(Data  field 6373), duration to complete alphanumeric 
path (Data field 6350), and maximum digits remembered 
correctly (Data field 4282). These cognitive traits showed 
different association patterns. Fluid intelligence, for 
example, was associated with functional connectivity in 
the auditory, language, cingulo-opercular, dorsal atten-
tion, and default mode networks; most of the associa-
tions were positive (Fig. 5A). The duration to complete the 
alphanumeric path was mainly negatively associated with 
functional connectivity in the secondary visual network 
(Fig. S16A); the number of puzzles correctly solved was 
mostly related to the functional connectivity within the 
default mode, somatomotor, and secondary visual net-
works (Fig. S16B); and the maximum digits remembered 
correctly were positively related to the auditory and lan-
guage networks (Fig.  S16C). The links between brain 
function and several other brain-related complex traits 
were detected, such as the strong connections between 
handedness (Data field 1707) and the cingulo-opercular 
network (Fig. S16D). Resting functional connectivity was 
also widely associated with lifestyle and environmental 
traits, including physical activity, electronic device use, 

http://165.227.92.206/traitList.html
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Fig. 4.  Selected complex traits that were associated with brain functional organizations. (A) Associations between 
risk-taking (Data field 2040) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can 
be viewed in an interactive version at http://165​.227​.92​.206​/trait​/trait85​.html. (B) Associations between depression 
(curated disease phenotype) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can 
be viewed in an interactive version at http://165​.227​.92​.206​/trait​/trait230​.html. We illustrated the estimated correlation 
coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and were also significant at the 
nominal significance level (0.05) in the validation dataset (n = 5,961). (C) and (D) display the spatial pattern of associations 
with amplitude measures of resting fMRI for risk-taking and depression, respectively. Brain areas with the strongest 
associations were labeled. See Table S1 for information on these areas.

http://165.227.92.206/trait/trait85.html
http://165.227.92.206/trait/trait230.html


12

B. Zhao, T. Li, Y. Li et al.	 Imaging Neuroscience, Volume 1, 2023

Fig. 5.  Selected complex traits that were associated with brain functional organizations. (A) Associations between fluid 
intelligence (Data field 20016) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas 
can be viewed in an interactive version at http://165​.227​.92​.206​/trait​/trait158​.html. (B) Associations between time spent 
watching TV (Data field 1070) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can 
be viewed in an interactive version at http://165​.227​.92​.206​/trait​/trait101​.html. We illustrated the estimated correlation 
coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and were also significant at the 
nominal significance level (0.05) in the validation dataset (n = 5,961). (C) and (D) display the spatial pattern of associations 
with amplitude measures of resting fMRI for fluid intelligence and time spent watching TV, respectively. Brain areas with 
the strongest associations were labeled. See Table S1 for information on these areas.

http://165.227.92.206/trait/trait158.html
http://165.227.92.206/trait/trait101.html
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smoking, diet, alcohol, and sun exposure. For example, 
watching television (TV) for longer periods of time (Data 
field 1070) may weaken functional connectivity in the 
somatomotor and visual networks as well as strengthen 
functional connectivity in the default mode network 
(Fig. 5B).

Strong associations between increased functional 
connectivity and cardiovascular diseases were identified, 
including atrial fibrillation (curated disease phenotype 
and ICD-10 code I48), vascular/heart problems diag-
nosed by doctor (Data field 6150), and hypertension 
(curated disease phenotype and ICD-10 code I10). Atrial 
fibrillation is the most common clinically significant 
arrhythmia, and increasing evidence suggests it is asso-
ciated with cognitive decline and dementia (Alonso & de 
Larriva, 2016). We found that atrial fibrillation was widely 
associated with functional connectivity across different 
networks (Fig. S17A-B). Hypertension and vascular/heart 
problems were associated with reduced functional con-
nectivity in the auditory, somatomotor, secondary visual, 
and cingulo-opercular networks (Fig. S17C-D). Hyperten-
sion is a major risk factor for vascular dementia and Alz-
heimer’s disease and altered functional connections may 
reflect the early effects of vascular risk factors on brain 
functions (Carnevale et al., 2020).

In task fMRI, 96 traits had at least one significant asso-
ciation at the FDR 5% level (and significant at the nominal 
level in the validation dataset), and 59 further survived the 
Bonferroni significance level (7.73 × 10-7 = 0.05/64,620) 
(Table S3). Of the 96 traits, 69 were also significantly asso-
ciated with resting fMRI at the 5% FDR level. The associ-
ation patterns in task and resting fMRI were very similar 
for a few traits, such as atrial fibrillation (Fig. S18). For 
many traits, however, we observed different patterns in 
resting and task fMRI, including fluid intelligence (Fig. 
S19A-B) and the number of puzzles correctly solved 
(Fig. S19C-D) (P < 2.2 ×  10-16). For example, both fluid 
intelligence and the number of solved puzzles were posi-
tively associated with intra-hemispheric connections of 
the auditory network in task fMRI, whereas no or negative 
associations were observed with inter-hemispheric con-
nections. There were similar intra- and inter-hemispheric 
connection differences in the cingulo-opercular network.

We also quantified the association patterns with ampli-
tude traits and prioritized brain areas whose functional 
activity was related to traits and diseases. We observed 
similar patterns to the functional connectivity results. For 
example, risk-taking has the strongest associations with 
the brain activity of the postcentral gyrus in the somato-
motor network, especially the primary somatosensory cor-

tex (Rolls et al., 2022) (Fig. 4C, β > 0.033, P < 8.14 × 10-6). 
The postcentral gyrus, insula, and Rolandic operculum 
areas of the somatomotor network were most negatively 
related to depression (Fig. 4D, β < -0.036, P < 7.10 × 10-7). 
All significant associations with fluid intelligence were 
positive, with the top three areas being the middle cingu-
late, anterior cingulate, and orbital part of the inferior fron-
tal gyrus (IFG pars orbitalis) in the default mode network 
(Fig. 5C, β > 0.053, P < 1.31 × 10-12). Time spent watching 
TV was strongly negatively associated with the postcen-
tral gyrus, precentral gyrus, paracentral lobule, and the 
supplementary motor area in the somatomotor network 
(Fig. 5D, β < -0.050, P < 2.03 × 10-12).

3.5.  Alternative analyses using the Schaefer200 atlas

The brain parcellation may play a crucial role in the defi-
nition of the brain functional network and affect the 
results of downstream analysis (Popovych et al., 2021). 
To explore the impact of parcellation choice on the large-
scale UKB study, we additionally applied another parcel-
lation (the Schaefer200 atlas (Schaefer et al., 2018)) and 
repeated our analysis of the same set of subjects. Briefly, 
the Schaefer200 atlas partitioned the brain into 200 
regions, resulting in 19,900 pairwise functional full cor-
relation measures (200  ×  199/2). We mapped the 200 
regions onto the same 12 networks used in the Glasser360 
atlas (Table S2).

The average reliability in the Schaefer200 atlas was 
r  =  0.387 (standard error  =  0.10) for resting fMRI and 
r = 0.312 (standard error = 0.07) for task fMRI, which was 
in the same range as the Glasser360 atlas. Figure S20 
compares the reliability of the two parcellations. Glasser360 
and Schaefer200 atlases showed similar patterns across 
a variety of networks, with the largest differences being 
observed in the secondary visual network, where the 
Glasser360 atlas was more reliable. In addition, consis-
tent spatial patterns of functional connectivity were 
observed in the two parcellations, although the strength 
of connectivity was slightly higher in the Schaefer200 
atlas, which may partly be explained by the smaller num-
ber of brain areas (Fig. S21). These results demonstrate 
the good generalizability of functional organizations mod-
eled by the Glasser360 atlas.

We evaluated the age and sex effects in the Schae-
fer200 atlas. Figure S22 compares the age effect patterns 
in the Schaefer200 and Glasser360 atlases. In both 
atlases, decreasing resting functional connectivity was 
consistently associated with aging, especially in the audi-
tory, cingulo-opercular, and somatomotor networks. The 
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main difference was in the secondary visual network, 
where the age effects in the Glasser360 atlas were stron-
ger than those in the Schaefer200 atlas. This finding may 
be attributed to the lower reliability of the Schaefer200 
atlas in the secondary visual network, suggesting that the 
Glasser360 atlas may be more suitable for studying the 
brain connectivity of the visual cortex. In addition, con-
sistent intra- and inter-hemispheric association differ-
ences in task fMRI were observed. The Schaefer200 and 
Glasser360 atlases also showed similar sex effect pat-
terns, in which the strongest effects were both detected 
in the somatomotor and auditory networks (Fig. S23).

Next, we repeated the association analysis with the 
647 traits. In resting fMRI, 131 traits had at least one 
significant association at the FDR 5% level and 83  
further passed the Bonferroni significance level (2.51 × 
10-6 = 0.05/19,900, also passing the nominal significa
nce level (0.05) in the independent validation dataset, 
Table S3). Of the 120 traits with significant associations 
in the Glasser360 atlas analysis, 109 (90.83%) were also 
significant in the Schaefer200 atlas analysis. Addition-
ally, the association maps were largely consistent in the 
two atlases. For example, time spent watching TV was 
consistently associated with decreased functional con-
nections of the somatomotor and visual networks, as 
well as increased functional connectivity in the default 
mode network (Fig. S24A-B). Moreover, fluid intelligence 
was consistently linked to increased functional connec-
tivity, particularly in the language and auditory networks 
(Fig. S24C-D). In both atlases, depression was associ-
ated with reduced functional connectivity in the soma-
tomotor and cingulo-opercular networks (Fig. S25). At 
the FDR 5% level, 90 traits showed significant associa-
tions with task fMRI, including 76 of the 96 (79.2%) 
traits that were significant in the Glasser360 atlas analy-
sis. All these results are available on our website. In 
summary, the Schaefer200 atlas results agree well with 
those of the Glasser360 atlas, indicating that the pat-
terns observed in our Glasser360 analysis are not 
parcellation-specific.

Finally, we examined the trait associations with 1,701 
functional connectivity traits based on the whole brain 
spatial ICA (Alfaro-Almagro et  al., 2018; Beckmann & 
Smith, 2004; Hyvarinen, 1999) approach in resting fMRI. 
These ICA functional connectivity traits were available 
from the UK Biobank data release (https://www​.fmrib​.ox​
.ac​.uk​/ukbiobank​/index​.html, Data fields 25752 and 
25753), which were partial correlations and the timeseries 
were estimated from group ICA maps via the dual regres-
sion (Alfaro-Almagro et  al., 2018). Of the 647 traits, 76 

demonstrated at least one significant association at the 
FDR 5% level and 58 remained significant at the Bonfer-
roni significance level (2.94  ×  10-5  =  0.05/1,701, also 
passing the nominal significance level in the independent 
validation dataset). Among the 76 ICA-significant traits, 
65 (85.53%) were also significant in the above Glasser360 
atlas analysis. Compared to the ICA-derived traits, 
parcellation-based traits from the Glasser360 atlas (which 
identified significant associations with 120 complex traits 
at the FDR 5% level and 82 at the Bonferroni significance 
level) were able to detect associations with more traits.

In addition, we ranked the 58 ICA-significant complex 
traits (at the Bonferroni significance level) by the number of 
their significant associations with ICA-derived traits. Then, 
we compared the association strengths of the top 10 traits 
with ICA-derived traits and those with Glasser360 traits. 
On these 10 traits, ICA-derived traits and Glasser360 traits 
showed similar levels of association strength (Fig.  S26). 
For example, many ICA-derived and Glasser360 traits 
were found to be significantly associated with systolic 
blood pressure (Data field 4080), and most of these asso-
ciations were in a similar range of effect size (Fig. S27). 
These results align with the results of a recent study on the 
functional connectome signature of blood pressure (Jiang 
et al., 2023). The results of Glasser360 traits indicate that 
the auditory and somatomotor networks may be more 
strongly associated with systolic blood pressure than other 
networks. These networks and areas may be targeted 
when studying hypertension-related cognitive dysfunction 
and brain functional damages (Carnevale et  al., 2020; 
Naumczyk et  al., 2017). In summary, parcellation-based 
traits may reveal more network- and area-level details with 
comparable association strength to ICA-derived traits.

3.6.  Fluid intelligence prediction by integrating multiple data types

Our association analyses demonstrate the potential value 
of large-scale fMRI data for a variety of complex traits and 
disorders in clinical and epidemiological research. For 
example, it is of great interest to construct prediction mod-
els by integrating fMRI data and other data types (He et al., 
2020; Pervaiz et al., 2020; Shen & Thompson, 2019). Fluid 
intelligence is a key indicator of cognitive ability and is 
associated with multiple neurological and neuropsychiat-
ric disorders (Keyes et al., 2017). In this section, we per-
formed prediction for fluid intelligence using neuroimaging 
traits from multiple modalities, including resting fMRI, task 
fMRI, diffusion MRI (dMRI) (Zhao et al., 2021), and struc-
tural MRI (sMRI) (Zhao et al., 2019). We further integrated 
these neuroimaging data with a wide range of other data 

https://www.fmrib.ox.ac.uk/ukbiobank/index.html
https://www.fmrib.ox.ac.uk/ukbiobank/index.html
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types, including common genetic variants, biomarkers, 
local environments, early life factors, diet, and behavioral 
traits. The relative contributions and joint performance of 
these data types were assessed in a training, validation, 
and testing design. All model parameters were tuned using 
the validation data and we evaluated the prediction perfor-
mance on the independent testing data by calculating the 
correlation between the predicted values and the observed 
intelligence, while adjusting for the covariates listed in the 
Methods section.

The prediction performance of multi-modality neuro-
imaging traits was summarized in Figure 6A. The predic-
tion correlation of resting fMRI was 0.272 (standard 
error  =  0.012), suggesting that about 7.4% variation in 
fluid intelligence can be predicted by resting fMRI con-
nectivity. The prediction correlation was similar in task 
fMRI (correlation = 0.279) and was improved to 0.333 by 
jointly using resting and task fMRI, which suggests that 
resting and task fMRI had different contributions to 
intelligence prediction. This improvement aligned with 
previous results reported in the HCP and Philadelphia 
Neurodevelopmental Cohort (PNC) studies (Gao et  al., 
2019), and matched our association results where both 
resting and task fMRI showed strong associations with 
fluid intelligence with different spatial patterns. In addi-
tion, the dMRI and sMRI traits had much lower prediction 
accuracy than fMRI traits. Specifically, the prediction cor-
relation was 0.09 for diffusion tensor imaging (DTI) 
parameters of dMRI and 0.08 for regional brain volumes 
of sMRI. Moreover, adding these structural traits in addi-
tion to fMRI traits did not substantially improve the pre-
diction performance (correlation = 0.342), indicating the 
prediction power of brain structural traits for intelligence 
can be largely captured by the functional traits.

Next, we examined the prediction performance of non-
neuroimaging data types (Fig. 6B). The prediction correla-
tion of intelligence genetic polygenic risk score was 0.232 
(standard error = 0.013), which was slightly lower than the 
performance of resting fMRI. Several categories of life-
style and environmental traits had strong predictive power, 
including physical activity (correlation = 0.205), sun expo-
sure (correlation = 0.193), and diet (correlation = 0.153). 
Moreover, biomarkers, disease records, and early life 
factors all had significant predictive performance, with 
prediction correlations being 0.067, 0.087, and 0.156, 
respectively. By combining all these non-neuroimaging 
data types, the prediction correlation increased to 0.381. 
The performance was further improved to 0.440 by includ-
ing neuroimaging data, which was much higher than when 
using only one type of data.

To explore whether the predictive power of non-
neuroimaging traits can be explained by brain structural 
and functional variations, we evaluated their conditional 
predictive performance on fluid intelligence after con-
trolling for neuroimaging traits. There was a reduction of 
performance on multiple categories of non-neuroimaging 
predictors, suggesting their effects on intelligence may 
be indirect and partially mediated by brain structure 
and function (Fig. 6C and Table S4). For example, the 
prediction performance of the polygenic risk score 
decreased from 0.232 to 0.186, indicating that 19.8% of 
the genetic predictive power on intelligence can be cap-
tured by brain structural and functional variations mea-
sured by brain MRI. The proportion was 28.3% for 
physical activity, 23.1% for diet, and 28.6% for early life 
factors. Overall, these results illustrate that neuroimag-
ing traits, especially the ones from resting and task fMRI, 
are powerful predictors of cognitive function. Future 
studies can integrate genetic, biomarker, behavioral/
environmental factors, and multi-modality MRI data for 
better prediction of brain-related complex traits and dis-
orders.

4.  DISCUSSION

Inter-individual variations in brain function and their rela-
tionship to human health and behavior are of great inter-
est. The intra-individual reliability of brain fMRI traits is 
generally low, although the group-level consistency is 
high (Chaarani et  al., 2021; Elliott et  al., 2020; Herting 
et al., 2018; Noble et al., 2021). Then, it has been sug-
gested that a large sample size is needed for fMRI stud-
ies to detect trait associations with small effect sizes 
(Kennedy et al., 2021; Smith & Nichols, 2018). The UKB 
study provided an extensive biobank-scale data resource 
for quantifying fMRI associations with many phenotypes. 
The present study conducted a systematic analysis of 
intrinsic and extrinsic functional organizations with a 
parcellation-based approach using fMRI data collected 
from over 40,000 individuals. We measured differences 
between resting and task fMRI, investigated age and sex 
effects on brain function, and examined the cross-
parcellation variability of our findings. We explored the 
fMR’s association with 647 traits chosen from a variety of 
trait domains. In comparison to the prior literature (Miller 
et  al., 2016), which applied data-driven spatial ICA 
(Alfaro-Almagro et al., 2018; Beckmann & Smith, 2004; 
Hyvarinen, 1999) to about 5000 subjects, the parcellation-
based approach and much larger sample size allowed us 
to quantify functional organizations in fine-grained details. 
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We found distinct brain functional areas and networks 
that were strongly related to traits from various catego-
ries, such as mental health, physical activity, cognitive 
performance, and biomarkers. We developed integrative 

prediction models for fluid intelligence, suggesting that 
integrating fMRI traits with multiple data types can 
improve prediction performance for brain-related com-
plex traits and diseases.

Fig. 6.  Integrative prediction model for fluid intelligence. (A) Prediction accuracy of neuroimaging traits for fluid 
intelligence. Volume, region brain volumes from brain structural MRI (sMRI); DTI parameters, diffusion tensor imaging 
parameters to measure brain white matter microstructures; All MRI traits, including brain volume, DTI parameters, resting 
fMRI, and task fMRI. (B) Prediction accuracy of non-neuroimaging traits from different trait categories and their joint 
performance. PRS, polygenic risk scores of genetic variants. (C) Comparison of predictive power of non-neuroimaging 
traits before (“marginal”) and after controlling for the neuroimaging traits (“conditional on brain imaging”).
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4.1.  Resting-state and task-evoked functional organizations

The study of how the brain alters its functionality in 
response to tasks or stimuli is a topic of significant interest 
and has broad clinical applications (Zheng et al., 2022). For 
instance, fMRI studies involving an emotional task have 
consistently demonstrated abnormalities in the prefrontal 
cortex-limbic area among patients with anxiety disorders, 
who typically exhibit exaggerated responses to emotional 
stimuli (Li et  al., 2020). Despite relatively small sample 
sizes, previous studies have found that intrinsic and extrin-
sic functional architectures share substantial similarities, 
with minor but consistent differences observed across var-
ious tasks (Cole et  al., 2014, 2021; Gonzalez-Castillo & 
Bandettini, 2018; Gratton et al., 2016, 2018; Smith et al., 
2009; Tavor et  al., 2016). Leveraging parcellation-based 
data from the extensive UKB study, we corroborate that 
group-level intrinsic and extrinsic functional spatial pat-
terns are largely alike (correlation = 0.754), consistent with 
previous fMRI datasets with smaller sample sizes (Cole 
et al., 2014, 2021; Gonzalez-Castillo & Bandettini, 2018; 
Gratton et al., 2016, 2018; Tavor et al., 2016). Moreover, we 
provide a more detailed analysis of resting-state functional 
connectivity differences. For example, our results 
described the complicated task-positive and task-negative 
functional connectivity change patterns in the default 
mode network. Although the default mode network has 
been originally recognized as brain areas with greater con-
nectivity in resting fMRI than task fMRI (Raichle et  al., 
2001), recent studies have found that the default mode 
network also had positive functional contributions to tasks, 
which may result in increased activity in task fMRI (Elton & 
Gao, 2015).

Furthermore, our results demonstrate a remarkable 
spatial correlation between the UKB and HCP studies in 
both resting and task fMRI. This high degree of consis-
tency across independent studies underscores the pos-
sibility of innovative joint analyses of human connectome 
data. Through meta-analytic amalgamation of these fMRI 
datasets, we have the potential to gain a more profound 
understanding of trait-fMRI associations' replication and 
enhance fMRI's predictive power for a variety of pheno-
types (He et al., 2022). The integration of data from multi-
ple sources may lead to more robust and reliable 
outcomes in the field of fMRI research.

4.2.  Sex difference in fMRI

Our area- and network-specific sex effect maps can be 
useful for understanding sex differences in brain func-

tional activity, as well as brain function-related cognitive 
impairment and brain disorders. We found that the stron-
gest sex difference in resting fMRI was in the somatomo-
tor network, where females had weaker functional 
connectivity than males (Fig.  3C). Additionally, depres-
sion was strongly associated with decreased connectiv-
ity in the somatomotor network (Fig. 4B). Considering the 
fact that depression is two times more prevalent in 
females than in males (Salk et al., 2017), our results may 
help understand the brain function-related sex differ-
ences in depression (Labaka et al., 2018). In addition, we 
found that a wide variety of complex traits were strongly 
associated with the functional connectivity between the 
visual and somatomotor networks, such as risk-taking 
and time spent watching TV (Figs.  4A and 5B). Future 
studies could investigate the biological mechanisms 
underlying these functional connectivity alterations as 
well as the causal medication pathways among lifestyle, 
brain function, and mental health (Zhao & Castellanos, 
2016).

Additionally, our findings indicate that males demon-
strated stronger task functional connectivity than females 
in numerous areas within the language network (Refer to 
Fig. S13D). This could potentially be attributable to males' 
more frequent use of language strategies, such as silent 
naming during the Hariri’s faces/shapes emotion task. On 
the other hand, females might rely more heavily on visual 
or spatial strategies. This observation calls for further 
investigation.

4.3.  Trait-fMRI associations

We conducted an analysis of fMRI data alongside a range 
of complex traits using a discovery-validation design, 
generating association maps that correspond to the 
functional organization of the human brain during both 
resting and task states. These results may contribute to 
the development of improved disease prediction models 
and the identification of clinically beneficial neuroimaging 
biomarkers. For instance, depression and depressive 
mood disorders have been associated with abnormal 
brain connectivity across several intrinsic networks 
(Brakowski et  al., 2017; Gudayol-Ferré et  al., 2015; 
Korgaonkar et al., 2019). Our findings spotlight specific 
patterns of decreased resting functional connectivity, 
particularly within the somatomotor network. Extended 
periods of TV viewing have been linked to structural vari-
ations in the visual cortex and sensorimotor areas 
(Takeuchi et al., 2013). This activity has also been associ-
ated with cognitive decline (Fancourt & Steptoe, 2019) 
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and increased dementia risk (Raichlen et al., 2022)—both 
closely connected with the default mode network (Grieder 
et al., 2018). Moreover, visual impairment and diminished 
functional connectivity within the visual network have 
been identified in Alzheimer’s disease (Huang et al., 2021; 
Littlejohns et al., 2022). Our results suggest that resting 
fMRI traits of the default mode and visual networks could 
serve as valuable endophenotypes for investigating the 
effects of environmental and lifestyle factors on aging 
and dementia.

The large-scale UKB data also revealed that resting 
and task fMRI may have different association patterns 
with complex traits, such as mental health and cognitive 
abilities. For example, depression was strongly associ-
ated with resting fMRI, but not with task fMRI. Moreover, 
in resting and task fMRI, the associations with fluid intel-
ligence had different spatial distributions. Our prediction 
analysis further suggests that task fMRI has additional 
predictive power on intelligence on top of resting fMRI. 
These results demonstrate the differences between rest-
ing and task-evoked brain functions in terms of their con-
nections with brain health and cognition.

4.4.  Online resource and future development

Using the large-scale fMRI data in the UKB study, we 
were able to study hundreds of brain regions in a 
parcellation-based approach. We have utilized the rich 
phenotypic data in the UKB database in our fMRI-trait 
association analysis, which was an exploratory analysis 
designed to offer a publicly accessible web interface. 
The bioinformatics resource we have developed offers 
significant potential for fMRI researchers in various 
ways. Firstly, it allows for swift comparisons between 
our findings and those of existing studies within the 
field. Researchers can easily evaluate the congruencies 
or disparities in trait-fMRI associations when utilizing 
data from distinct studies or when identical data are 
analyzed by different research groups and methodolo-
gies (Botvinik-Nezer et al., 2020). Furthermore, our results 
can offer corroborating evidence and preliminary data for 
future study designs and grant proposals. Researchers 
can harness our findings to justify the necessity for addi-
tional data collection and the development of advanced 
techniques. Additionally, our resource has the potential to 
unearth further insights in subsequent studies through 
the incorporation of other fMRI data resources. For 
instance, conducting joint analyses with other large-scale 
neuroimaging studies, such as the ABCD (Chaarani et al., 
2021) and CHIMGEN (Xu et al., 2020) studies, could sup-

port the replication of association findings and provide 
insights into age-related or cohort-related interactions 
throughout the lifespan. In conclusion, the online resource 
we have developed offers a wealth of opportunities for 
fMRI researchers to gain insights, compare results, sup-
port the design of future studies, and integrate with other 
data sources. This integration fosters an enhanced 
understanding and collaboration within the field.

The ongoing UKB imaging study, which aims to scan 
100,000 subjects within a few years (Littlejohns et  al., 
2020), presents an opportunity for us to continuously 
update and augment our online resource. This will involve 
not only replicating our reported findings based on the 
Glasser360 and Schaefer (Schaefer et al., 2018) atlases, 
but also integrating additional common parcellation 
schemes such as the Gordon (Gordon et al., 2016), Power 
(Power et al., 2011), DiFuMo (Dadi et al., 2020), and data-
driven ICA (Alfaro-Almagro et  al., 2018; Beckmann & 
Smith, 2004; Hyvarinen, 1999) atlases. Moreover, we plan 
to explore and incorporate different data preprocessing 
pipelines to understand their effects on the results. For 
example, we will examine the effects of topographical 
misalignments on trait-fMRI associations and sex differ-
ences. There has been an observation in the HCP study 
that the cross-subject variability can be explained by the 
misalignment in topography between individual subjects' 
true connectivity topography and group-average ICA 
maps used by the ICA dual regression (Bijsterbosch 
et al., 2018, 2019). This residual functional misalignment 
can mean that between-subject spatial variability appears 
as variability in network connectivity; the extent of this 
problem of misinterpretation may vary across different 
analysis methods (e.g., group-ICA with dual-regression 
vs. hard parcellation). It would be interesting to quantify 
the effects of spatial misalignment on both parcellation-
based and whole-brain ICA-based fMRI traits in the 
large-scale UKB dataset.

In addition, our main analyses were based on 
parcellation-based full correlations. Although the FMRIB's 
ICA-based X-noiseifier (FIX) has been applied to the UKB 
dataset to remove scanner artifacts and motion effects, 
full correlation measures can be more sensitive to the 
remaining global artifacts and noises than partial correla-
tions (Feis et al., 2015; Griffanti et al., 2014). It is possible 
to further remove global artifacts by measuring the partial 
functional connectivity between paired brain regions after 
removing the dependency of other brain regions (Elliott 
et al., 2018). Future studies need to explore parcellation-
based partial correlation traits for a large number of par-
cels (such as the 360 regions in the Glasser360 atlas) 
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with a limited number of time points in the UKB study. 
Finally, we welcome user feedback and suggestions, 
which will help improve our project and resources to bet-
ter meet the needs of the fMRI research community.

DATA AND CODE AVAILABILITY

Our results and summary-level data can be downloaded 
and browsed at http://fmriatlas​.org/. The individual-level 
UK Biobank data can be obtained from https://www​
.ukbiobank​.ac​.uk/. The code used in this study is avail-
able at https://zenodo​.org​/record​/8235805.
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