INTRODUCTION: There is increasing evidence pointing to a close relationship between heart health and brain health, with cardiovascular diseases potentially leading to brain diseases such as stroke, dementia, and cognitive impairment. Magnetic resonance imaging (MRI) is a valuable tool that can be used to assess both the heart and brain, generating biomarkers and endophenotypes for various clinical outcomes. However, although recent large-scale analyses have been conducted on heart and brain MRI-derived traits separately, few studies have explored the potential for multi-organ MRI to examine heart-brain connections and identify shared genetic effects. The structural and functional links between the heart and the brain remain unclear.

RATIONALE: Using multiorgan MRI and genetic data from >40,000 subjects, we aimed to quantify interorgan connections between the heart and brain and identify the underlying genetic variants. Specifically, we analyzed 82 cardiac and aortic MRI-derived traits across six categories: left and right ventricles, left and right atria, and ascending and descending aortas, as well as 458 brain MRI traits that measure structure and function.

RESULTS: After controlling for various covariates, we found that heart MRI traits were clearly associated with the brain across all imaging modalities studied. We observed multiple patterns of association for brain gray matter morphometry, white matter microstructure, and functional networks. For example, we found that the left ventricle of the heart showed the strongest correlations with microstructure metrics of cerebral white matter tracts, suggesting that adverse heart features were associated with poorer white matter microstructure.

Our genome-wide association analysis of heart MRI traits identified 80 associated genomic loci \((P < 6.09 \times 10^{-6}) \). We performed sex-specific analysis and found that the genetic effects on heart structure and function were highly consistent between both sexes. Further, we conducted a systematic search of previously reported genetic results in these genomic loci and found that heart MRI traits had shared genetic influences and colocalized with heart and brain diseases and complex traits.

We identified genetic correlations between heart MRI traits and various brain complex traits and diseases such as stroke, eating disorders, schizophrenia, cognitive function, and mental health traits. For example, adverse myocardial wall thickness condition was positively genetically correlated with stroke. We further used two-sample Mendelian randomization to explore causal genetic links between the heart and brain, and our findings suggest that adverse heart features have genetic causal effects on several brain diseases such as psychiatric disorders and depression.

CONCLUSION: This study deepened our understanding of heart-brain links and their genetic basis. We observed that MRI measurements of the two organs were associated with each other, and this was independent of a wide variety of body measures, shared risk factors, and imaging confounders. We also uncovered genetic colocalizations and correlations between heart structure and function and brain clinical endpoints, suggesting that adverse heart metrics may have implications for brain abnormalities and the risk of brain diseases. By understanding human health from a multiorgan perspective, we may be able to improve disease risk prediction and prevention and mitigate the negative effects of one organ disease on other organs that may be at risk.

Heart-brain connections revealed by multiorgan imaging genetics. Top left: Quantifying the heart and brain structure and function in MRI. Top right: Examples of associations between heart MRI traits and brain white matter tracts. Bottom left: Genomic loci associated with heart MRI traits that overlapped with traits and disorders of the heart and/or brain. Bottom right: Selected genetic correlations between heart MRI traits and brain disorders.

Cite this article as: B. Zhao et al., Science, 380, eabn6598 (2023). DOI: 10.1126/science.abn6598

READ THE FULL ARTICLE AT https://doi.org/10.1126/science.abn6598

Zhao et al., Science 380, 934 (2023) 2 June 2023
Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images

Bingxin Zhao1,2, Tengfei Li3,4, Zirui Fan1,2, Yue Yang5, Juan Shu2, Xiaochen Yang2, Xfeng Wang2, Tianyou Luo6, Jiarui Tang5, Di Xiong2, Zhenyi Wu7, Bingxuan Li6, Jie Chen5, Yue Shan5, Chalmer Tomlinson9, Ziliang Zhu8, Yun Li9, Jason L. Stein9,8, Hongtu Zhu4,5,7,9,10.

Cardiovascular health interacts with cognitive and mental health in complex ways, yet little is known about the phenotypic and genetic links of heart-brain systems. We quantified heart-brain connections using multiorgan magnetic resonance imaging (MRI) data from more than 40,000 subjects. Heart MRI traits displayed numerous association patterns with brain gray matter morphometry, white matter microstructure, and functional networks. We identified 80 associated genomic loci ($P < 6.09 \times 10^{-10}$) for heart MRI traits, which shared genetic influences with cardiovascular and brain diseases. Genetic correlations were observed between heart MRI traits and brain-related traits and disorders. Mendelian randomization suggests that heart conditions may causally contribute to brain disorders. Our results advance a multiorgan perspective on human health by revealing heart-brain connections and shared genetic influences.

A growing amount of evidence suggests close interplays between heart health and brain health (fig. S1). Cardiovascular diseases may provide a pathophysiological background for several brain diseases, including stroke (1), dementia (2), cerebral small vessel disease (3), and cognitive impairment (4, 5). For example, atrial fibrillation has been linked to an increased incidence of dementia (6) and silent cerebral damage (7) in stroke-free cohorts (8). It has been consistently observed that heart failure is associated with cognitive impairment and eventually dementia (9), likely because of the reduced cerebral perfusion caused by the failing heart (10). Conversely, mental disorders and negative psychological factors may contribute substantially to the initiation and progression of cardiovascular diseases (11–13). Patients with mental illnesses such as schizophrenia, bipolar disorder, epilepsy, or depression show an increased incidence of cardiovascular diseases (14–17). Acute mental stress may cause a higher risk of athero-sclerosis because of stress-induced vascular inflammation and leukocyte migration (18). Primarily because of the lack of data, almost all prior studies on heart-brain interactions and associated risk factors (19–25) have focused on one (or a few) specific diseases or used small samples. Therefore, the overall picture of the structural and functional links between the heart and the brain remains unclear.

In heart and brain diseases, magnetic resonance imaging (MRI)-derived traits are well-established endophenotypes. Cardiovascular magnetic resonance imaging (CMR) has been widely used to assess cardiac structure and function, yielding insights into the risk and pathological status of cardiovascular diseases (26–28). Brain MRI modalities provide detailed information about brain structure and function (29). Clinical applications of brain MRI have revealed the associated brain abnormalities that accompany multiple neurological and neuropsychiatric disorders (30–32). Moreover, twin and family studies have shown that CMR and brain MRI traits are moderately to highly heritable (33–35). For example, the left ventricular mass (LVM) has a heritability estimate >0.8 (34). Most brain structural MRI traits are highly heritable (heritability ranges from 0.6 to 0.8) (36), and the heritability of brain functional connectivity is usually between 0.2 and 0.6 (37). A few recent genome-wide association studies (GWASs) have been separately conducted on CMR (38–43) and brain MRI traits (44–52). For example, several large-scale efforts have been made to discover genetic variants associated with brain structures; examples include ENIGMA (31), NeuroCHARGE (52), and IMAGEN (53). Although MRI has been widely used in clinical research and genetic mapping, few studies have used multiorgan MRI to examine heart-brain connections and identify the shared genetic signatures of the heart and the brain.

In the present study, we investigated heart-brain connections using multiorgan imaging data obtained from >40,000 subjects in the UK Biobank (UKB) study (54). By using a recently developed heart segmentation and feature extraction pipeline (55–57), we generated 82 CMR traits from the raw short-axis, long-axis, and aortic cine images. These CMR traits included global measures of four cardiac chambers, the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA), and two aortic sections, the ascending aorta (AAo) and the descending aorta (DAO), as well as regional (58) phenotypes of the LV myocardial wall thickness and strain (table S1 and supplementary text (59)). Then, we identified the relationships between the 82 CMR traits and a wide variety of the brain MRI traits discovered from multimodality images (60), including structural MRI (164 traits), diffusion MRI (110 traits), resting functional MRI (resting MRI) (92 global traits and >60,000 regional traits), and task fMRI (92 global traits and >60,000 regional traits). These brain MRI traits provided fine details of brain structural morphology (45, 61) (regional brain volumes and cortical thickness traits), brain structural connectivity (47, 62) [diffusion tensor imaging (DTI) invariant measures of white matter tracts], and brain intrinsic and extrinsic functional organizations (49, 63, 64) (functional activity and connectivity at rest and during a task) (table S2). To evaluate the genetic determinates underlying heart-brain connections, we performed GWASs for the 82 CMR traits to uncover the genetic architecture of the heart and aorta. Compared with existing GWASs of CMR traits (38–43), our study used a much broader group of cardiac and aortic traits, allowing us to identify the shared genetic components with a wide variety of brain-related complex traits and disorders. For example, (42) mainly focused on nine measures of the right heart, (38) analyzed six LV traits, and (63) studied three traits of diastolic function. Figure 1 provides an overview of the study design and analyses. The GWAS results of 82 CMR traits can be explored and are freely available through the heart imaging genetics knowledge portal (HeartKP) at http://heartkp.org/.

Phenotypic heart-brain connections

To verify that the 82 CMR traits are well defined and biologically meaningful, we first examined their reproducibility using the repeat scans obtained from the UKB repeat imaging visit ($n = 2903$; average time between visits, 2 years). For each trait, we calculated the intraclass correlation (ICC) between two observations from all revisited individuals. The average ICC was 0.653 (range $= 0.369$ to 0.970; table S1).

1Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA. 2Department of Statistics, Purdue University, West Lafayette, IN 47907, USA. 3Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 4Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 5Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA. 6Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 7Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 8Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 9Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 10Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA. *Corresponding author. Email: htzhu@email.unc.edu
Some volumetric traits had very high ICC (>0.9), including the LV end-diastolic volume (LVEDV), LVM, RV end-diastolic volume (RVEDV), RV end-systolic volume (RVESV), AAo maximum area, AAo minimum area, DAo maximum area, DAo minimum area, and global myocardial wall thickness. The ejection fraction [such as the LV ejection fraction (LVEF)] and distensibility traits (e.g., the DAo distensibility) had the lowest ICC among all volumetric traits (mean = 0.574 and 0.519, respectively). In addition, the average ICC was 0.760 for the 17 wall thickness traits, 0.532 for the seven longitudinal peak strains, 0.569 for the 17 circumferential strains, and 0.516 for the 17 radial strains. Additionally, we examined the changes in 82 CMR traits over a 2-year period and were able to replicate the direction of most of the aging effects (per 7.5 years) described in (55) [table S1 and supplementary text (59)]. Overall, these results suggest that the extracted CMR traits have moderate to high within-subject reliability and can consistently delineate the cardiac and aortic structure and function.

We examined the associations between CMR traits and brain MRI traits in UKB individuals of white British ancestry (n = 31,152; see the materials and methods for a list of adjusted covariates). At the Bonferroni significance level (P < 1.33 × 10^-6), CMR traits were associated with a wide variety of brain MRI traits, including regional brain volumes, cortical thickness, DTI parameters, and resting and task fMRI traits (Fig. 2A, fig. S2, and table S3). Among the 4193 Bonferroni-significant associations in our discovery sample, 1574 were significant at the nominal level (0.05) in a holdout independent validation dataset (n = 5316) with concordant association signs (figs. S3 to S5). For example, global wall thickness was positively associated with the volumes of multiple subcortical brain structures (fig. S2B). Particularly, both left and right putamen volumes were associated with at least 10 wall thickness traits (fig. S4). Subcortical regions across both brain hemispheres showed consistent association patterns, potentially highlighting the robustness of these correlations. Additional examples of replicated associations can be found in the supplementary text (59).

CMR traits were also correlated with brain structural and functional connectivity. For example, fractional anisotropy (FA) and mean diffusivity (MD) are two robust measures of brain structural connectivity and white matter microstructure, with higher FA and lower MD values typically signifying better white matter integrity (65). The FA values of several white matter tracts consistently showed negative associations with aortic areas (e.g., AAo and DAo minimum areas), LV traits (e.g., LVM, LVEDV, and wall thickness traits), and LA minimum volume (LAVmin). Moreover, these CMR traits exhibited consistent positive associations with MD values (Fig. 2, B and C, and fig. S6). For resting fMRI, both mean functional connectivity and mean amplitude (i.e., functional activity) traits were negatively associated with volumetric measures of the four cardiac chambers, such as the LV cardiac output (LVCO), RV ejection fraction (RVEF), LA stroke volume (LASV), and RA ejection fraction (RAEF) (fig. S7). By contrast, positive correlations were widely observed for wall thickness traits, longitudinal strains, and peak circumferential strains. The task fMRI traits showed similar patterns (fig. S8). To further discover fine-grained details of CMR connections with brain functions, we examined pairwise associations between 82 CMR traits and 64,620 high-resolution functional connectivity traits (49) in resting fMRI.
Bonferroni-significant associations \((P < 7.15 \times 10^{-8})\) were observed across the functional connectivity of the whole brain, with specific patterns emerging across different functional areas and networks (fig. S9, A and B). For example, the somatomotor network and its connectivity with the secondary visual network were associated with multiple CMR traits. Specifically, positive somatomotor associations were observed in the LVM, RVESV, RA minimum volume \((RA_{min})\), global peak circumferential strain, and global wall thickness (figs. S9C and S10 to S13), and negative correlations were observed in all four ejection fraction traits \([RV_{EF}, LA_{EF}, RAE_{EF}, and LVEF]\) and LVCO (figs. S9D and S14 to S17). Additional examples can be found in the supplementary text (59) (figs. S18 to S28). Furthermore, we performed the above phenotypic association analyses separately for males and females (figs. S29 to S32), used canonical correlation analysis (CCA) (66) to investigate the multivariate associations between CMR traits and various groups of brain MRI traits, and examined the influence of environmental factors and biomarkers on the underlying mechanisms of heart-brain interactions (figs. S33 to S35, table S4, and supplementary text (59)).
Heritability and the associated genetic loci of 82 CMR traits

We estimated the single-nucleotide polymorphism (SNP) heritability for the 82 CMR traits using UKB individuals of white British ancestry (67) (n = 31,875). The mean heritability (h^2) was 22.9% for the 82 traits (range = 7.07 to 70.2%; Fig. 3A), all of which remained significant after adjusting for multiple testing using the Benjamini-Hochberg procedure to control the false discovery rate (FDR) at the 0.05 level ($P < 1.09 \times 10^{-3}$) (table S5). The h^2 of the AAo/DAo maximum areas and AAo/DAo minimum areas was >50%. Among cardiac traits, the global wall thickness, RVESV, RVEDV, LV end-systolic volume, and others were associated with genetic loci on chr8, Region: 8q24.13, and chr22, Region: 22q11.23. For instance, LVESV was associated with the 22q11.23 region in both the UKB (index variant rs5760061) and BBJ (index variant rs5760054) studies. (D) LVESV was associated with the 8q24.13 region in both the UKB and BBJ studies (shared index variant rs34866937).

Fig. 3. Genetics of CMR traits in the UKB. (A) SNP heritability of 82 CMR traits across the six categories. The x-axis displays the short names of CMR traits; see table S1 for the full names of these traits. The average heritability of each category is labeled. (B) Ideogram of 80 genomic regions associated with CMR traits ($P < 6.09 \times 10^{-10}$). Red and brown name labels denote genomic regions that have been replicated in the validation dataset after applying Bonferroni correction and at a nominal level, respectively. (C) LVESV was associated with the 22q11.23 region in both the UKB (index variant rs5760061) and BBJ (index variant rs5760054) studies. (D) LVESV was associated with the 8q24.13 region in both the UKB and BBJ studies (shared index variant rs34866937).
volume (LVEDV, LVEDV, and LVM had the highest heritability ($r^2 > 37.8\%$). A sex-specific heritability analysis was conducted separately for females and males, and the heritability estimates for both sexes were similar (mean $r^2 = 24.8$ versus 22.6%, correlation $= 0.910, P = 0.332$; fig. S36).

We next performed GWASs for the 82 CMR traits using this white British cohort ($n = 31,875$). All Manhattan and QQ plots can be browsed through the server on Heart-KP. The intercepts of linkage disequilibrium (LD) score regression (LDSC) (68) were all close to one, suggesting no genomic inflation of test statistics caused by confounding factors (mean intercept = 0.99986; range = 0.982 to 1.019). At the significance level 6.09×10^{-10} ($5 \times 10^{-9}/82$, that is, the standard GWAS significance threshold, additionally Bonferroni adjusted for the 82 traits), we identified independent ($LD r^2 < 0.1$) significant associations in 80 genomic regions (cytogenetic bands) for 49 CMR traits, including 35 for LV, 35 for LVEF, 14 for DdAo, 11 for RV, and 1 for LA (Fig. 3B and table S6). Detailed interpretations of these identified regions can be found below. These genetic effects on CMR traits were highly consistent in the sex-specific GWASs, in which males and females were analyzed separately (correlation = 0.944; $P = 0.739$; fig. S37). In the supplementary text (59), we further demonstrate that these CMR traits exhibited a highly polygenic genetic architecture and shared heritability with brain MRI traits, particularly with DTI parameters measuring white matter microstructure (figs. S38 and S39 and table S7).

To replicate the identified loci, we performed separate GWASs using holdout datasets in the UKB study that were independent from our discovery dataset. First, we repeated GWASs on a European dataset with 82252 subjects (see the materials and methods). For the 243 independent ($LD r^2 < 0.1$) CMR-variant associations in the 80 genomic regions, 56 (23.04%, in 25 regions) passed the Bonferroni significance level (2.06×10^{-4}, 0.05/243) in this European validation GWAS, and 178 (73.25%, in 61 regions) passed the nominal significance level (0.05) (Fig. 3B and table S8). All 178 associations had concordant directions in the two independent GWASs, and the correlation of their genetic effects was 0.963 (fig. S40). These results show a high degree of generalizability of our GWAS findings among European cohorts. We also performed GWAS on two non-European UKB validation datasets: the UKB Asian (UKBA, $n = 500$) and UKB Black (UKBBL, $n = 271$). One association between $8q24.3$ and the RVEF passed the Bonferroni significance level ($P = 8.281 \times 10^{-10}$) in UKBA, and 14 more regions passed the nominal significance level. For UKBBL, 12 regions passed the nominal significance level, and none of them survived the Bonferroni significance level, which may be partially caused by the small sample size of this non-European GWAS. Additionally, we evaluated the ancestry-specific effects using Asian GWAS summary statistics of three CMR traits [analogous to the LVEDV, LVEDV, and LVEF (44)], which were generated from 19,000 subjects in the BioBank Japan (BBJ) study (60). At the stringent GWAS 1.666×10^{-9} ($5 \times 10^{-9}/3$) threshold, BBJ CMR traits identified independent ($LD r^2 < 0.1$) significant associations in $22q11.23, 8q24.13$, and $10q22.2$. Of the three regions, $22q11.23$ and $8q24.13$ were among the 80 regions that were discovered in the UKB white British cohort. These two regions were significantly associated with the LVESEV in both the UKB and the BBJ studies (fig. 3C and D). The $10q22.2$ had a small P value in the UKB GWAS ($P = 1.58 \times 10^{-5}$), but did not survive the 6.09×10^{-10} threshold.

Finally, we constructed polygenic risk scores (PRSs) using lassosum (70) to evaluate the out-of-sample prediction power of the discovery GWAS results (see the materials and methods). Among the 82 CMR traits, 75 had significant PRSs at the FDR 5% level (P range = 4.47×10^{-125} to 3.74×10^{-2}; table S9). The highest incremental R^2 value (after adjusting for the effects of covariates) was observed on the AAO minimum area and the AAO maximum area (7.20 and 7.04%, respectively). To evaluate the cross-population performance, PRS was also constructed on UKB white British discovery GWAS data using BBJ GWAS summary statistics of the LVEDV, LVEDV, and LVEF. We found that the PRSs of these three traits were all significant in the UKB (P range = 1.58×10^{-11} to 8.13×10^{-5}; R^2 range = 3.90×10^{-4} to 1.35×10^{-3}). The prediction accuracy was lower than that in the above within European prediction analysis (R^2 range = 7.72×10^{-3} to 9.67×10^{-3}), which may be explained by the smaller training GWAS sample size in the BBJ study and population differences between the UKB and BBJ cohorts.

Pleiotropy of genetic variants across body systems

To identify the shared genetic effects between CMR traits and complex traits, we performed association lookups for independent ($LD r^2 < 0.1$) significant variants (and variants in their $r^2 \geq 0.6, P \geq 0.6$) with cardiovascular diseases, including heart diseases, heart structure and function, blood pressure, lipid traits, blood traits, diabetes, stroke, neurological and neuropsychiatric disorders, psychological traits, cognitive traits, lung function, parental longevity, smoking, and drinking. To evaluate whether two associated genetic signals were consistent with the shared causal variant, we applied the Bayesian colocalization analysis (72) for CMR traits and selected phenotypes with publicly available GWAS summary statistics. Evidence of pairwise colocalization was defined as having a posterior probability of the shared causal variant hypothesis ($PPH4 > 0.8$ (72, 73). Many shared genetic variants were found to be expression quantitative trait loci (eQTLs) in a recent large-scale eQTL meta-analysis of brain (74) and blood tissues (75). The traits with shared genetic effects are presented in table S10, with selected pairs shown in Fig. 4 and figs. S41 to S108. Table S11 summarizes the results of colocalization and eQTL analyses. Below, we highlight genetic overlaps between CMR traits and complex traits and diseases of the heart and brain, as well as other clinical outcomes.

First, we replicated 27 genomic regions that have been previously linked to cardiac and aortic traits, such as fractional shortening and LV internal dimension (fig. S41). There were 21 regions associated with heart rate and electrocardiographic traits (e.g., QRS duration; figs. S42 to S46) and six regions with aortic measures (e.g., thoracic aortic aneurysms and dissections; figs. S47 and S48). In addition, 30 regions had shared associations ($LD r^2 > 0.6$) with cardiovascular diseases, including 12 regions with coronary artery disease (figs. S49 and S50), nine regions with atrial fibrillation (77) (Fig. 4A and figs. S51 to S55), and five regions with hypertension (78) (figs. S56 to S58). Other heart diseases included abdominal aortic aneurysm (79) (figs. S47 and S50), mitral valve prolapse (80) (fig. S46), and idiopathic dilated cardiomyopathy (81) (figs. S60 and S61). There was widespread evidence of colocalization on many loci ($PPH4 > 0.899$). Additionally, 41 of the 80 genomic regions were associated with blood pressure traits such as diastolic or systolic blood pressure, pulse pressure, and mean arterial pressure (Fig. 4B and figs. S62 to S81). CMR traits were in LD ($r^2 \geq 0.6$) with various cardiovascular and blood biochemistry biomarkers such as lipid traits (figs. S50, S56, S67, and S82), red blood cell count, blood protein levels, red cell distribution width, and plateletcrit (figs. S83 to S87).

We found genetic pleiotropy between CMR traits and multiple brain-related complex traits and disorders. In the $6q21.2, 7p21.1, and 12p24.12$ regions, CMR traits were in LD ($r^2 \geq 0.6$) with stroke (82) (e.g., ischemic stroke, large artery stroke, and small-vessel ischemic stroke), intracranial aneurysm (83), and moyamoya disease (84) (Fig. 4, A and B, and fig. S50). The index variants of $7p21.1$ (rs2107595) and $12p24.12$ (rs597808) were eQTLs of TWIST1 and ALDH2 in human brain tissues (74), suggesting that these CMR-associated variants were known to affect gene expression in human brain. TWIST1 was associated with cerebral vasculature defects (85), and there was a higher level of ALDH2
Fig. 4. Selected genetic loci associated with both CMR trait and other complex traits and diseases. (A) In 6p21.2, we observed colocalization between the global myocardial wall thickness (WT) at end-diastole (WT global, index variant rs4151702) and atrial fibrillation (index variant rs3176326). The posterior probability of Bayesian colocalization analysis for the shared causal variant hypothesis (PPH4) is 0.997. In this region, the WT global was also in LD ($r^2 \geq 0.6$) with ischemic stroke. (B) In 7p21.1, we observed colocalization between the DAo minimum area (DAo min area, index variant rs2107595) and systolic blood pressure (index variant rs57301765, PPH4 = 0.998). In this region, the DAo min area was also in LD with stroke, intracranial aneurysm, coronary artery disease, and moyamoya disease. (C) In 15q25.2, we observed colocalization between the regional myocardial wall thickness at end-diastole (WT AHA 7, index variant rs11638445) and schizophrenia (index variant rs12902973, PPH4 = 0.922). In this region, the WT AHA 7 was also in LD with bipolar disorder. AHA 7, American Heart Association (AHA) region 7. (D) We illustrated the colocalization between the AAo maximum area (AAo max area) and functional connectivity between the default mode and orbito-affective networks (shared index variant rs1678983) in 15q21.1 (PPH4 = 0.964).
activity in the putamen and temporal cortex of patients with Alzheimer’s disease (86). CMR traits were also in LD ($r^2 \geq 0.6$) with neurodegenerative and neuropsychiatric disorders such as Parkinson’s disease (87) and Alzheimer’s disease (88) (fig. S88), hippocampal sclerosis of aging (89) (fig. S74), schizophrenia (90) (Fig. 4C and fig. S49), bipolar disorder (91) (Fig. 4C and figs. S82 and S89), and eating disorders (92) (fig. S90). In addition, CMR traits were in LD ($r^2 \geq 0.6$) with mental health traits such as neuroticism, depressive symptoms, subjective well-being, and risk-taking tendency (figs. S88 and S91 to S93).

For cognitive traits and education, we tagged 17q21.31, 11p11.2, and 11q13.3 with cognitive function and educational attainment (figs. S88, S93, and S94); 7q32.1 with reading disability (fig. S95); and 12q24.12 with reaction time (fig. S50). We also found shared associations (LD $r^2 \geq 0.6$) in five regions with DTI parameters (47) (figs. S96 to S100); four regions with regional brain volumes (45) (figs. S101 to S104); and five regions with fMRI traits (49) (Fig. 4D and figs. S105 to S108). The colocalization analysis revealed that CMR traits shared causal genetic variants with these phenotypes, such as 15q25.1 with schizophrenia, 15q21.1 with functional connectivity, as well as 11q24.3 and 12q24.12 with white matter microstructure (PPH4 > 0.809). There is substantial evidence supporting the interplay between cardiovascular health and these brain traits and diseases. For example, people with better heart health have better cognitive abilities (93) and lower risk for brain disorders such as stroke and Alzheimer’s disease (94). In addition, mental health disorders may result in biological processes and behaviors that are associated with cardiovascular diseases (11, 95). Our findings indicate that cardiovascular conditions share substantial genetic components with brain diseases, mental health traits, and cognitive functions, suggesting a potential genetic basis for heart-brain connections.

Genetic overlaps with other diseases and complex traits were also observed. For example, RVEDV was in LD ($r^2 \geq 0.6$) with type 1 diabetes (96) and type 2 diabetes (97, 98) in the 12q24.12 region (fig. S50). CMR traits were in LD ($r^2 \geq 0.6$) in 11 regions with lung conditions such as asthma (99) (fig. S82), idiopathic pulmonary fibrosis (100), interstitial lung disease (101) (fig. S88), and lung function (figs. S60, S64, S67, and S77). We also found shared genetic associations (LD $r^2 \geq 0.6$) with smoking (figs. S50, S82, and S93) and alcohol consumption and alcohol use disorder (figs. S49, S88, and S93).

Genetic correlations with brain disorders and complex traits

First, we examined genetic correlations among 82 CMR traits using cross-trait LDSC (102). Strong genetic correlations were observed within and between categories of CMR traits (fig. S109 and table S12). For example, RVEDV was genetically correlated with other RV traits, including RV stroke volume (RVSV), RVESV, and RVEF. The RVEDV was also correlated with CMR traits from other categories, such as AAo maximum area and DAO maximum area, LAVS and RA stroke volume (RASV), as well as LVEDV, LVESV, LVM, and LVEF. In addition, we found a strong relationship between phenotypic and genetic correlations among all CMR traits ($\beta = 0.781, P < 2 \times 10^{-10}$).

Next, we examined the genetic correlations between 82 CMR traits and 60 complex traits and diseases. At the FDR 5% level (82 × 60 tests), the CMR traits were associated with heart diseases, lung function, cardiovascular risk factors, and brain-related complex traits and diseases (table S12). For example, hypertension had clear genetic correlations with aortic traits and LV traits (fig. 5A). The strongest correlation between LV traits and hypertension was found in wall thickness traits ($P = 2.43 \times 10^{-5}$), which were also associated with coronary artery disease, type 2 diabetes, and stroke (fig. 5B). In addition, atrial fibrillation was significantly associated with atrial, LA, and RA traits ($P = 6.66 \times 10^{-4}$), suggesting that atrial fibrillation might have a higher genetic similarity with LA and RA traits than with LV and RV traits.

In both schizophrenia and bipolar disorder, we observed genetic correlations with multiple LV traits (fig. 5C). Specifically, LVCO, LVEF, radial strains, and wall thickness traits showed positive genetic correlations with schizophrenia and/or bipolar disorder. By contrast, peak circumferential strains had negative genetic correlations with the two brain disorders. Additionally, anorexia nervosa (an eating disorder) was genetically associated with LAVmin and LAEF, whereas cognitive traits and neuroticism were mainly associated with right heart traits (RA and RV traits) (fig. 5, D and E). For example, intelligence, cognitive function, and numerical reasoning were genetically correlated with RA volumes. Lung functions (FEV and FVC) had genetic correlations with multiple CMR traits, with longitudinal strains showing the strongest correlations. There were more associations with other complex traits analyzed in previous GWAS, such as smoking, PR interval, blood pressure, education, risky behaviors, and lipid traits (fig. S110A). We also found high genetic correlations with four previously reported LV traits (41) (genetic correlation $> 0.847, P < 6.44 \times 10^{-20}$) (fig. S110B). Additionally, we built PRS for 82 CMR traits and examined their associations with 276 phenotypes available in the UKB study. The PRS analysis produced genetic association patterns similar to those from the LDSC analysis. More details and interpretations are available in the supplementary text (59) (figs. S111 and S112 and table S13).

Causal heart-brain relationships detected by Mendelian randomization

In light of the widespread genetic correlations between the heart and brain, we examined their underlying causal genetic links using the 82 CMR traits with Mendelian randomization (MR) (103).

We investigated 11 well-powered ($n > 20,000$) brain-related clinical outcomes from the FinnGen database (104) and six neuropsychiatric disorders from the Psychiatric Genomics Consortium (105). We also evaluated nine cognitive and mental health traits such as intelligence and neuroticism (see the materials and methods).

Most of the MR findings indicated genetic causal effects from the heart to the brain (table S14 and fig. S113). We identified causal genetic links underlying heart health and neuropsychiatric disorders. Specifically, multiple genetic causal effects of wall thickness traits, DAO minimum area, and LVESV to psychiatric diseases and mental health traits were identified at the FDR 5% level ($P = 1.68 \times 10^{-4}$), such as the cross disorders [five major psychiatric disorders (106)], bipolar disorder, and depression (fig. 6). The presence of heart conditions may adversely affect attitude and mood, which may ultimately lead to mental health problems such as depression and other psychiatric disorders (107). For example, hypertrophic cardiomyopathy is associated with an increased risk of mood disorders (108). Heart muscle thickening makes it more difficult for the heart to pump blood, and when oxygen to the brain is reduced, mental health issues may develop (109). We also observed causal genetic effects of wall thickness traits on neuroticism, for which the phenotypic association has been identified (55). Moreover, AAO minimum area and DAO maximum area were causally linked to multiple Finngen diseases of the nervous system, such as neurological diseases, sleep apnea, and episodic and paroxysmal disorders. Conversely, we identified several causal relationships between brain disorders and the exposure and CMR traits were the outcome; most of these were from sleep apnea to radial strains. In previous studies, the reduction in radial strain has been found in patients with moderate to severe obstructive sleep apnea (110), and our results demonstrate that this association may have a causal genetic component.

Biological and gene-level analyses

We performed gene-level association testing using GWAS summary statistics of the 82 CMR traits with MAGMA (111). We identified 163 significant genes for 48 CMR traits ($P < 3.24 \times 10^{-8}$). Bonferroni adjusted for 82 traits (table S15). Next, we mapped significant variants ($P < 6.09 \times 10^{-10}$) to genes by combining evidence
of physical position, eQTL association, and three-dimensional chromatin (Hi-C) interaction using FUMA \((112)\). We found 585 mapped genes, 440 of which were not identified in MAGMA (table S16). Moreover, 91 MAGMA or FUMA-identified genes had a high probability of being loss-of-function intolerant \((pLI > 0.98)\), indicating significant enrichment of intolerance of loss-of-function variation among these CMR-associated genes \((p = 1.68 \times 10^{-4})\).

We conducted MAGMA gene-set analysis to prioritize enriched biological pathways and performed partitioned heritability analyses \((114)\) to identify tissues and cell types \((115)\) in which genetic variation contributed to differences in CMR traits [fig. S14, table S17, and supplementary text \((59)\)].

Ten genes were targets for 32 cardiovascular system drugs \((116)\), such as 15 calcium channel blockers [anatomical therapeutic chemical (ATC) code: C08] to lower blood pressure, five cardiac glycosides (ATC code: C01A) to treat heart failure and irregular heartbeats, and three antiarrhythmics (ATC code: C01B) to treat heart rhythm disorders (table S18). Three of these genes, CACNA1I, ESRI, and CYP2C9, and four more CMR-associated genes, ALDH2, HDAC9, NPSR1, and TRPA1, were targets for 11 nervous system drugs, including four anti-epileptic drugs (ATC code: N03A) and two drugs for addictive disorders (ATC code: N07B). Some drug target genes have known biological functions in both the heart and the brain. For example, ALDH2 plays a role in clearance of toxic aldehydes, which is an important mechanism related to myocardial and cerebral...
ischemia–reperfusion injury (117). Therefore, ALDH2 has been proposed to be a protective target for heart and brain diseases and dysfunctions triggered by ischemic injury and related risk factors (118, 119).

Finally, we conducted complex trait and disease prediction using both genetic and multi-organ MRI data. We found that integrating genetic PRS, CMR traits, and brain MRI traits could enhance the prediction of multisystem diseases (e.g., diabetes) compared with using only one data type [figs. S115 and S116, tables S19 and S20, and supplementary text (59)].

Discussion

The intertwined connections between heart and brain health are gaining increasing attention. This study quantified the heart-brain associations using CMR and brain MRI data from >40,000 individuals in one study cohort (UKB). After accounting for various body measurements, shared risk factors, and imaging confounders, we discovered that CMR traits were associated with specific brain regions, white matter tracts, and functional networks. For example, LV traits and aortic areas were connected to white matter microstructure, with FA and MD values exhibiting opposite directions. Univariate analysis and CCA indicated that aortic traits were associated with basal forebrain volumes in both the left and right hemispheres. The basal forebrain cholinergic system, which is the primary cholinergic output of the central nervous system, is crucial in cognitive decline and dementia (120, 121). Reduced basal forebrain volume and vascular dysregulation are early predictors of Alzheimer's disease pathology (122, 123). Moreover, several CMR traits, including LVM and ejection fraction measures, were associated with the somatomotor, auditory, and default mode networks in resting fMRI. The CMR associations with the default mode and other networks were generally in opposite directions. Increased LVM and reduced ejection fraction traits are associated with a higher risk of cardiac diseases (55). Our findings suggest that abnormal functional connectivity within these networks could potentially act as an early biomarker of brain dysfunction associated with adverse cardiac conditions. Overall, our research indicates that there are associations between multimodal MRI measurements of the heart and brain, hinting at

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Category</th>
<th>Outcome</th>
<th>#IVs</th>
<th>Method</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT AHA 9</td>
<td>LV</td>
<td>Bipolar disorder</td>
<td>7</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVW (random)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>LVESV</td>
<td>LV</td>
<td>Cross disorders</td>
<td>12</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVW (random)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GRAPPLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>WT AHA 12</td>
<td>LV</td>
<td>Cross disorders</td>
<td>6</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVW (random)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GRAPPLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>AAo min area</td>
<td>AAo</td>
<td>Cross disorders</td>
<td>34</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weighted Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weighted Mode (NOME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>WT AHA 11</td>
<td>LV</td>
<td>Depression</td>
<td>7</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>AAo max area</td>
<td>AAo</td>
<td>Psychiatric diseases</td>
<td>47</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FinnGen)</td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MR RAPS</td>
<td></td>
</tr>
<tr>
<td>AAo min area</td>
<td>AAo</td>
<td>Psychiatric diseases</td>
<td>50</td>
<td>IVW (fixed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FinnGen)</td>
<td></td>
<td>DIVW</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Genetic causal effects of CMR traits on psychiatric disorders. We illustrated selected significant ($P < 1.68 \times 10^{-5}$) causal genetic links from CMR traits (exposure) to psychiatric disorders (outcome) after adjusting for multiple testing using the Benjamini-Hochberg procedure to control the FDR at the 5% level. Category, the category of CMR traits; #IVs, the number of genetic variants used as instrumental variables. Different Mendelian randomization methods and their regression coefficients are labeled with different colors. See table S14 for data resources of psychiatric disorders.
potential connections between cardiovascu-
lar and neurological health.

We used multiorgan imaging data to iden-
tify genetic variations that can affect both the
heart and brain. Comprehending the genetic
pleiotropies and the intricate directional and
bidirectional interactions of human organs is
a complex task (11). Our study provides evi-
dence of causal genetic effects between CMR
traits and brain disorders through MR anal-
ysis. Because CMR traits are endophenotypes of
various cardiovascular diseases (e.g., hyper-
tension and hypertensive diseases), these find-
ings suggest that early intervention in heart
conditions and the management of cardiac
risk may have a positive impact on brain
health. Numerous studies have examined the
cognitive and neuropsychiatric effects of anti-
hypertensive medications, such as β-blockers
and calcium channel blockers (124, 125), and
some recent studies reported their benefi-
cial effects on psychiatric and neurological
disorders. For example, in a meta-analysis of
209 studies, antihypertensive medications
were found to reduce dementia risk by 21%
(126). Brain-penetrant calcium channel block-
ers were associated with a lower incidence of
neuropsychiatric disorders (127). The CMR
and brain MRI traits prioritized in our heart-
brain analyses could be helpful in identifying
potential therapeutic targets and evaluating
the therapeutic potential (or side effects) of
existing antihypertensive drugs and heart dis-
ease medications for mental health and neuro-
degenerative disorders.

To mitigate the confounding effects of body
size, our analyses have adjusted for a wide
range of variables collected by the UKB study,
including height, weight, whole-body fat free
mass, waist-to-hip ratio, body surface area,
and nonlinear high-order terms (128). How-
ever, unobserved biological interactions and
environmental factors may still confound the
identified heart-brain connections. The con-
cept of large-scale multiorgan imaging ge-
netics analysis is relatively new, and future
research using additional data resources, such
as long-term longitudinal data and large-scale
omics data from multiple organs, may pro-
vide further insights into the shared biology
between the brain and heart. In addition,
our analyses faced challenges because of the
use of different brain MRI traits generated
from multiple imaging modalities. For exam-
ple, previous studies have shown that lower
FA and higher MD of white matter are asso-
ciated with accelerated brain aging, indicat-
ing reduced microstructural coherence with
aging (129). Resting functional connectivity
strength has also been often found to be lower
in the aging brain (130). In our analyses, cer-
tain CMR traits correlated with distinct cat-
egories of brain MRI traits in contrasting
directions. For example, higher wall thick-
ness was linked to larger subcortical regional
brain volumes in structural MRI, lower FA in
diffusion MRI, and mostly stronger functional
connectivity strength in resting fMRI of cor-
tical brain areas. These findings may suggest
that white matter and gray matter are differ-
entially associated with certain heart func-
tions. However, potential confounding factors
cannot be completely ruled out, because the
MRI traits were from different areas of the
brain and extracted using different brain maps
and processing procedures. To better establish
and investigate these patterns, future studies
could incorporate new brain MRI traits, such
as microstructure measures in gray matter
brain regions, and produce diffusion MRI and
fMRI traits in the same brain atlas, allowing
for a more comprehensive analysis of the struc-
tural and functional relationships between the
heart and the brain.

In this study, imaging data were mainly
from individuals of European ancestry. Com-
paring UKB GWAS results with those of BBJ,
we found both similarities and differences for
genetic influences on CMR traits. For exam-
ple, participants in UKB and BBJ had similar
genetic effects on cardiac conditions at 22q11.23
and 8q24.13, but only the BBJ cohort showed
genetic effects at 10q22.2. There was also a
reduction in PRS performance in the BBJ-UKB
prediction compared with the prediction anal-
ysis within the UKB study. Furthermore, the
UKB study is well known for its “healthy vol-
unteer” selection bias and may not be an ideal
representation of the general European popu-
lation (131). It can be expected that some of
the genetic components that underlie heart-
brain connections may be population specific
or UKB specific. More open and large-scale
imaging datasets (132) collected from global
populations may help to identify causal var-
iants associated with CMR traits in globally
diverse populations and quantify population-
specific heterogeneity of genetic effects. These
new data will also enable the development of
a better picture of neurological-cardiac inter-
actions and allow researchers to examine the
reproducibility of scientific findings.

This paper specifically focuses on heart-brain
connections. Because of the large amount of
data collected in the UKB study, it is also
possible to study the relationships between the
brain and other human organs and sys-
tems (133). For example, increasing evidence
supports the gut-brain axis, which involves
complex interactions between the central ner-
vous system and the enteric nervous system
(134). Patients with inflammatory bowel disease
(e.g., Crohn’s disease) show a higher risk of men-
tal disorders such as depression and anxiety
(135). Multisystem analysis using biobank-scale
data may provide insights for interorgan path-
ophysiological mechanisms and guide the pre-
vention and early detection of brain diseases.

Methods summary
Our study aimed to explore the connection be-
tween the heart and brain by analyzing multi-
organ imaging data obtained from >40,000
subjects. We used recently developed pipelines
for cardiac and aortic MRI (53–57) to generate
imaging traits for four cardiac chambers, LV,
LA, RV, and RA, and two aortic sections, AAo
and DAo. Moreover, we extracted various im-
aging traits from multiple brain MRI modal-
ities, including structural MRI (47), diffusion
MRI (49), and resting-state and task-based
fMRI (51). We then performed phenotypic
and genetic analyses on these multiorgan imaging
traits to examine the relationship between the
heart and brain.

We performed a discovery-replication anal-
ysis to assess pairwise phenotypic associations
between heart and brain imaging traits while
controlling for various covariates such as body
size (128), shared risk factors, and imaging con-
founders. Additionally, we conducted separate
univariate analyses of structural and func-
tional connection patterns for both female and
male subjects. To better understand the rela-
tionship between CMR traits and different brain
MRI modalities, we used CCA (66) to examine
temovariate associations.

We used data from UKB individuals of British
ancestry to estimate the SNP heritability of
82 CMR traits (67) and performed GWAS using
linear mixed-effect models implemented in
fastGWA (136). To ensure the robustness of
our findings, we conducted separate GWASs
with independent holdout datasets to repli-
cate the identified loci. We also conducted sex-
specific SNP heritability and GWAS analyses
to compare the genetic effects on CMR traits
between males and females. Additionally, we
generated PRS (70) to assess the proportion of
variation in CMR traits that could be predicted
by genetic variants in European and non-
European testing cohorts. To investigate gene-
level associations, we used MAGMA (55), and
we mapped GWAS signals to genes using func-
tional genomic information in FUMA (38).

We used GWAS results of CMR traits to un-
cover the genetic overlaps with other complex
traits and diseases previously identified in
GWASs, including our brain MRI traits and
those catalogued in the NHGRI-EBI GWAS
database (71). We applied Bayesian colocal-
ization analysis (72) to examine the presence
of shared causal genetic variants underlying
genetic pleiotropy. Additionally, we used cross-
trait LDSC (102) to estimate genome-wide ge-
netic correlations between CMR traits and
other complex traits and diseases.

We further investigated genetic associations
by examining the relationship between PRS
of CMR traits and phenotypes collected in
the UKB study. We also used additional data re-
sources, such as FinnGen (104), which pro-
vided GWAS results on brain-related clinical
outcomes, to conduct a two-sample MR analysis (103) to investigate the genetic causal relationships between CMR traits and brain disorders. Additionally, we evaluated the predictive ability of CMR traits for complex traits and diseases in the UKB study, and improved prediction accuracy by integrating genetic PRS, CMR traits, and brain MRI traits.

REFERENCES AND NOTES

127. L. Colbourne, P. J. Harrison, Brain-penetrant calcium channel blockers are associated with a reduced incidence of neuropsychiatric disorders. Mov. Psychiatry 27, 3904–3912 (2020). doi: 10.1038/s41382-020-01615-6; pmid: 35638884

133. C. McCracken et al., Multicenter imaging demonstrates the heart-brain-liver axis in UK Biobank participants. Nat. Commun. 13, 7839 (2022). doi: 10.1038/s41467-022-35321-2; pmid: 3654768

137. Analysis code for: B. Zhao et al., Heart-brain connections: phenotypic and genetic insights from magnetic resonance images, Zenodo (2023); https://zenodo.org/record/7239816. doi: 10.1126/science.abn6598

138. GWAS summary statistics for: B. Zhao et al., Heart-brain connections: phenotypic and genetic insights from magnetic resonance images, Zenodo (2023); https://zenodo.org/record/7239816.

ACKNOWLEDGMENTS

We thank the individuals represented in the UKB for their participation and the research teams for their work in collecting, processing, and disseminating these datasets for analysis; the research computing groups at the University of North Carolina at Chapel Hill, Purdue University, and the Wharton School of the University of Pennsylvania for providing computational resources and support that have contributed to these research results; and all of the authors and databases that made GWAS and eGTLD summary-level data publicly available. Funding: This research was partially supported by National Institutes of Health (grant MH086633 to H.Z., grant MH116527 to T.F.L., and grant R56 AG079291 to Y.L.); startup funding from Purdue University Department of Statistics (B.Z.); and the UNC Intellectual and Developmental Disabilities Research Center (Eunice Kennedy Shriver National Institute of Child Health and Human Development grant P50 HD03575 to Y.L.). This research was conducted using the UKB resource (application no. 22783), which is subject to a data transfer agreement. Author contributions: B.Z. designed the study. B.Z., T.F.L., Z.F., Y.Y., J.S., X.Y., X.W., Y.T.Y., J.T., D.X., Z.W., and B.L. analyzed the data. T.F.L., Y.Y., J.T., X.W., D.X., T.Y.L., J.C., Y.S., C.T., and Z.Z. processed heart imaging data and undertook quality controls. H.Z., J.S., and Y.L. provided feedback on the study design and results interpretation. B.Z. wrote the manuscript with contributions from J.S. and Y.Y. and feedback from all authors. Competing interests: Chalmer Tomlinson is currently an employee at Janssen R&D of Johnson & Johnson, Raritan, NJ, USA. The remaining authors declare that no competing interests.

Data and materials availability: We made use of publicly available software and tools. Our analysis code is freely available at Zenodo (137). The code for heart image analysis can be found at https://github.com/baiwenjia/ukbb_cardiac. The code for CCA can be found at https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/. Our GWAS summary statistics of 82 CMR traits have been shared on Zenodo (138) and at HeartAPI (https://heartapi.org/). The GWAS summary statistics of brain MRI traits can be freely downloaded at BIG-KEEP https://big.keep.org/. The individual-level UKB data used in this study can be obtained from https://www.ukbiobank.ac.uk/. License information: Copyright © 2023 the authors; some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. The website www.ukbiobank.ac.uk/ contains a detailed description of data use.

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abn6598

Materials and Methods
Supplementary Text
Figs. S1 to S117

References (139–156)

MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

Submitted 10 December 2021; resubmitted 17 November 2022
Accepted 11 April 2023

10.1126/science.abn6598

Downloaded from https://www.science.org at University of North Carolina Chapel Hill on June 01, 2023
Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images

Bingxin Zhao, Tengfei Li, Zirui Fan, Yue Yang, Juan Shu, Xiaochen Yang, Xifeng Wang, Tianyou Luo, Jiarui Tang, Di Xiong, Zhenyi Wu, Bingxuan Li, Jie Chen, Yue Shan, Chalmer Tomlinson, Ziliang Zhu, Yun Li, Jason L. Stein, and Hongtu Zhu

Science, 380 (6648), abn6598.
DOI: 10.1126/science.abn6598

Editor’s summary

It is known that cardiovascular disorders correlate with some neurological and psychiatric conditions, but it is not always clear what the connections are and whether they are caused by an innate predisposition or by the stress induced by having a medical condition. To detangle these questions, Zhao *et al.* examined imaging and genetic data from tens of thousands of participants in the UK Biobank and BioBank Japan (see the Perspective by Sacher and Witte). Through this large-scale analysis, the authors uncovered correlations between structure and function of both the heart and the brain, such as links between specific features of cardiac imaging and neuropsychiatric disorders. The authors also used Mendelian randomization to demonstrate shared genetic influences on both the brain and the heart.

—Yevgeniya Nusinovich

View the article online
https://www.science.org/doi/10.1126/science.abn6598
Permissions
https://www.science.org/help/reprints-and-permissions