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ABSTRACT

Functional magnetic resonance imaging (fMRI) has been widely used to identify brain regions linked to critical func-
tions, such as language and vision, and to detect tumors, strokes, brain injuries, and diseases. It is now known that
large sample sizes are necessary for fMRI studies to detect small effect sizes and produce reproducible results. Here,
we report a systematic association analysis of 647 traits with imaging features extracted from resting-state and task-
evoked fMRI data of more than 40,000 UK Biobank participants. We used a parcellation-based approach to generate
64,620 functional connectivity measures to reveal fine-grained details about cerebral cortex functional organizations.
The difference between functional organizations at rest and during task was examined, and we have prioritized
important brain regions and networks associated with a variety of human traits and clinical outcomes. For example,
depression was most strongly associated with decreased connectivity in the somatomotor network. We have made
our results publicly available and developed a browser framework to facilitate the exploration of brain function-trait
association results (http://fmriatlas.org/).

Keywords: brain function, functional connectivity, human traits, mental Health, resting fMRI, task fMRI, UK Biobank

1. INTRODUCTION When the subject is performing a specific task, fMRI can

detect brain signals and regions that link to the task

Functional magnetic resonance imaging (fMRI) is a nonin-
vasive and comprehensive method of assessing functional
organizations of the human brain. By measuring blood
oxygen level dependent (BOLD) signal changes, fMRI can
map complex brain functions and estimate neural correla-
tions between different brain regions (Power et al., 2011).

(Ogawa et al., 1990), which is known as task-evoked fMRI.
As an alternative, resting-state fMRI can observe brain sig-
nals during rest and measure intrinsic functional organiza-
tion without performing any tasks (Biswal et al., 1995).
Both task-evoked and resting-state fMRIs have been
widely used in clinical and epidemiological neuroscience
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research to explore the relationship between inter-individual
variations in brain function and human traits. For example,
resting-state functional abnormalities are frequently
observed in neurological and psychiatric disorders, such
as Alzheimer's disease (Agosta et al., 2012), attention-
deficit/hyperactivity disorder (ADHD) (Posner et al., 2014),
schizophrenia (Hu et al., 2017), and major depressive dis-
order (MDD) (Mulders et al., 2015). fMRI has also been
used to identify the influence of multi-system diseases and
complex traits, such as diabetes (Macpherson et al., 2017),
alcohol consumption (Ewing et al., 2014), and dietary
behaviors (Zhao et al., 2017), on brain functions.

A major limitation of most fMRI association studies has
been their small sample size, which is usually less than
one hundred or a few hundreds. As functional connectiv-
ity measures may be noisy and have large intra-subject
variations (Elliott et al., 2020), it may be difficult to repli-
cate fMRI-trait associations found in small studies (Marek
et al., 2022). This problem can be resolved statistically by
increasing the sample size of fMRI studies, which can
detect weaker signals and reduce the uncertainty of the
results. For example, Marek et al. (2022) showed that
when the sample size is larger than 2,000, brain-behavioral
phenotype associations can become more reproducible.
However, the high assessment costs of fMRI may make
it difficult to increase sample sizes sufficiently to collect
the necessary data in every study. In the last few years,
several large-scale fMRI datasets involving over 10,000
subjects have become publicly available, including the
Adolescent Brain Cognitive Development (Chaarani et al.,
2021) (ABCD), the Chinese Imaging Genetics (CHIMGEN)
(Xu et al., 2020), and the UK Biobank (Miller et al., 2016)
(UKB). Particularly, the UKB study collected a rich variety
of human traits and disease variables (Bycroft et al.,
2018), providing the opportunity to discover and validate
fMRI-trait associations in a large-scale cohort.

Based on fMRI data from more than 40,000 subjects in
the UKB study, we investigated resting-state and task-
evoked functional organizations and their associations
with human traits and health outcomes. By processing
raw fMRI images from the UKB study, we represented the
brain as a functional network containing 360 brain areas
in a parcellation (Glasser et al., 2016) developed using
the Human Connectome Project (Van Essen et al., 2013)
(HCP) data (referred to as the Glasser360 atlas, Fig. 1,
Fig. S1, and Table S1). The Glasser360 atlas contained
64,620 (360 x 359/2) full correlation measures to represent
the functional connections among 360 brain areas in 12
functional networks (Ji et al., 2019): the primary visual, sec-
ondary visual, auditory, somatomotor, cingulo-opercular,

default mode, dorsal attention, frontoparietal, language,
posterior multimodal, ventral multimodal, and orbito-
affective networks. Compared to the functional connec-
tome data provided by the UKB study, which were
generated from whole brain spatial independent compo-
nent analysis (ICA) (Alfaro-Almagro et al., 2018; Beckmann
& Smith, 2004; Hyvarinen, 1999), the parcellation-based
approach (like Glasser360) can provide more fine-grained
details of brain functional organizations.

We explored brain-trait associations by performing a
systematic analysis with 647 traits and diseases (selected
to represent a wide range of traits and health conditions)
using a discovery-validation design. Functional brain
regions and networks were found to be strongly associ-
ated with a range of disorders and complex traits. In
order to evaluate how the choice of parcellation may
impact our results, we additionally applied another par-
cellation (Schaefer et al., 2018) on the same datasets,
which divided the brain into 200 regions, referred to as
the Schaefer200 atlas (Fig. S2 and Table S2). We found
that the two parcellations can yield similar conclusions
and patterns, whereas the Glasser360 atlas can provide
more biological insights due to its finer partitioning. We
also explored the differences between resting-state and
task-evoked functional organizations, as well as age- and
sex-related effects. Numerous studies have investigated
the impacts of age and sex disparities on brain structures
and functions. However, the specific locations and pat-
terns of these identified differences can vary across stud-
ies (Ritchie et al., 2018; Scheinost et al., 2015). By
leveraging parcellation-based data from the comprehen-
sive UKB study, our aim is to provide a more in-depth
exploration of differences in resting-state functional con-
nectivity and their correlations with age and sex.

In order to facilitate the exploration of our extensive
results obtained from large-scale fMRI data, we have
developed an interactive browser tool, accessible at http://
fmriatlas.org/. This tool acts as a gateway for users to nav-
igate and delve deeper into our research findings. While
we will highlight several pivotal discoveries in the forth-
coming sections of the main body, we urge readers to con-
sult the Supplementary Materials and utilize our online tool
for a more comprehensive understanding and discovery of
additional patterns. It is worth noting that our bioinformat-
ics resource will be regularly updated and broadened to
include new findings and data. Future updates will encom-
pass integration with new brain parcellations, alternative
data processing pipelines, and the addition of future
large-scale fMRI datasets. These improvements will fur-
ther augment the tool's functionality, keeping it current
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and providing the research community with a continually
updated platform for the exploration of fMRI data.

2. MATERIALS AND METHODS
2.1. Brain imaging data

We generated functional connectivity measures from the
raw resting and task fMRI data downloaded from the
UKB data categories 111 and 106, respectively. Details of
image acquisition and preprocessing procedures were
summarized in the Supplementary Note. We mapped the

preprocessed images onto the Glasser360 atlas (Glasser
et al., 2016), which projected the fMRI data onto a brain
parcellation with 360 areas, resulting in a 360 x 360 func-
tional full correlation matrix for each subject (full correla-
tion). The Glasser360 atlas was originally a surface-based
parcellation (Dickie et al., 2019), and has been converted
into a volumetric atlas that is compatible with UKB data.
The 360 brain functional areas were grouped into 12
functional networks (Ji et al., 2019), including the primary
visual, secondary visual, auditory, somatomotor, cingulo-
opercular, default mode, dorsal attention, frontoparietal,
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language, posterior multimodal, ventral multimodal, and
orbito-affective (Table S1). The 64,620 (360 x 359/2) func-
tional connectivity measures were studied in our main
analyses. These high-resolution fMRI traits provided fine
details on cerebral cortex functional organization and
allowed us to compare the resting and task-evoked func-
tional organizations.

To investigate the potential cross-parcellation vari-
ability, we also projected the fMRI data onto the Schae-
fer200 atlas (Schaefer et al., 2018) and obtained the
200 x 200 functional connectivity matrices (full correla-
tion, Table S2). The resting and task fMRI data from the
HCP study were also used in our analysis. In addition to
functional connectivity measures, we generated ampli-
tude measures for the brain functional areas in the
Glasser360 atlas, which quantified the brain functional
activity (Alfaro-Almagro et al., 2018; Bijsterbosch et al.,
2017; Zou et al., 2008). Precise mathematical definitions
and previous examples of amplitude applications in UKB
and HCP studies can be found in Bijsterbosch et al.
(2017).

2.2. Consistency, reliability, and comparison of resting and task fMRI

Following the previous Glasser360 paper (Glasser et al.,
2016), we first checked the group mean maps of two inde-
pendent sets of UKB subjects (UKB phases 1 & 2 data and
UKB phase 3 data). In the UKB phase 3 data, we removed
the relatives of early phase subjects. We obtained the
group means for each functional connectivity measure
separately in the two datasets. To measure the similarity/
consistency of the two sets of group means, we calculated
their Pearson correlation. For both the resting and task
fMRI, the same analysis was conducted, and we also
compared the group mean maps between resting and task
fMRI by using Pearson correlation. Next, we evaluated the
intra-subject reliability by using repeated images. We gen-
erated and compared the group mean maps for the origi-
nal visit and repeated visit separately as we did in the
above two-phase analysis. For each functional connectiv-
ity measure, we also checked the individual-level differ-
ences by taking the Pearson correlation across all subjects
with two visits. Finally, we repeated the group mean and
intra-subject reliability analyses by using repeated scans in
the HCP study.

2.3. Age effects and sex differences analysis

Between 2006 and 2010, approximately half a million
participants aged 40 to 69 were recruited for the UKB

study. The UKB imaging study is an ongoing project to
re-invite 100,000 UKB participants to collect multi-modal
brain and body imaging data (Littlejohns et al., 2020). We
used the UKB phases 1 to 4 data (released up through
early 2021, n = 40,880 for resting fMRI and 34,671 for
task fMRI) in our analysis. The age (at imaging) range of
subjects was 44 to 82 (mean age = 64.15, standard
error = 7.74), and the proportion of females was 51.6%.
In the age and sex analysis, we fitted the following model
for each fMRI trait: y = x + z+ xzo. + wn + ¢, where y is the
standardized fMRI trait, x is the standardized age, z is
the sex factor (0 for female and 1 for male), w is the set of
adjusted covariates, B, is the main effect of x on y, B, is
the main effect of z on y, a is the effect of age-sex inter-
action term xz on y, n represents effects of covariates,
and e is the random error variable. We adjusted the fol-
lowing covariates: imaging site, head motion, head
motion-squared, brain position, brain position-squared,
volumetric scaling, height, weight, body mass index, heel
bone mineral density, and the top 10 genetic principal
components. For each continuous trait or covariate vari-
able, we removed values greater than five times the
median absolute deviation from the median. These
removed values will be treated as missing entries in the
dataset. We performed the analysis in a discovery-
validation design and only reported the results that were
significant in both discovery and validation datasets (at
different significance levels). Specifically, as in previous
studies (Zhao et al., 2022), we used the UKB white British
subjects in phases 1 to 3 data (n = 33,795 for resting and
28,907 for task) as our discovery sample. The assign-
ment of ancestry in UKB was based on self-reported eth-
nicity and has been verified in Bycroft et al. (2018). The
UKB non-British subjects in phases 1 to 3 data and the
individuals in newly released UKB phase 4 data (n = 5,961
for resting and 4,884 for task, removed relatives of the
discovery sample) were treated as the validation sample.
We reported P values from the two-sided t test and
focused on the results that were significant at the Bonfer-
roni significance level (7.73 x 107, 0.05/64,620 for the
Glasser360 atlas; and 2.51 x 10, 0.05/19,900 for the
Schaefer200 atlas) in the discovery dataset and were
also significant at nominal significance level (0.05) in the
validation dataset.

2.4, Trait-fMRI association analysis

For each fMRI trait, we performed linear regression with
647 phenotypes, which were selected to reflect a vari-
ety of traits and diseases across different domains



B. Zhao, T. Li, Y. Li et al.

Imaging Neuroscience, Volume 1, 2023

(Table S3). Specifically, there were 24 mental health
traits (Category 100060), 10 cognitive traits (Category
100026), 12 physical activity traits (Category 100054), 6
electronic device use traits (Category 100053), 8 sun
exposure traits (Category 100055), 3 sexual factor traits
(Category 100056), 3 social support traits (Category
100061), 12 family history of diseases (Category
100034), 21 diet traits (Category 100052), 9 alcohol
drinking traits (Category 100051), 6 smoking traits
(Category 100058), 34 blood biochemistry biomarkers
(Category 17518), 3 blood pressure traits (Category
100011), 3 spirometry traits (Category 100020), 20 early
life factors (Categories 135, 100033, 100034, and
100072), 9 greenspace and coastal proximity (Category
151), 2 hand grip strength (Category 100019), 13 resi-
dential air pollution traits (Category 114), 5 residential
noise pollution traits (Category 115), 2 body composi-
tion traits by impedance (Category 100009), 4 health
and medical history traits (Category 100036), 3 female
specific factors (Category 100069), 1 education trait
(Category 100063), 48 curated disease phenotypes
based on Dey et al. (2020), and 386 disease diagnoses
coded according to the International Classification of
Diseases (ICD-10, Category 2002). We selected all dis-
eases in Category 2002 that had at least 100 patients in
our resting fMRI imaging cohort.

For all traits, we adjusted for the effects of age (at
imaging), age-squared, sex, age-sex interaction, age-
squared-sex interaction, imaging site, head motion,
head motion-squared, brain position, brain position-
squared, volumetric scaling, height, weight, body mass
index, heel bone mineral density, and the top 10
genetic principal components. Similar to the age and
sex analysis, we used the UKB white British subjects in
phases 1 to 3 data (n = 33,795 for resting and 28,907
for task) as our discovery sample and validated our
results in the hold-out independent validation dataset
(n = 5,961 for resting and 4,884 for task, removed rela-
tives of the discovery sample). We reported P values
from the two-sided t test and prioritized the results that
were significant at the false discovery rate (FDR) level
of 5% in the discovery dataset and were also signifi-
cant at the nominal significance level (0.05) in the vali-
dation dataset. In comparison to the conservative
Bonferroni correction, the popular FDR multiple testing
procedure (Benjamini & Hochberg, 1995) was more
powerful and was consistent with the exploratory
nature of our fMRI-trait analysis. Thus, we mainly used
FDR multiple testing control in this paper and the sub-
set of associations that further passed the stringent

Bonferroni significance level were also provided in
our website.

2.5. Prediction models with multiple data types

We built prediction models for fluid intelligence using
multi-modality neuroimaging traits, including 64,620
resting fMRI traits, 64,620 task fMRI traits, 215 DTI
parameters from dMRI (Zhao et al.,, 2021), and 101
regional brain volumes from sMRI (Zhao et al., 2019).
After removing relatives according to Bycroft et al.
(2018), we randomly partitioned the white British imag-
ing subjects into three independent datasets: training
(n=20,270), validation (n = 6,764), and testing (n =6,761).
The effect sizes of imaging predictors were estimated
from the training data (n = 20,270). We removed the
effects of age, age-squared, sex, age-sex interaction,
age-squared-sex interaction, imaging site, head motion,
head motion-squared, brain position, brain position-
squared, volumetric scaling, height, weight, body mass
index, heel bone mineral density, and the top 10 genetic
principal components.

We also integrated other data types into our prediction
model, including genetic variants and several categories
of traits studied in our trait-fMRI association analysis
(Table S4). For non-neuroimaging traits, the effect sizes
were estimated from all UKB white British subjects
except for the ones in validation and testing data (after
removing relatives). We adjusted for all the covariates
listed above for neuroimaging traits, except for the
imaging-specific variables including imaging site, head
motion, volumetric scaling, and brain position. The
genetic effects were estimated by fastGWA (Jiang et al.,
2019) and were aggregated using polygenic risk scores
via lassosum (Mak et al., 2017). We downloaded imputed
genotyping data (Category 100319) and performed the
following quality controls (Zhao et al., 2019): 1) excluded
subjects with more than 10% missing genotypes; 2)
excluded variants with minor allele frequency less than
0.01; 3) excluded variants with missing genotype rate
larger than 10%; 4) excluded variants that failed the
Hardy-Weinberg test at 1 x 107 level; and 5) removed
variants with imputation INFO score less than 0.8. All
non-genetic predictors (including neuroimaging traits)
were modeled using ridge regression via glmnet
(Friedman et al., 2010) (R version 3.6.0). All model param-
eters were tuned in the validation dataset, and we evalu-
ated the prediction performance on the testing data by
calculating the correlation between the predicted values
and the observed ones.
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3. RESULTS

3.1. Consistency and reliability of the cerebral cortex functional
organizations

We examined the consistency and reliability of functional
connectivity using annotations from the Glasser360 atlas
in the UKB study. As in Glasser et al. (2016), we first com-
pared the group means of two independent sets of UKB
subjects: the UKB phases 1 and 2 data (imaging data
released up through 2018 (Zhao et al., 2021), n = 17,374
for resting and 15,891 for task) and the UKB phase 3 data
(data released in early 2020, n = 16,852 for resting and
13,232 for task, removing the relatives of subjects in early
released data). Figure S3 illustrates the consistent spatial
patterns of functional connectivity across the two inde-
pendent groups. Similar to previous studies of other data-
sets (Chaarani et al., 2021; Glasser et al., 2016; Herting
et al., 2018), the group mean maps in the two indepen-
dent datasets of the UKB study were highly similar, with
the correlation (r) across the 64,620 functional connectiv-
ity being 0.996 in resting fMRI and 0.994 in task fMRI.
These results may suggest that the HCP-trained parcella-
tion can provide a set of well-defined and biologically
meaningful brain functional traits in the UKB datasets.
Next, we evaluated the intra-subject reliability of the
Glasser360 atlas using the repeat scans from the UKB
repeat imaging visit (n = 2,771 for resting and 2,014 for
task, average time between visits = 2 years). We performed
two analyses. The first analysis is to compare the group
mean maps of the original imaging visit to those of the
repeat visit. Group means were highly consistent between
the two visits, with a correlation of 0.997 and 0.994 for
resting and task fMRIs, respectively (ranges across differ-
ent networks were [0.995, 0.999] for resting and [0.987,
0.998] for task, Fig. S4). The second analysis quantified
individual-level differences between the two visits. Specif-
ically, we evaluated the reliability of each functional con-
nectivity by calculating the correlation between two
observations from all revisited individuals. Overall, the cor-
relation was r = 0.37 (standard error = 0.11) for resting fMRI
and r = 0.31 (standard error = 0.08) for task fMRI (Fig. S5).
The correlation of within-network connectivity was gener-
ally high in resting fMRI (Fig. 2A, mean r = 0.46). During
task fMRI, the overall correlation was decreased (mean
r = 0.32) and the secondary visual and posterior multi-
modal networks exhibited higher functional connectivity
on average than others. In addition, the connectivity within
activated functional areas (defined by group-level Z-
statistic maps, Supplementary Note) showed a higher cor-
relation than that within nonactivated areas (Figs. 2B and

S6A, mean r = 0.40 vs. 0.30, P < 2.2 x 10'%). The majority
of the above-defined activations occurred in the second-
ary visual, dorsal attention, and somatomotor networks.
Furthermore, we examined the reliability of amplitude
measures of fMRI (Alfaro-Almagro et al., 2018; Bijsterbosch
et al., 2017; Zou et al., 2008), which quantified the func-
tional activity within each of the 360 brain areas. The aver-
age amplitude correlation was r = 0.60 (standard
error = 0.08) for resting fMRI and r = 0.45 (standard
error = 0.07) for task fMRI (Fig. 2C). In accordance with the
findings in functional connectivity, the reliability of ampli-
tude measurements of activated areas in task fMRI was
higher than that of nonactivated areas (Fig. 2D, mean
r=0.49vs.0.43,P=1.1x10"9).

Finally, we compared the spatial patterns of UKB and
HCP studies. The correlation between UKB and HCP was
r =0.90 for resting fMRI and r = 0.78 for task fMRI in the
group mean analysis (Fig. S7). These results demonstrate
a substantial level of overall consistency between the typ-
ical subjects in a healthy young adult cohort and those of
middle age and older age. We also examined the reliability
of functional connectivity in the Glasser360 atlas using
the repeated scans in the HCP study (n = 1075, average
time between two scans = 1 day). The average correlation
was r = 0.40 (standard error = 0.09) for resting fMRI and
r =0.22 (standard error = 0.11) for task fMRI (the emotion
task) (Fig. S6B). These results show that the two studies
have similar reliability, suggesting that the quality of fMRI
traits in the biobank-scale UKB study is comparable to
that of the HCP project. Similar to the UKB study, the con-
nectivity among activated functional areas (defined by
group-level Z-statistic maps, Supplementary Note) had
higher reliability than the nonactivated connectivity in
HCP task fMRI (Fig. S6C, mean r = 0.382 vs. 0.225,
P < 2.2 x 107%). In general, the excellent group mean map
consistency, as well as the similar reliability between the
UKB and the HCP studies, provides confidence that the
Glasser360 atlas will be able to consistently annotate the
functional organization of typical subjects in a healthy
population. On the other hand, the relatively low intra-
subject reliability of fMRI matches previous findings (Elliott
et al., 2020), which may suggest that a large sample size
is needed to produce reproducible association results in
downstream analyses (Marek et al., 2022).

3.2. Comparison of resting-state and task-evoked functional
organizations

The correlation between resting fMRI and task fMRI
group mean maps was 0.754 in the UKB study and 0.782
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in the HCP study, indicating the high degree of similarity
between intrinsic and extrinsic functional organizations
(Fig. S7). Resting-task differences were observed across
different networks. For example, in the auditory network,
task fMRI revealed stronger intra-hemispheric connec-
tions than resting fMRI (mean = 0.482 vs. 0.314,
P = 5.6 x 10"), while the inter-hemispheric connections
in task fMRI generally weakened (mean = 0.214 vs. 0.280,
P = 8.0 x 10°%). Task-related changes were more complex
in the default mode network. To summarize the patterns,
we grouped the 77 areas in the default mode network
into seven clusters, mainly based on their physical loca-
tions. We found that functional connectivity within the
frontal, visual, and hippocampal clusters was stronger in
task fMRI than in resting fMRI (mean = 0.314 vs. 0.384,
P =1.7 x 10, while the connectivity between the frontal

and the other two clusters decreased (mean = 0.191 vs.
0.086, P < 2.2 x 10°'%). Moreover, the frontal cluster of the
default mode network can be further divided into two
subclusters: the first subcluster consisted of left/right 9a,
9m, 9p, 8BL, 8Ad, and 8Av areas, mainly in the dorsolat-
eral superior frontal gyrus (referred to as the dorsolateral
superior subcluster); and the second one included left/
right 10v, 10r, p32, a24, and 10d areas in the medial
orbital superior frontal gyrus and pregenual anterior cin-
gulate cortex (referred to as the medial orbital superior
subcluster). The dorsolateral superior subcluster had
decreased connectivity with the areas in other clusters of
the default mode network in task fMRI, especially those
in the temporal cluster. On the other hand, the medial
orbital superior subcluster had a greater level of connec-
tivity with a few other areas of the default mode network
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when performing the task, especially with the orbitofron-
tal complex (OFC) cluster and the neighboring 10pp area.
Furthermore, the visual cluster maintained strong intra-
cluster connectivity during the task, whereas its connec-
tivity with the angular, frontal, and temporal clusters
decreased (mean = 0.271 vs. 0.177, P < 2.2 x 1079),

Several areas of the secondary visual network were
less connected to other visual areas when the task was
performed, including the left/right V6A (in the superior
occipital), V6 (in the cuneus), VMV1 (in the lingual gyrus),
and VMV2 (in the lingual and fusiform gyrus). Interest-
ingly, some of these visual areas, such as the left/right
V6, had increased functional connectivity with the default
mode network. There was also an increase in connec-
tions between the default mode network and other major
cognitive networks, such as the cingulo-opercular and
frontoparietal. For the somatomotor network, the insula-
related areas (including left/right Ig, FOP2, OP2-3, and
right RI) had reduced connections with other somatomo-
tor areas in task fMRI. Similar to the auditory network, the
inter-hemispheric connectivity in the cingulo-opercular
network decreased in task fMRI. Additionally, we found
that the dorsal attention, frontoparietal, and language
networks had similar functional connectivity patterns in
resting and task fMRI. In summary, our results confirm
the similarity of functional structures between resting and
task fMRI, while also identifying specific patterns of dif-
ferences. These network-specific patterns can be explored
on our website http://fmriatlas.org/.

3.3. Age effects and sex differences in functional organizations

By using the large-scale fMRI data, we quantified the age
and sex effect patterns on resting and task functional
organizations. We used unrelated white British subjects
in UKB phases 1 to 3 data release (until early 2020) as our
discovery sample (n = 33,795 for resting and 28,907 for
task) and validated the results in an independent hold-out
dataset, which included non-British subjects in UKB
phases 1 to 3 data release and all subjects in UKB phase
4 data release (early 2021 release, removed the relatives
of our discovery sample, n = 5,961 for resting and 4,884
for task). The full list of the adjusted covariates can be
found in the Methods section. Below, we highlighted the
results passing the stringent Bonferroni significance level
(7.73 x 107 = 0.05/64,620) in the discovery dataset and
being significant at the nominal significance level (0.05) in
the validation dataset.

There were widespread age effects on functional con-
nectivity of resting and task fMRI, and network- and area-

specific details were revealed (Fig. S8A-B). For example,
as age increased, the connections within the auditory,
secondary visual, somatomotor, language, and cingulo-
opercular networks were generally weaker. Some areas
had particularly large age effects, such as the left/right
Pol2 (the posterior insular area 2) areas in the cingulo-
opercular network. However, both positive and negative
age effects were observed in the frontoparietal and
default mode networks (Fig. S9). For example, the left/
right POS2 (the parieto-occipital sulcus area 2) areas in
the frontoparietal network and left/right POS1 (the
parieto-occipital sulcus area 1) areas in the default mode
network had strong aging effects. Negative age effects in
the default mode network were strongest in the hippo-
campal cluster, such as the left/right PHA1 (the parahip-
pocampal area 1) areas.

In task fMRI, age effects were different from those in
resting fMRI. We highlighted a few patterns. First, the age
effects in the auditory network were mainly on the inter-
hemispheric connections, where the connectivity between
the left and right hemispheres decreased with aging. Sim-
ilarly, the inter-hemispheric connectivity between the
auditory and cingulo-opercular networks declined as we
aged. The age effects on intra-hemispheric connections
were much weaker. Except for a few areas (such as the
right 8Ad and right PEF), most areas in the cingulo-
opercular and default mode networks had reduced func-
tional connectivity with aging (Fig. S10). On the other
hand, most of the functional connectivity in the secondary
visual network increased with aging, especially the left/
right V3A and V6A areas in the superior occipital gyrus.
There were both positive and negative effects of aging on
other networks, such as somatomotor, frontoparietal, and
dorsal attention. Overall, these results describe the
detailed age effect pattern for functional organizations at
rest and during task performance.

We also examined the age effects on amplitude mea-
sures. In resting fMRI, age-related decreases in brain
activity were observed in most brain areas, with the
strongest effects in left and right PreS areas (the pre-
subiculum, a subarea of the parahippocampal region,
B <-0.222, P < 5.01 x 10", Fig. 3A). In task fMRI, how-
ever, both strong positive and negative effects on brain
activity were widely observed (Fig. 3B). Because wide-
spread age effects were detected on both functional
connectivity and amplitude traits, we examined the con-
ditional age effects on functional connectivity traits after
additionally including amplitude traits as covariates. After
adjusting for amplitude traits, most of the age effects on
functional connectivity traits became much smaller and
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Fig. 3. Spatial pattern of age and sex effects on brain functional organizations. We illustrate the spatial pattern of

age effects on amplitude measures in (A) for resting fMRI and in (B) for task fMRI. See Table S1 for information on the
labeled brain areas. (C) and (D) display the spatial pattern of sex effects on amplitude measures of resting and task fMRl,
respectively. We labeled the brain areas with the strongest age and sex effects in amplitude measures.

were not significant at the Bonferroni significance level,
especially in resting fMRI (Fig. S11). For example,
although a few of the strongest amplitude-adjusted age
effects remained significant, most of the other moderate
amplitude-adjusted age effects failed to pass the Bonfer-
roni significance level in the default mode network. Over-
all, these results for amplitude traits indicate that age has
a significant effect on the variation of amplitude traits
across subjects, which may also be carried over to func-
tional connectivity traits (Bijsterbosch et al., 2017).
Functional connectivity patterns differed between
males and females. We found widespread sex differ-
ences across different resting fMRI networks, with the
strongest differences occurring in the somatomotor net-
work (Fig. S8C). Males had stronger functional connectiv-

ity in the somatomotor and auditory networks as well as
a few specific areas, including the left/right VIP (in the
superior parietal gyrus), LIPv (in the superior parietal
gyrus), PH (in the inferior temporal gyrus), and V6A (in the
superior occipital gyrus) of the secondary visual network,
the left/right PFcm (in the superior temporal gyrus) and
43 (in the rolandic operculum) of the cingulo-opercular
network, the left/right a9-46v and p9-46v (both in the
middle frontal gyrus) of the frontoparietal network, and
the left/right PGp (in the middle occipital gyrus) of the
dorsal attention network. In the default mode network,
the sex difference had a complicated pattern. Specifi-
cally, males had stronger connectivity in the hippocampal
and OFC clusters, especially in the left 47m area of the
posterior orbital gyrus. On the other hand, females had
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stronger connectivity in many other areas of the default
mode network (Fig. S12).

We observed significant sex differences in task fMRI
within several brain regions. These include the right V6A
(located in the superior occipital gyrus) and left VMV2
(found in the lingual and fusiform gyrus) within the sec-
ondary visual network, the left/right PHAS (situated in the
fusiform gyrus) within the dorsal attention network, and
the left/right RSC (located in the middle cingulate cortex)
of the frontoparietal network (P < 7.73 x 107, refer to
Fig. S13A-C). Within the language, auditory, and soma-
tomotor networks, males exhibited stronger functional
connectivity than females in numerous brain regions
(see Fig. S13D-F). Additionally, males had stronger con-
nectivity in the hippocampal and frontal areas of the
default mode network, whereas females had stronger
connectivity between the visual cluster and the frontal
cluster (Fig. S14). As for the amplitude measures, females
had stronger brain activity in many areas of the default
mode network, whereas males had stronger brain activ-
ity in most other networks in resting fMRI (Fig. 3C). Sex
differences were generally reduced in task fMRI ampli-
tude measurements (Fig. 3D). Lastly, we estimated the
amplitude-adjusted sex effects on functional connectivity
traits by additionally controlling for the amplitude traits as
covariates. Similar to the findings of the age effects, the
majority of amplitude-adjusted sex effects on functional
connectivity traits can be explained by amplitude traits,
such as in the somatomotor and default mode networks
(Fig. S15).

3.4. An atlas of trait associations with cerebral cortex functional
areas

We aimed to explore the associations between resting
and task functional organizations and 647 phenotypes.
Similar to the age and sex analyses, we used unrelated
white British subjects in UKB phases 1 to 3 data release
as the discovery sample (n = 33,795 for resting and
28,907 for task) and validated the results in an indepen-
dent hold-out dataset (n = 5,961 for resting and 4,884 for
task). We prioritized significant associations that sur-
vived at the FDR 5% level in the discovery sample and
remained significant at the nominal significance level
(0.05) in the validation sample. Among the 647 traits, 120
had at least one significant association with resting fMRI
functional connectivity measures, among which 82 fur-
ther survived the Bonferroni significance level (7.73 x 10
7,0.05/64,620) (Table S3). We detail below the patterns of
associations relating to mental health, cognitive function,
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and disease status. For the complete set of results, please
visit http://165.227.92.206/traitList.html.

We observed strong associations between resting
fMRI and multiple mental health traits, including risk-
taking, depression, MDD, and neuroticism. Enrichments
in specific networks and brain areas were observed. For
example, risk-taking (Data field 2040) was strongly posi-
tively associated with the somatomotor network and the
connections between the somatomotor and visual net-
works (Fig. 4A). Risk-taking was also negatively associ-
ated with the functional connections of the default mode
network. Functional connectivity of sensory/motor areas
was recently found to be positively associated with risk-
taking (Rolls et al., 2022), and our findings were consis-
tent with the “sensory-motor-cognitive” mode of brain
functional amplitude changes related to aging (Smith
et al., 2020). In addition, depression was mostly associ-
ated with reduced connectivity in the somatomotor and
cingulo-opercular networks (curated disease phenotype
based on ICD-10 codes, Fig. 4B). Consistent patterns
were also observed in MDD (ICD-10 code F329), nervous
feelings (Data field 1970), seen doctor for nervous anxiety
tension or depression (Data field 2090), neuroticism score
(Data field 20127), and suffer from nerves (Data field
2010).

Multiple cognitive traits were associated with func-
tional connectivity in fMRI, such as fluid intelligence (Data
field 20016), the number of puzzles correctly solved
(Data field 6373), duration to complete alphanumeric
path (Data field 6350), and maximum digits remembered
correctly (Data field 4282). These cognitive traits showed
different association patterns. Fluid intelligence, for
example, was associated with functional connectivity in
the auditory, language, cingulo-opercular, dorsal atten-
tion, and default mode networks; most of the associa-
tions were positive (Fig. 5A). The duration to complete the
alphanumeric path was mainly negatively associated with
functional connectivity in the secondary visual network
(Fig. S16A); the number of puzzles correctly solved was
mostly related to the functional connectivity within the
default mode, somatomotor, and secondary visual net-
works (Fig. S16B); and the maximum digits remembered
correctly were positively related to the auditory and lan-
guage networks (Fig. S16C). The links between brain
function and several other brain-related complex traits
were detected, such as the strong connections between
handedness (Data field 1707) and the cingulo-opercular
network (Fig. S16D). Resting functional connectivity was
also widely associated with lifestyle and environmental
traits, including physical activity, electronic device use,
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Fig. 4. Selected complex traits that were associated with brain functional organizations. (A) Associations between
risk-taking (Data field 2040) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can

be viewed in an interactive version at http://165.227.92.206/trait/trait85.html. (B) Associations between depression
(curated disease phenotype) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can
be viewed in an interactive version at http://165.227.92.206/trait/trait230.html. We illustrated the estimated correlation
coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and were also significant at the
nominal significance level (0.05) in the validation dataset (n = 5,961). (C) and (D) display the spatial pattern of associations
with amplitude measures of resting fMRI for risk-taking and depression, respectively. Brain areas with the strongest
associations were labeled. See Table S1 for information on these areas.
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Fig. 5. Selected complex traits that were associated with brain functional organizations. (A) Associations between fluid
intelligence (Data field 20016) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas

can be viewed in an interactive version at http://165.227.92.206/trait/trait158.html. (B) Associations between time spent
watching TV (Data field 1070) and functional connectivity of resting fMRI. This figure and the top-ranked brain areas can
be viewed in an interactive version at http://165.227.92.206/trait/trait101.html. We illustrated the estimated correlation
coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and were also significant at the
nominal significance level (0.05) in the validation dataset (n = 5,961). (C) and (D) display the spatial pattern of associations
with amplitude measures of resting fMRI for fluid intelligence and time spent watching TV, respectively. Brain areas with
the strongest associations were labeled. See Table S1 for information on these areas.
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smoking, diet, alcohol, and sun exposure. For example,
watching television (TV) for longer periods of time (Data
field 1070) may weaken functional connectivity in the
somatomotor and visual networks as well as strengthen
functional connectivity in the default mode network
(Fig. 5B).

Strong associations between increased functional
connectivity and cardiovascular diseases were identified,
including atrial fibrillation (curated disease phenotype
and ICD-10 code 148), vascular/heart problems diag-
nosed by doctor (Data field 6150), and hypertension
(curated disease phenotype and ICD-10 code [10). Atrial
fibrillation is the most common clinically significant
arrhythmia, and increasing evidence suggests it is asso-
ciated with cognitive decline and dementia (Alonso & de
Larriva, 2016). We found that atrial fibrillation was widely
associated with functional connectivity across different
networks (Fig. S17A-B). Hypertension and vascular/heart
problems were associated with reduced functional con-
nectivity in the auditory, somatomotor, secondary visual,
and cingulo-opercular networks (Fig. S17C-D). Hyperten-
sion is a major risk factor for vascular dementia and Alz-
heimer’s disease and altered functional connections may
reflect the early effects of vascular risk factors on brain
functions (Carnevale et al., 2020).

In task fMRI, 96 traits had at least one significant asso-
ciation at the FDR 5% level (and significant at the nominal
level in the validation dataset), and 59 further survived the
Bonferroni significance level (7.73 x 107 = 0.05/64,620)
(Table S3). Of the 96 traits, 69 were also significantly asso-
ciated with resting fMRI at the 5% FDR level. The associ-
ation patterns in task and resting fMRI were very similar
for a few traits, such as atrial fibrillation (Fig. S18). For
many traits, however, we observed different patterns in
resting and task fMRI, including fluid intelligence (Fig.
S19A-B) and the number of puzzles correctly solved
(Fig. S19C-D) (P < 2.2 x 107'%). For example, both fluid
intelligence and the number of solved puzzles were posi-
tively associated with intra-hemispheric connections of
the auditory network in task fMRI, whereas no or negative
associations were observed with inter-hemispheric con-
nections. There were similar intra- and inter-hemispheric
connection differences in the cingulo-opercular network.

We also quantified the association patterns with ampli-
tude traits and prioritized brain areas whose functional
activity was related to traits and diseases. We observed
similar patterns to the functional connectivity results. For
example, risk-taking has the strongest associations with
the brain activity of the postcentral gyrus in the somato-
motor network, especially the primary somatosensory cor-
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tex (Rolls et al., 2022) (Fig. 4C, p > 0.033, P < 8.14 x 10F).
The postcentral gyrus, insula, and Rolandic operculum
areas of the somatomotor network were most negatively
related to depression (Fig. 4D, B <-0.036, P < 7.10 x 107).
All significant associations with fluid intelligence were
positive, with the top three areas being the middle cingu-
late, anterior cingulate, and orbital part of the inferior fron-
tal gyrus (IFG pars orbitalis) in the default mode network
(Fig. 5C, B > 0.053, P < 1.31 x 10"?). Time spent watching
TV was strongly negatively associated with the postcen-
tral gyrus, precentral gyrus, paracentral lobule, and the
supplementary motor area in the somatomotor network
(Fig. 5D, B < -0.050, P < 2.03 x 1072).

3.5. Alternative analyses using the Schaefer200 atlas

The brain parcellation may play a crucial role in the defi-
nition of the brain functional network and affect the
results of downstream analysis (Popovych et al., 2021).
To explore the impact of parcellation choice on the large-
scale UKB study, we additionally applied another parcel-
lation (the Schaefer200 atlas (Schaefer et al., 2018)) and
repeated our analysis of the same set of subjects. Briefly,
the Schaefer200 atlas partitioned the brain into 200
regions, resulting in 19,900 pairwise functional full cor-
relation measures (200 x 199/2). We mapped the 200
regions onto the same 12 networks used in the Glasser360
atlas (Table S2).

The average reliability in the Schaefer200 atlas was
r = 0.387 (standard error = 0.10) for resting fMRI and
r=0.312 (standard error = 0.07) for task fMRI, which was
in the same range as the Glasser360 atlas. Figure S20
compares the reliability of the two parcellations. Glasser360
and Schaefer200 atlases showed similar patterns across
a variety of networks, with the largest differences being
observed in the secondary visual network, where the
Glasser360 atlas was more reliable. In addition, consis-
tent spatial patterns of functional connectivity were
observed in the two parcellations, although the strength
of connectivity was slightly higher in the Schaefer200
atlas, which may partly be explained by the smaller num-
ber of brain areas (Fig. S21). These results demonstrate
the good generalizability of functional organizations mod-
eled by the Glasser360 atlas.

We evaluated the age and sex effects in the Schae-
fer200 atlas. Figure S22 compares the age effect patterns
in the Schaefer200 and Glasser360 atlases. In both
atlases, decreasing resting functional connectivity was
consistently associated with aging, especially in the audi-
tory, cingulo-opercular, and somatomotor networks. The
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main difference was in the secondary visual network,
where the age effects in the Glasser360 atlas were stron-
ger than those in the Schaefer200 atlas. This finding may
be attributed to the lower reliability of the Schaefer200
atlas in the secondary visual network, suggesting that the
Glasser360 atlas may be more suitable for studying the
brain connectivity of the visual cortex. In addition, con-
sistent intra- and inter-hemispheric association differ-
ences in task fMRI were observed. The Schaefer200 and
Glasser360 atlases also showed similar sex effect pat-
terns, in which the strongest effects were both detected
in the somatomotor and auditory networks (Fig. S23).

Next, we repeated the association analysis with the
647 traits. In resting fMRI, 131 traits had at least one
significant association at the FDR 5% level and 83
further passed the Bonferroni significance level (2.51 x
10 = 0.05/19,900, also passing the nominal significa-
nce level (0.05) in the independent validation dataset,
Table S3). Of the 120 traits with significant associations
in the Glasser360 atlas analysis, 109 (90.83%) were also
significant in the Schaefer200 atlas analysis. Addition-
ally, the association maps were largely consistent in the
two atlases. For example, time spent watching TV was
consistently associated with decreased functional con-
nections of the somatomotor and visual networks, as
well as increased functional connectivity in the default
mode network (Fig. S24A-B). Moreover, fluid intelligence
was consistently linked to increased functional connec-
tivity, particularly in the language and auditory networks
(Fig. S24C-D). In both atlases, depression was associ-
ated with reduced functional connectivity in the soma-
tomotor and cingulo-opercular networks (Fig. S25). At
the FDR 5% level, 90 traits showed significant associa-
tions with task fMRI, including 76 of the 96 (79.2%)
traits that were significant in the Glasser360 atlas analy-
sis. All these results are available on our website. In
summary, the Schaefer200 atlas results agree well with
those of the Glasser360 atlas, indicating that the pat-
terns observed in our Glasser360 analysis are not
parcellation-specific.

Finally, we examined the trait associations with 1,701
functional connectivity traits based on the whole brain
spatial ICA (Alfaro-Almagro et al., 2018; Beckmann &
Smith, 2004; Hyvarinen, 1999) approach in resting fMRI.
These ICA functional connectivity traits were available
from the UK Biobank data release (https://www.fmrib.ox
.ac.uk/ukbiobank/index.html, Data fields 25752 and
25753), which were partial correlations and the timeseries
were estimated from group ICA maps via the dual regres-
sion (Alfaro-Almagro et al., 2018). Of the 647 traits, 76
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demonstrated at least one significant association at the
FDR 5% level and 58 remained significant at the Bonfer-
roni significance level (2.94 x 10°% = 0.05/1,701, also
passing the nominal significance level in the independent
validation dataset). Among the 76 ICA-significant traits,
65 (85.53%) were also significant in the above Glasser360
atlas analysis. Compared to the ICA-derived ftraits,
parcellation-based traits from the Glasser360 atlas (which
identified significant associations with 120 complex traits
at the FDR 5% level and 82 at the Bonferroni significance
level) were able to detect associations with more traits.
In addition, we ranked the 58 ICA-significant complex
traits (at the Bonferroni significance level) by the number of
their significant associations with ICA-derived traits. Then,
we compared the association strengths of the top 10 traits
with ICA-derived traits and those with Glasser360 traits.
On these 10 traits, ICA-derived traits and Glasser360 traits
showed similar levels of association strength (Fig. S26).
For example, many ICA-derived and Glasser360 traits
were found to be significantly associated with systolic
blood pressure (Data field 4080), and most of these asso-
ciations were in a similar range of effect size (Fig. S27).
These results align with the results of a recent study on the
functional connectome signature of blood pressure (Jiang
et al., 2023). The results of Glasser360 traits indicate that
the auditory and somatomotor networks may be more
strongly associated with systolic blood pressure than other
networks. These networks and areas may be targeted
when studying hypertension-related cognitive dysfunction
and brain functional damages (Carnevale et al., 2020;
Naumczyk et al., 2017). In summary, parcellation-based
traits may reveal more network- and area-level details with
comparable association strength to ICA-derived traits.

3.6. Fluid intelligence prediction by integrating multiple data types

Our association analyses demonstrate the potential value
of large-scale fMRI data for a variety of complex traits and
disorders in clinical and epidemiological research. For
example, it is of great interest to construct prediction mod-
els by integrating fMRI data and other data types (He et al.,
2020; Pervaiz et al., 2020; Shen & Thompson, 2019). Fluid
intelligence is a key indicator of cognitive ability and is
associated with multiple neurological and neuropsychiat-
ric disorders (Keyes et al., 2017). In this section, we per-
formed prediction for fluid intelligence using neuroimaging
traits from multiple modalities, including resting fMRI, task
fMRI, diffusion MRI (dMRI) (Zhao et al., 2021), and struc-
tural MRI (sMRI) (Zhao et al., 2019). We further integrated
these neuroimaging data with a wide range of other data
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types, including common genetic variants, biomarkers,
local environments, early life factors, diet, and behavioral
traits. The relative contributions and joint performance of
these data types were assessed in a training, validation,
and testing design. All model parameters were tuned using
the validation data and we evaluated the prediction perfor-
mance on the independent testing data by calculating the
correlation between the predicted values and the observed
intelligence, while adjusting for the covariates listed in the
Methods section.

The prediction performance of multi-modality neuro-
imaging traits was summarized in Figure 6A. The predic-
tion correlation of resting fMRI was 0.272 (standard
error = 0.012), suggesting that about 7.4% variation in
fluid intelligence can be predicted by resting fMRI con-
nectivity. The prediction correlation was similar in task
fMRI (correlation = 0.279) and was improved to 0.333 by
jointly using resting and task fMRI, which suggests that
resting and task fMRI had different contributions to
intelligence prediction. This improvement aligned with
previous results reported in the HCP and Philadelphia
Neurodevelopmental Cohort (PNC) studies (Gao et al.,
2019), and matched our association results where both
resting and task fMRI showed strong associations with
fluid intelligence with different spatial patterns. In addi-
tion, the dMRI and sMRl traits had much lower prediction
accuracy than fMRl traits. Specifically, the prediction cor-
relation was 0.09 for diffusion tensor imaging (DTI)
parameters of dMRI and 0.08 for regional brain volumes
of sMRI. Moreover, adding these structural traits in addi-
tion to fMRI traits did not substantially improve the pre-
diction performance (correlation = 0.342), indicating the
prediction power of brain structural traits for intelligence
can be largely captured by the functional traits.

Next, we examined the prediction performance of non-
neuroimaging data types (Fig. 6B). The prediction correla-
tion of intelligence genetic polygenic risk score was 0.232
(standard error = 0.013), which was slightly lower than the
performance of resting fMRI. Several categories of life-
style and environmental traits had strong predictive power,
including physical activity (correlation = 0.205), sun expo-
sure (correlation = 0.193), and diet (correlation = 0.153).
Moreover, biomarkers, disease records, and early life
factors all had significant predictive performance, with
prediction correlations being 0.067, 0.087, and 0.156,
respectively. By combining all these non-neuroimaging
data types, the prediction correlation increased to 0.381.
The performance was further improved to 0.440 by includ-
ing neuroimaging data, which was much higher than when
using only one type of data.
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To explore whether the predictive power of non-
neuroimaging traits can be explained by brain structural
and functional variations, we evaluated their conditional
predictive performance on fluid intelligence after con-
trolling for neuroimaging traits. There was a reduction of
performance on multiple categories of non-neuroimaging
predictors, suggesting their effects on intelligence may
be indirect and partially mediated by brain structure
and function (Fig. 6C and Table S4). For example, the
prediction performance of the polygenic risk score
decreased from 0.232 to 0.186, indicating that 19.8% of
the genetic predictive power on intelligence can be cap-
tured by brain structural and functional variations mea-
sured by brain MRI. The proportion was 28.3% for
physical activity, 23.1% for diet, and 28.6% for early life
factors. Overall, these results illustrate that neuroimag-
ing traits, especially the ones from resting and task fMRI,
are powerful predictors of cognitive function. Future
studies can integrate genetic, biomarker, behavioral/
environmental factors, and multi-modality MRI data for
better prediction of brain-related complex traits and dis-
orders.

4. DISCUSSION

Inter-individual variations in brain function and their rela-
tionship to human health and behavior are of great inter-
est. The intra-individual reliability of brain fMRI traits is
generally low, although the group-level consistency is
high (Chaarani et al., 2021; Elliott et al., 2020; Herting
et al., 2018; Noble et al., 2021). Then, it has been sug-
gested that a large sample size is needed for fMRI stud-
ies to detect trait associations with small effect sizes
(Kennedy et al., 2021; Smith & Nichols, 2018). The UKB
study provided an extensive biobank-scale data resource
for quantifying fMRI associations with many phenotypes.
The present study conducted a systematic analysis of
intrinsic and extrinsic functional organizations with a
parcellation-based approach using fMRI data collected
from over 40,000 individuals. We measured differences
between resting and task fMRI, investigated age and sex
effects on brain function, and examined the cross-
parcellation variability of our findings. We explored the
fMR’s association with 647 traits chosen from a variety of
trait domains. In comparison to the prior literature (Miller
et al.,, 2016), which applied data-driven spatial ICA
(Alfaro-Almagro et al., 2018; Beckmann & Smith, 2004;
Hyvarinen, 1999) to about 5000 subjects, the parcellation-
based approach and much larger sample size allowed us
to quantify functional organizations in fine-grained details.
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Fig. 6.

We found distinct brain functional areas and networks

that were strongly related to traits from various catego-

ries, such as mental health, physical activity, cognitive
performance, and biomarkers. We developed integrative

Integrative prediction model for fluid intelligence. (A) Prediction accuracy of neuroimaging traits for fluid
intelligence. Volume, region brain volumes from brain structural MRI (sMRI); DTI parameters, diffusion tensor imaging
parameters to measure brain white matter microstructures; All MRl traits, including brain volume, DTI parameters, resting
fMRI, and task fMRI. (B) Prediction accuracy of non-neuroimaging traits from different trait categories and their joint

performance. PRS, polygenic risk scores of genetic variants. (C) Comparison of predictive power of non-neuroimaging

traits before (“marginal”) and after controlling for the neuroimaging traits (“conditional on brain imaging”)

prediction models for fluid intelligence, suggesting that
integrating fMRI traits with multiple data types can
improve prediction performance for brain-related com-

plex traits and diseases.
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4.1. Resting-state and task-evoked functional organizations

The study of how the brain alters its functionality in
response to tasks or stimuli is a topic of significant interest
and has broad clinical applications (Zheng et al., 2022). For
instance, fMRI studies involving an emotional task have
consistently demonstrated abnormalities in the prefrontal
cortex-limbic area among patients with anxiety disorders,
who typically exhibit exaggerated responses to emotional
stimuli (Li et al., 2020). Despite relatively small sample
sizes, previous studies have found that intrinsic and extrin-
sic functional architectures share substantial similarities,
with minor but consistent differences observed across var-
ious tasks (Cole et al., 2014, 2021; Gonzalez-Castillo &
Bandettini, 2018; Gratton et al., 2016, 2018; Smith et al.,
2009; Tavor et al., 2016). Leveraging parcellation-based
data from the extensive UKB study, we corroborate that
group-level intrinsic and extrinsic functional spatial pat-
terns are largely alike (correlation = 0.754), consistent with
previous fMRI datasets with smaller sample sizes (Cole
et al., 2014, 2021; Gonzalez-Castillo & Bandettini, 2018;
Gratton et al., 2016, 2018; Tavor et al., 2016). Moreover, we
provide a more detailed analysis of resting-state functional
connectivity differences. For example, our results
described the complicated task-positive and task-negative
functional connectivity change patterns in the default
mode network. Although the default mode network has
been originally recognized as brain areas with greater con-
nectivity in resting fMRI than task fMRI (Raichle et al.,
2001), recent studies have found that the default mode
network also had positive functional contributions to tasks,
which may result in increased activity in task fMRI (Elton &
Gao, 2015).

Furthermore, our results demonstrate a remarkable
spatial correlation between the UKB and HCP studies in
both resting and task fMRI. This high degree of consis-
tency across independent studies underscores the pos-
sibility of innovative joint analyses of human connectome
data. Through meta-analytic amalgamation of these fMRI
datasets, we have the potential to gain a more profound
understanding of trait-fMRI associations' replication and
enhance fMRI's predictive power for a variety of pheno-
types (He et al., 2022). The integration of data from muilti-
ple sources may lead to more robust and reliable
outcomes in the field of fMRI research.

4.2. Sex difference in fMRI

Our area- and network-specific sex effect maps can be
useful for understanding sex differences in brain func-
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tional activity, as well as brain function-related cognitive
impairment and brain disorders. We found that the stron-
gest sex difference in resting fMRI was in the somatomo-
tor network, where females had weaker functional
connectivity than males (Fig. 3C). Additionally, depres-
sion was strongly associated with decreased connectiv-
ity in the somatomotor network (Fig. 4B). Considering the
fact that depression is two times more prevalent in
females than in males (Salk et al., 2017), our results may
help understand the brain function-related sex differ-
ences in depression (Labaka et al., 2018). In addition, we
found that a wide variety of complex traits were strongly
associated with the functional connectivity between the
visual and somatomotor networks, such as risk-taking
and time spent watching TV (Figs. 4A and 5B). Future
studies could investigate the biological mechanisms
underlying these functional connectivity alterations as
well as the causal medication pathways among lifestyle,
brain function, and mental health (Zhao & Castellanos,
2016).

Additionally, our findings indicate that males demon-
strated stronger task functional connectivity than females
in numerous areas within the language network (Refer to
Fig. S13D). This could potentially be attributable to males'
more frequent use of language strategies, such as silent
naming during the Hariri’s faces/shapes emotion task. On
the other hand, females might rely more heavily on visual
or spatial strategies. This observation calls for further
investigation.

4.3. Trait-fMRI associations

We conducted an analysis of fMRI data alongside a range
of complex traits using a discovery-validation design,
generating association maps that correspond to the
functional organization of the human brain during both
resting and task states. These results may contribute to
the development of improved disease prediction models
and the identification of clinically beneficial neuroimaging
biomarkers. For instance, depression and depressive
mood disorders have been associated with abnormal
brain connectivity across several intrinsic networks
(Brakowski et al., 2017; Gudayol-Ferré et al., 2015;
Korgaonkar et al., 2019). Our findings spotlight specific
patterns of decreased resting functional connectivity,
particularly within the somatomotor network. Extended
periods of TV viewing have been linked to structural vari-
ations in the visual cortex and sensorimotor areas
(Takeuchi et al., 2013). This activity has also been associ-
ated with cognitive decline (Fancourt & Steptoe, 2019)
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and increased dementia risk (Raichlen et al., 2022) —both
closely connected with the default mode network (Grieder
et al., 2018). Moreover, visual impairment and diminished
functional connectivity within the visual network have
been identified in Alzheimer’s disease (Huang et al., 2021;
Littlejohns et al., 2022). Our results suggest that resting
fMRI traits of the default mode and visual networks could
serve as valuable endophenotypes for investigating the
effects of environmental and lifestyle factors on aging
and dementia.

The large-scale UKB data also revealed that resting
and task fMRI may have different association patterns
with complex traits, such as mental health and cognitive
abilities. For example, depression was strongly associ-
ated with resting fMRI, but not with task fMRI. Moreover,
in resting and task fMRI, the associations with fluid intel-
ligence had different spatial distributions. Our prediction
analysis further suggests that task fMRI has additional
predictive power on intelligence on top of resting fMRI.
These results demonstrate the differences between rest-
ing and task-evoked brain functions in terms of their con-
nections with brain health and cognition.

4.4, Online resource and future development

Using the large-scale fMRI data in the UKB study, we
were able to study hundreds of brain regions in a
parcellation-based approach. We have utilized the rich
phenotypic data in the UKB database in our fMRI-trait
association analysis, which was an exploratory analysis
designed to offer a publicly accessible web interface.
The bioinformatics resource we have developed offers
significant potential for fMRI researchers in various
ways. Firstly, it allows for swift comparisons between
our findings and those of existing studies within the
field. Researchers can easily evaluate the congruencies
or disparities in trait-fMRI associations when utilizing
data from distinct studies or when identical data are
analyzed by different research groups and methodolo-
gies (Botvinik-Nezer et al., 2020). Furthermore, our results
can offer corroborating evidence and preliminary data for
future study designs and grant proposals. Researchers
can harness our findings to justify the necessity for addi-
tional data collection and the development of advanced
techniques. Additionally, our resource has the potential to
unearth further insights in subsequent studies through
the incorporation of other fMRI data resources. For
instance, conducting joint analyses with other large-scale
neuroimaging studies, such as the ABCD (Chaarani et al.,
2021) and CHIMGEN (Xu et al., 2020) studies, could sup-
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port the replication of association findings and provide
insights into age-related or cohort-related interactions
throughout the lifespan. In conclusion, the online resource
we have developed offers a wealth of opportunities for
fMRI researchers to gain insights, compare results, sup-
port the design of future studies, and integrate with other
data sources. This integration fosters an enhanced
understanding and collaboration within the field.

The ongoing UKB imaging study, which aims to scan
100,000 subjects within a few years (Littlejohns et al.,
2020), presents an opportunity for us to continuously
update and augment our online resource. This will involve
not only replicating our reported findings based on the
Glasser360 and Schaefer (Schaefer et al., 2018) atlases,
but also integrating additional common parcellation
schemes such as the Gordon (Gordon et al., 2016), Power
(Power et al., 2011), DiFuMo (Dadi et al., 2020), and data-
driven ICA (Alfaro-Almagro et al., 2018; Beckmann &
Smith, 2004; Hyvarinen, 1999) atlases. Moreover, we plan
to explore and incorporate different data preprocessing
pipelines to understand their effects on the results. For
example, we will examine the effects of topographical
misalignments on trait-fMRI associations and sex differ-
ences. There has been an observation in the HCP study
that the cross-subject variability can be explained by the
misalignment in topography between individual subjects’
true connectivity topography and group-average ICA
maps used by the ICA dual regression (Bijsterbosch
et al., 2018, 2019). This residual functional misalignment
can mean that between-subject spatial variability appears
as variability in network connectivity; the extent of this
problem of misinterpretation may vary across different
analysis methods (e.g., group-ICA with dual-regression
vs. hard parcellation). It would be interesting to quantify
the effects of spatial misalignment on both parcellation-
based and whole-brain ICA-based fMRI traits in the
large-scale UKB dataset.

In addition, our main analyses were based on
parcellation-based full correlations. Although the FMRIB's
ICA-based X-noiseifier (FIX) has been applied to the UKB
dataset to remove scanner artifacts and motion effects,
full correlation measures can be more sensitive to the
remaining global artifacts and noises than partial correla-
tions (Feis et al., 2015; Griffanti et al., 2014). It is possible
to further remove global artifacts by measuring the partial
functional connectivity between paired brain regions after
removing the dependency of other brain regions (Elliott
et al., 2018). Future studies need to explore parcellation-
based partial correlation traits for a large number of par-
cels (such as the 360 regions in the Glasser360 atlas)
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with a limited number of time points in the UKB study.
Finally, we welcome user feedback and suggestions,
which will help improve our project and resources to bet-
ter meet the needs of the fMRI research community.

DATA AND CODE AVAILABILITY

Our results and summary-level data can be downloaded
and browsed at http://fmriatlas.org/. The individual-level
UK Biobank data can be obtained from https://www
.ukbiobank.ac.uk/. The code used in this study is avail-
able at https://zenodo.org/record/8235805.
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