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INTRODUCTION: There is increasing evidence
pointing to a close relationship between heart
health and brain health, with cardiovascular
diseases potentially leading to brain diseases
such as stroke, dementia, and cognitive im-
pairment. Magnetic resonance imaging (MRI)
is a valuable tool that can be used to assess
both the heart and brain, generating biomark-
ers and endophenotypes for various clinical
outcomes. However, although recent large-
scale analyses have been conducted on heart
and brain MRI-derived traits separately, few
studies have explored the potential for multi-

organ MRI to examine heart-brain connections
and identify shared genetic effects. The struc-
tural and functional links between the heart
and the brain remain unclear.

RATIONALE: Using multiorgan MRI and genetic
data from >40,000 subjects, we aimed to quan-
tify interorgan connections between the heart
and brain and identify the underlying genetic
variants. Specifically, we analyzed 82 cardiac
and aortic MRI-derived traits across six cate-
gories: left and right ventricles, left and right
atria, and ascending and descending aortas, as

well as 458 brain MRI traits that measured
structure and function.

RESULTS: After controlling for various cova-
riates, we found that heart MRI traits were
clearly associated with the brain across all im-
aging modalities studied. We observed multi-
ple patterns of association for brain gray matter
morphometry, white matter microstructure,
and functional networks. For example, we found
that the left ventricle of the heart showed the
strongest correlations with microstructure met-
rics of cerebral white matter tracts, suggesting
that adverse heart features were associated
with poorer white matter microstructure.
Our genome-wide association analysis of heart

MRI traits identified 80 associated genomic
loci (P<6.09 × 10−10).We performed sex-specific
analysis and found that the genetic effects
on heart structure and function were highly
consistent between both sexes. Further, we
conducted a systematic search of previously
reported genetic results in these genomic loci
and found that heart MRI traits had shared
genetic influences and colocalized with heart
and brain diseases and complex traits.
We identified genetic correlations between

heartMRI traits and various brain complex traits
and diseases such as stroke, eating disorders,
schizophrenia, cognitive function, and mental
health traits. For example, adverse myocardial
wall thickness condition was positively genet-
ically correlated with stroke. We further used
two-sample Mendelian randomization to ex-
plore causal genetic links between the heart
and brain, and our findings suggest that ad-
verse heart features have genetic causal effects
on several brain diseases such as psychiatric
disorders and depression.

CONCLUSION: This study deepened our under-
standing of heart-brain links and their genetic
basis.We observed thatMRImeasurements of
the two organswere associatedwith each other,
and this was independent of a wide variety of
body measures, shared risk factors, and imag-
ing confounders. We also uncovered genetic
colocalizations and correlations between heart
structure and function and brain clinical end
points, suggesting that adverse heart metrics
may have implications for brain abnormalities
and the risk of brain diseases. By understand-
ing human health from a multiorgan perspec-
tive, we may be able to improve disease risk
prediction and prevention and mitigate the
negative effects of one organ disease on other
organs that may be at risk.▪
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Heart-brain connections revealed by multiorgan imaging genetics. Top left: Quantifying the heart and
brain structure and function in MRI. Top right: Examples of associations between heart MRI traits and brain
white matter tracts. Bottom left: Genomic loci associated with heart MRI traits that overlapped with traits
and disorders of the heart and/or brain. Bottom right: Selected genetic correlations between heart MRI traits
and brain disorders.
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Cardiovascular health interacts with cognitive and mental health in complex ways, yet little is known
about the phenotypic and genetic links of heart-brain systems. We quantified heart-brain connections
using multiorgan magnetic resonance imaging (MRI) data from more than 40,000 subjects. Heart
MRI traits displayed numerous association patterns with brain gray matter morphometry, white matter
microstructure, and functional networks. We identified 80 associated genomic loci (P < 6.09 × 10−10)
for heart MRI traits, which shared genetic influences with cardiovascular and brain diseases.
Genetic correlations were observed between heart MRI traits and brain-related traits and disorders.
Mendelian randomization suggests that heart conditions may causally contribute to brain disorders. Our
results advance a multiorgan perspective on human health by revealing heart-brain connections and
shared genetic influences.

A
growing amount of evidence suggests
close interplays between heart health
and brain health (fig. S1). Cardiovascular
diseases may provide a pathophysiolog-
ical background for several brain diseases,

including stroke (1), dementia (2), cerebral small
vessel disease (3), and cognitive impairment
(4, 5). For example, atrial fibrillation has been
linked to an increased incidence of demen-
tia (6) and silent cerebral damage (7) even in
stroke-free cohorts (8). It has been consistently
observed that heart failure is associated with
cognitive impairment and eventually demen-
tia (9), likely because of the reduced cerebral
perfusion caused by the failing heart (10). Con-
versely, mental disorders and negative psycho-
logical factors may contribute substantially to
the initiation and progression of cardiovascu-
lar diseases (11–13). Patients with mental ill-
nesses such as schizophrenia, bipolar disorder,
epilepsy, or depression show an increased in-
cidence of cardiovascular diseases (14–17). Acute
mental stress may cause a higher risk of athero-

sclerosis because of stress-induced vascular in-
flammation and leukocyte migration (18).
Primarily because of the lack of data, almost
all prior studies on heart-brain interactions and
associated risk factors (19–25) have focused on
one (or a few) specific diseases or used small
samples. Therefore, the overall picture of the
structural and functional links between the
heart and the brain remains unclear.
In heart and brain diseases, magnetic reso-

nance imaging (MRI)–derived traits are well-
established endophenotypes. Cardiovascular
magnetic resonance imaging (CMR) has been
widely used to assess cardiac structure and
function, yielding insights into the risk and
pathological status of cardiovascular diseases
(26–28). Brain MRI modalities provide de-
tailed information about brain structure and
function (29). Clinical applications of brain
MRI have revealed the associated brain abnor-
malities that accompanymultiple neurological
and neuropsychiatric disorders (30–32). More-
over, twin and family studies have shown that
CMR and brain MRI traits are moderately to
highly heritable (33–35). For example, the left
ventricular mass (LVM) has a heritability es-
timate >0.8 (34). Most brain structural MRI
traits are highly heritable (heritability ranges
from 0.6 to 0.8) (36), and the heritability of
brain functional connectivity is usually be-
tween 0.2 and 0.6 (37). A few recent genome-
wide association studies (GWASs) have been
separately conducted on CMR (38–43) and
brain MRI traits (44–51). For example, several
large-scale efforts have been made to discover
genetic variants associated with brain struc-
tures; examples include ENIGMA (31), Neuro-
CHARGE (52), and IMAGEN (53). Although
MRI has been widely used in clinical research

and genetic mapping, few studies have used
multiorgan MRI to examine heart-brain con-
nections and identify the shared genetic signa-
tures of the heart and the brain.
In the present study, we investigated heart-

brain connections using multiorgan imaging
data obtained from >40,000 subjects in the
UK Biobank (UKB) study (54). By using a re-
cently developed heart segmentation and fea-
ture extraction pipeline (55–57), we generated
82 CMR traits from the raw short-axis, long-
axis, and aortic cine images. These CMR traits
included global measures of four cardiac cham-
bers, the left ventricle (LV), right ventricle (RV),
left atrium (LA), and right atrium (RA), and
two aortic sections, the ascending aorta (AAo)
and the descending aorta (DAo), as well as re-
gional (58) phenotypes of the LV myocardial
wall thickness and strain [table S1 and sup-
plementary text (59)]. Then, we identified the
relationships between the 82 CMR traits and a
wide variety of the brainMRI traits discovered
frommultimodality images (60), including struc-
tural MRI (164 traits), diffusion MRI (110 traits),
resting functional MRI (resting fMRI) (92 global
traits and >60,000 regional traits), and task
fMRI (92 global traits and >60,000 regional
traits). These brain MRI traits provided fine
details of brain structural morphometry (45, 61)
(regional brain volumes and cortical thickness
traits), brain structural connectivity (47, 62)
[diffusion tensor imaging (DTI) invariant mea-
sures of white matter tracts], and brain in-
trinsic and extrinsic functional organizations
(49, 63, 64) (functional activity and connectivity
at rest and during a task) (table S2). To eval-
uate the genetic determinates underlying heart-
brain connections,we performedGWASs for the
82 CMR traits to uncover the genetic architec-
ture of the heart and aorta. Compared with
existingGWASs of CMR traits (38–43), our study
used amuchbroader group of cardiac and aortic
traits, allowing us to identify the shared genetic
components with a wide variety of brain-related
complex traits and disorders. For example, (42)
mainly focused on nine measures of the right
heart, (38) analyzed six LV traits, and (43) studied
three traits of diastolic function. Figure 1 pro-
vides an overview of the study design and analy-
ses. The GWAS results of 82 CMR traits can be
explored and are freely available through the
heart imaging genetics knowledge portal (Heart-
KP) at http://heartkp.org/.

Phenotypic heart-brain connections

To verify that the 82 CMR traits are well de-
fined and biologically meaningful, we first ex-
amined their reproducibility using the repeat
scans obtained from the UKB repeat imag-
ing visit (n = 2903; average time between visits,
2 years). For each trait, we calculated the intra-
class correlation (ICC) between twoobservations
from all revisited individuals. The average ICC
was 0.653 (range = 0.369 to 0.970; table S1).
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Some volumetric traits had very high ICC
(>0.9), including the LV end-diastolic vol-
ume (LVEDV), LVM, RV end-diastolic volume
(RVEDV), RV end-systolic volume (RVESV),
AAomaximum area, AAominimum area, DAo
maximumarea,DAominimumarea, and global
myocardial wall thickness. The ejection frac-
tion [such as the LV ejection fraction (LVEF)]
and distensibility traits (e.g., the DAo disten-
sibility) had the lowest ICCamongall volumetric
traits (mean = 0.574 and 0.519, respectively).
In addition, the average ICC was 0.760 for the
17 wall thickness traits, 0.532 for the seven
longitudinal peak strains, 0.569 for the 17 cir-
cumferential strains, and 0.516 for the 17 radial
strains. Additionally, we examined the changes
in 82 CMR traits over a 2-year period and were
able to replicate the direction of most of the
aging effects (per 7.5 years) described in (55)
[table S1 and supplementary text (59)]. Over-
all, these results suggest that the extracted CMR
traits have moderate to high within-subject
reliability and can consistently delineate the
cardiac and aortic structure and function.
We examined the associations between CMR

traits and brain MRI traits in UKB individuals
of white British ancestry (n = 31,152; see the

materials and methods for a list of adjusted
covariates). At the Bonferroni significance lev-
el (P < 1.33 × 10−6), CMR traits were associated
with a wide variety of brain MRI traits, includ-
ing regional brain volumes, cortical thickness,
DTI parameters, and resting and task fMRI
traits (Fig. 2A, fig. S2, and table S3). Among
the 4193 Bonferroni-significant associations in
our discovery sample, 1574 were significant at
the nominal level (0.05) in a holdout indepen-
dent validation dataset (n = 5316) with con-
cordant association signs (figs. S3 to S5). For
example, global wall thickness was positively
associated with the volumes of multiple sub-
cortical brain structures (fig. S2B). Particu-
larly, both left and right putamen volumes
were associated with at least 10 wall thickness
traits (fig. S4). Subcortical regions across both
brain hemispheres showed consistent asso-
ciation patterns, potentially highlighting the
robustness of these correlations. Additional
examples of replicated associations can be
found in the supplementary text (59).
CMR traits were also correlated with brain

structural and functional connectivity. For ex-
ample, fractional anisotropy (FA) and mean
diffusivity (MD) are two robust measures of

brain structural connectivity and white mat-
ter microstructure, with higher FA and lower
MD values typically signifying better white
matter integrity (65). The FA values of several
white matter tracts consistently showed neg-
ative associations with aortic areas (e.g., AAo
and DAominimum areas), LV traits (e.g., LVM,
LVEDV, andwall thickness traits), and LAmin-
imum volume (LAVmin). Moreover, these CMR
traits exhibited consistent positive associations
with MD values (Fig. 2, B and C, and fig. S6).
For resting fMRI, both mean functional con-
nectivity and mean amplitude (i.e., functional
activity) traits were negatively associated with
volumetric measures of the four cardiac cham-
bers, such as the LV cardiac output (LVCO), RV
ejection fraction (RVEF), LA stroke volume
(LASV), and RA ejection fraction (RAEF) (fig.
S7). By contrast, positive correlations were wide-
ly observed for wall thickness traits, longitu-
dinal strains, and peak circumferential strains.
The task fMRI traits showed similar patterns
(fig. S8). To further discover fine-grained de-
tails of CMR connections with brain functions,
we examined pairwise associations between 82
CMR traits and 64,620 high-resolution func-
tional connectivity traits (49) in resting fMRI.
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Fig. 1. Overview of the study design and analyses. (A) Overview of the study. We used CMR and brain MRI traits as endophenotypes to explore the phenotypic and
genetic connections between the heart and the brain. (B) Description of the overall workflow and the key analyses involved in each step.
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Bonferroni-significant associations (P < 7.15 ×
10−8) were observed across the functional con-
nectivity of the whole brain, with specific pat-
terns emerging across different functional areas
and networks (fig. S9, A and B). For example,
the somatomotor network and its connectivity
with the secondary visual network were asso-
ciated with multiple CMR traits. Specifically,
positive somatomotor associations were ob-

served in the LVM,RVESV, RAminimumvolume
(RAVmin), global peak circumferential strain,
and global wall thickness (figs. S9C and S10 to
S13), and negative correlations were observed in
all four ejection fraction traits [RVEF,LAejection
fraction (LAEF), RAEF, and LVEF] and LVCO
(figs. S9D and S14 to S17). Additional examples
can be found in the supplementary text (59)
(figs. S18 to S28). Furthermore, we performed the

above phenotypic association analyses separate-
ly for males and females (figs. S29 to S32), used
canonical correlation analysis (CCA) (66) to inves-
tigate themultivariate associations betweenCMR
traits and various groups of brain MRI traits,
and examined the influence of environmental
factors and biomarkers on the underlyingmech-
anisms of heart-brain interactions [figs. S33 to
S35, table S4, and supplementary text (59)].
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Fig. 2. Phenotypic heart-brain
associations. (A) The –log10
(P value) of phenotypic correlations
between 82 CMR traits and five
groups of brain MRI traits, including
101 regional brain volumes, 63 cortical
thickness traits, 110 DTI parameters,
92 resting fMRI traits, and 92 task
fMRI traits. The dashed line indicates
the Bonferroni significance level (P <
1.33 × 10−6). Each CMR trait category
is labeled with a different color.
(B) Significant correlations (P < 1.33 ×
10−6) between fractional anisotropy
values of white matter tracts and
AAo minimum area. (C) Significant
correlations (P < 1.33 × 10−6) between
mean diffusivity values of white matter
tracts and global myocardial wall
thickness at end diastole (global wall
thickness).
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Heritability and the associated genetic loci
of 82 CMR traits
We estimated the single-nucleotide polymor-
phism (SNP) heritability for the 82 CMR traits
using UKB individuals of white British ances-

try (67) (n = 31,875). The mean heritability (h2)
was 22.9% for the 82 traits (range = 7.07 to
70.2%; Fig. 3A), all of which remained signif-
icant after adjusting for multiple testing using
the Benjamini-Hochberg procedure to control

the false discovery rate (FDR) at the 0.05 level
(P < 1.09 × 10−3) (table S5). The h2 of the AAo/
DAo maximum areas and AAo/DAo minimum
areaswas>50%.Amongcardiac traits, the global
wall thickness, RVESV, RVEDV, LV end-systolic
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Fig. 3. Genetics of CMR traits in the UKB. (A) SNP heritability of 82 CMR traits across the six categories. The x axis displays the short names of CMR traits; see table S1
for the full names of these traits. The average heritability of each category is labeled. (B) Ideogram of 80 genomic regions associated with CMR traits (P < 6.09 × 10−10).
Red and brown name labels denote genomic regions that have been replicated in the validation dataset after applying Bonferroni correction and at a nominal level, respectively.
(C) LVESV was associated with the 22q11.23 region in both the UKB (index variant rs5760061) and BBJ (index variant rs5760054) studies. (D) LVESV was associated
with the 8q24.13 region in both the UKB and BBJ studies (shared index variant rs34866937).
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volume (LVESV), LVEDV, and LVM had the
highest heritability (h2 > 37.8%). A sex-specific
heritability analysis was conducted separately
for females and males, and the heritability es-
timates for both sexes were similar (mean h2 =
24.8 versus 22.6%, correlation = 0.910, P= 0.332;
fig. S36).
We next performed GWASs for the 82 CMR

traits using thiswhite British cohort (n= 31,875).
All Manhattan and QQ plots can be browsed
through the server on Heart-KP. The intercepts
of linkage disequilibrium (LD) score regression
(LDSC) (68) were all close to one, suggesting no
genomic inflation of test statistics caused by
confounding factors (mean intercept = 0.99986;
range = 0.982 to 1.019). At the significance level
6.09 × 10−10 (5 × 10−8/82, that is, the stan-
dard GWAS significance threshold, addition-
ally Bonferroni adjusted for the 82 traits), we
identified independent (LD r2 < 0.1) signifi-
cant associations in 80 genomic regions (cyto-
genetic bands) for 49 CMR traits, including
35 for LV, 35 for AAo, 14 for DAo, 11 for RV,
and 1 for LA (Fig. 3B and table S6). Detailed
interpretations of these identified regions can
be found below. These genetic effects on CMR
traits were highly consistent in the sex-specific
GWASs, in which males and females were an-
alyzed separately (correlation = 0.944; P= 0.739;
fig. S37). In the supplementary text (59), we
further demonstrate that these CMR traits
exhibited a highly polygenic genetic architec-
ture and shared heritability with brain MRI
traits, particularly with DTI parameters mea-
suring white matter microstructure (figs. S38
and S39 and table S7).
To replicate the identified loci, we performed

separate GWASs using holdout datasets in the
UKB study that were independent from our
discovery dataset. First, we repeated GWASs
on a European dataset with 8252 subjects (see
the materials and methods). For the 243 inde-
pendent (LD r2 < 0.1) CMR-variant associa-
tions in the 80 genomic regions, 56 (23.04%,
in 25 regions) passed the Bonferroni signifi-
cance level (2.06 × 10−4, 0.05/243) in this Eu-
ropean validation GWAS, and 178 (73.25%, in
61 regions) passed the nominal significance
level (0.05) (Fig. 3B and table S8). All 178 asso-
ciations had concordant directions in the two
independent GWASs, and the correlation of
their genetic effects was 0.963 (fig. S40). These
results show a high degree of generalizability
of our GWAS findings among European co-
horts. We also performed GWAS on two non-
European UKB validation datasets: the UKB
Asian (UKBA, n = 500) andUKBBlack (UKBBL,
n = 271). One association between 8q24.3 and
the RVEF passed the Bonferroni significance
level (P = 8.281 × 10−5) in UKBA, and 14 more
regions passed the nominal significance level.
For UKBBL, 12 regions passed the nominal
significance level, and none of them survived
the Bonferroni significance level, which may

be partially caused by the small sample size of
thisnon-EuropeanGWAS.Additionally,we eval-
uated the ancestry-specific effects using Asian
GWAS summary statistics of three CMR traits
[analogous to the LVEDV, LVESV, and LVEF
(41)], which were generated from 19,000 sub-
jects in the BioBank Japan (BBJ) study (69). At
the stringent GWAS 1.666 × 10−8 (5 × 10−8/3)
threshold, BBJ CMR traits identified indepen-
dent (LD r2 < 0.1) significant associations in
22q11.23, 8q24.13, and 10q22.2. Of the three
regions, 22q11.23 and 8q24.13 were among the
80 regions that were discovered in the UKB
white British cohort. These two regions were
significantly associated with the LVSEV in
both the UKB and the BBJ studies (Fig. 3, C
and D). The 10q22.2 had a small P value in the
UKB GWAS (P = 1.58 × 10−9), but did not sur-
vive the 6.09 × 10−10 threshold.
Finally, we constructed polygenic risk scores

(PRSs) using lassosum (70) to evaluate the out-
of-sample prediction power of the discovery
GWAS results (see the materials andmethods).
Among the 82 CMR traits, 75 had significant
PRS at the FDR5% level (P range = 4.47 × 10−125

to 3.74 × 10−2; table S9). The highest incremen-
tal R2 value (after adjusting for the effects of
covariates) was observed on the AAo mini-
mum area and the AAo maximum area (7.20
and 7.04%, respectively). To evaluate the cross-
population performance, PRS was also con-
structed on UKB white British discovery GWAS
data using BBJ GWAS summary statistics of
the LVEDV, LVESV, and LVEF. We found that
the PRSs of these three traits were all signif-
icant in the UKB (P range = 1.58 × 10−11 to 8.13 ×
10−7; R2 range = 3.90 × 10−4 to 1.35 × 10−3). The
prediction accuracy was lower than that in
the above within European prediction anal-
ysis (R2 range = 7.72 × 10−3 to 9.67 × 10−3), which
may be explained by the smaller training GWAS
sample size in the BBJ study and population
differences between theUKB and BBJ cohorts.

Pleiotropy of genetic variants across
body systems

To identify the shared genetic effects between
CMR traits and complex traits, we performed
association lookups for independent (LD r2 <
0.1) significant variants (and variants in their
LD, r2 ≥ 0.6, P < 6.09 × 10−10) detected in our
UKB white British GWAS. In the National Hu-
man Genome Research Institute–European
Bioinformatics Institute (NHGRI-EBI) GWAS
catalog (71), our results tagged variants that
have been linked to a wide range of traits and
diseases, including heart diseases, heart struc-
ture and function, blood pressure, lipid traits,
blood traits, diabetes, stroke, neurological and
neuropsychiatric disorders, psychological traits,
cognitive traits, lung function, parental lon-
gevity, smoking, and drinking. To evaluate
whether two associated genetic signals were
consistent with the shared causal variant, we

applied the Bayesian colocalization analysis
(72) for CMR traits and selected phenotypes
with publicly available GWAS summary sta-
tistics. Evidence of pairwise colocalization was
defined as having a posterior probability of the
shared causal variant hypothesis (PPH4) > 0.8
(72, 73). Many shared genetic variants were
found to be expression quantitative trait loci
(eQTLs) in a recent large-scale eQTL meta-
analysis of brain (74) and blood tissues (75).
The traits with shared genetic effects are pre-
sented in table S10, with selected pairs shown
in Fig. 4 and figs. S41 to S108. Table S11 sum-
marizes the results of colocalization and eQTL
analyses. Below, we highlight genetic overlaps
between CMR traits and complex traits and
diseases of the heart and brain, as well as other
clinical outcomes.
First, we replicated 27 genomic regions that

have been previously linked to cardiac and
aortic traits, such as fractional shortening and
LV internal dimension (fig. S41). There were
21 regions associated with heart rate and elec-
trocardiographic traits (e.g., QRS duration;
figs. S42 to S46) and six regions with aortic
measures (e.g., thoracic aortic aneurysms and
dissections; figs. S47 and S48). In addition,
30 regions had shared associations (LD r2 ≥
0.6) with cardiovascular diseases, including
12 regions with coronary artery disease (76)
(figs. S49 and S50), nine regions with atrial
fibrillation (77) (Fig. 4A and figs. S51 to S55),
and five regions with hypertension (78) (figs.
S56 to S58). Other heart diseases included
abdominal aortic aneurysm (79) (figs. S47 and
S59), mitral valve prolapse (80) (fig. S46), and
idiopathic dilated cardiomyopathy (81) (figs.
S60 and S61). There was widespread evidence
of colocalization onmany loci (PPH4 > 0.899).
Additionally, 41 of the 80 genomic regions
were associated with blood pressure traits such
as diastolic or systolic blood pressure, pulse
pressure, and mean arterial pressure (Fig. 4B
and figs. S62 to S81). CMR traits were in LD
(r2 ≥ 0.6) with various cardiovascular and blood
biochemistry biomarkers such as lipid traits
(figs. S50, S56, S67, and S82), red blood cell
count, blood protein levels, red cell distribution
width, and plateletcrit (figs. S83 to S87).
We found genetic pleiotropy between CMR

traits andmultiple brain-related complex traits
anddisorders. In the 6p21.2, 7p21.1, and 12q24.12
regions, CMR traits were in LD (r2 ≥ 0.6) with
stroke (82) (e.g., ischemic stroke, large artery
stroke, and small-vessel ischemic stroke), in-
tracranial aneurysm (83), and moyamoya dis-
ease (84) (Fig. 4, A and B, and fig. S50). The
index variants of 7p21.1 (rs2107595) and 12q24.12
(rs597808) were eQTLs of TWIST1 and ALDH2
in human brain tissues (74), suggesting that
these CMR-associated variants were known to
affect gene expression in human brain. TWIST1
was associatedwith cerebral vasculature defects
(85), and there was a higher level of ALDH2
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Fig. 4. Selected genetic loci associated with both CMR trait and other
complex traits and diseases. (A) In 6p21.2, we observed colocalization between
the global myocardial wall thickness (WT) at end-diastole (WT global, index
variant rs4151702) and atrial fibrillation (index variant rs3176326). The posterior
probability of Bayesian colocalization analysis for the shared causal variant
hypothesis (PPH4) is 0.997. In this region, the WT global was also in LD
(r2 ≥ 0.6) with ischemic stroke. (B) In 7p21.1, we observed colocalization between
the DAo minimum area (DAo min area, index variant rs2107595) and systolic
blood pressure (index variant rs57301765, PPH4 = 0.998). In this region, the

DAo min area was also in LD with stroke, intracranial aneurysm, coronary artery
disease, and moyamoya disease. (C) In 15q25.2, we observed colocalization
between the regional myocardial wall thickness at end-diastole (WT AHA 7, index
variant rs11638445) and schizophrenia (index variant rs12902973, PPH4 =
0.922). In this region, the WT AHA 7 was also in LD with bipolar disorder. AHA 7,
American Heart Association (AHA) region 7. (D) We illustrated the colocalization
between the AAo maximum area (AAo max area) and functional connectivity
between the default mode and orbito-affective networks (shared index variant
rs1678983) in 15q21.1 (PPH4 = 0.964).
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activity in the putamen and temporal cortex of
patients with Alzheimer’s disease (86). CMR
traits were also in LD (r2 ≥ 0.6) with neuro-
degenerative and neuropsychiatric disorders
such as Parkinson’s disease (87) and Alzheimer’s
disease (88) (fig. S88), hippocampal sclerosis
of aging (89) (fig. S74), schizophrenia (90) (Fig.
4C and fig. S49), bipolar disorder (91) (Fig. 4C
and figs. S82 and S89), and eating disorders
(92) (fig. S90). In addition, CMR traits were in
LD (r2 ≥ 0.6) with mental health traits such as
neuroticism, depressive symptoms, subjective
well-being, and risk-taking tendency (figs. S88
and S91 to S93).
For cognitive traits and education, we tagged

17q21.31, 11p11.2, and 11q13.3 with cognitive func-
tion and educational attainment (figs. S88, S93,
and S94); 7q32.1 with reading disability (fig.
S95); and 12q24.12with reaction time (fig. S50).
We also found shared associations (LD r2 ≥ 0.6)
in five regions with DTI parameters (47) (figs.
S96 to S100); four regions with regional brain
volumes (45) (figs. S101 to S104); and five re-
gions with fMRI traits (49) (Fig. 4D and figs.
S105 to S108). The colocalization analysis re-
vealed that CMR traits shared causal genetic
variants with these phenotypes, such as 15q25.2
with schizophrenia, 15q21.1 with functional
connectivity, as well as 11q24.3 and 12q24.12
with white matter microstructure (PPH4 >
0.809). There is substantial evidence support-
ing the interplay between cardiovascular health
and these brain traits anddiseases. For example,
people with better heart health have better
cognitive abilities (93) and lower risk for brain
disorders such as stroke and Alzheimer’s dis-
ease (94). In addition, mental health disorders
may result in biological processes and behav-
iors that are associated with cardiovascular
diseases (11, 95). Our findings indicate that
cardiovascular conditions share substantial
genetic components with brain diseases, men-
tal health traits, and cognitive functions, sug-
gesting a potential genetic basis for heart-brain
connections.
Genetic overlaps with other diseases and

complex traits were also observed. For exam-
ple, RVEDVwas in LD (r2 ≥ 0.6) with type 1 dia-
betes (96) and type 2 diabetes (97, 98) in the
12q24.12 region (fig. S50). CMR traitswere in LD
(r2≥ 0.6) in 11 regionswith lung conditions such
as asthma (99) (fig. S82), idiopathic pulmo-
nary fibrosis (100), interstitial lung disease
(101) (fig. S88), and lung function (figs. S60,
S64, S67, and S77). We also found shared ge-
netic associations (LD r2 ≥ 0.6) with smoking
(figs. S50, S82, and S93) and alcohol consump-
tion and alcohol use disorder (figs. S49, S88,
and S93).

Genetic correlations with brain disorders
and complex traits

First, we examined genetic correlations among
82 CMR traits using cross-trait LDSC (102).

Strong genetic correlations were observed with-
in and between categories of CMR traits (fig.
S109 and table S12). For example, RVEDV was
genetically correlated with other RV traits, in-
cluding RV stroke volume (RVSV), RVESV, and
RVEF. The RVEDV was also correlated with
CMR traits from other categories, such as AAo
maximum area and DAo maximum area, LASV
andRA stroke volume (RASV), aswell as LVEDV,
LVESV, LVM, and LVEF. In addition, we found
a strong relationship between phenotypic and
genetic correlations among all CMR traits (b =
0.781, P < 2 × 10−16).
Next, we examined the genetic correlations

between 82 CMR traits and 60 complex traits
anddiseases. At theFDR5% level (82×60 tests),
the CMR traits were associated with heart dis-
eases, lung function, cardiovascular risk factors,
and brain-related complex traits and dis-
eases (table S12). For example, hypertension
had clear genetic correlationswith aortic traits
and LV traits (Fig. 5A). The strongest correla-
tion between LV traits and hypertension was
found in wall thickness traits (P < 2.43 × 10−9),
which were also associated with coronary ar-
tery disease, type 2 diabetes, and stroke (Fig.
5B). In addition, atrial fibrillation was signif-
icantly associated with aortic, LA, and RA
traits (P < 6.66 × 10−4), suggesting that atrial
fibrillation might have a higher genetic sim-
ilarity with LA and RA traits than with LV and
RV traits.
In both schizophrenia and bipolar disorder,

we observed genetic correlations with multi-
ple LV traits (Fig. 5C). Specifically, LVCO, LVEF,
radial strains, and wall thickness traits showed
positive genetic correlations with schizophre-
nia and/or bipolar disorder. By contrast, peak
circumferential strains had negative genetic
correlations with the two brain disorders. Ad-
ditionally, anorexia nervosa (an eating dis-
order) was genetically associated with LAVmin

and LAEF, whereas cognitive traits and
neuroticismweremainly associated with right
heart traits (RA and RV traits) (Fig. 5, D and
E). For example, intelligence, cognitive function,
and numerical reasoning were genetically cor-
related with RA volumes. Lung functions (FEV
and FVC) had genetic correlations with multi-
ple CMR traits, with longitudinal strains show-
ing the strongest correlations. There weremore
associations with other complex traits analyzed
in previous GWAS, such as smoking, PR inter-
val, blood pressure, education, risky behaviors,
and lipid traits (fig. S110A). We also found high
genetic correlations with four previously re-
ported LV traits (41) (genetic correlation > 0.847,
P < 6.44 × 10−201) (fig. S110B). Additionally,
we built PRS for 82 CMR traits and examined
their associations with 276 phenotypes avail-
able in the UKB study. The PRS analysis pro-
duced genetic association patterns similar to
those from the LDSC analysis. More details
and interpretations are available in the sup-

plementary text (59) (figs. S111 and S112 and
table S13).

Causal heart-brain relationships detected
by Mendelian randomization

In light of the widespread genetic correlations
between the heart and brain, we examined
their underlying causal genetic links using the
82 CMR traits with Mendelian randomization
(MR) (103).
We investigated 11 well-powered (n > 20,000)

brain-related clinical outcomes from theFinnGen
database (104) and six neuropsychiatric dis-
orders from the Psychiatric Genomics Consor-
tium (105).We also evaluatednine cognitive and
mental health traits such as intelligence and
neuroticism (see the materials and methods).
Most of the MR findings indicated genetic

causal effects from the heart to the brain (table
S14 and fig. S113). We identified causal genetic
links underlying heart health and neuropsy-
chiatric disorders. Specifically, multiple ge-
netic causal effects of wall thickness traits,
DAo minimum area, and LVESV to psychi-
atric diseases and mental health traits were
identified at the FDR 5% level (P < 1.68 × 10−4),
such as the cross disorders [five major psy-
chiatric disorders (106)], bipolar disorder, and
depression (Fig. 6). The presence of heart con-
ditions may adversely affect attitude and mood,
which may ultimately lead to mental health
problems such as depression and other psy-
chiatric disorders (107). For example, hyper-
trophic cardiomyopathy is associated with an
increased risk of mood disorders (108). Heart
muscle thickening makes it more difficult for
the heart to pump blood, and when oxygen to
the brain is reduced, mental health issues may
develop (109). We also observed causal genetic
effects of wall thickness traits on neuroticism,
for which the phenotypic association has been
identified (55). Moreover, AAo minimum area
and AAo maximum area were causally linked
to multiple FinnGen diseases of the nervous
system, such as neurological diseases, sleep
apnea, and episodic and paroxysmal disorders.
Conversely, we identified several causal rela-
tionships in which brain disorders were the
exposure and CMR traits were the outcome;
most of these were from sleep apnea to radial
strains. In previous studies, the reduction in
radial strain has been found in patients with
moderate to severe obstructive sleep apnea
(110), and our results demonstrate that this as-
sociationmay have a causal genetic component.

Biological and gene-level analyses

We performed gene-level association testing
using GWAS summary statistics of the 82 CMR
traits with MAGMA (111). We identified 163 sig-
nificant genes for 48 CMR traits (P< 3.24 × 10−8,
Bonferroni adjusted for 82 traits) (table S15).
Next, we mapped significant variants (P <
6.09 × 10−10) to genes by combining evidence
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of physical position, eQTL association, and
three-dimensional chromatin (Hi-C) interac-
tion using FUMA (112). We found 585 mapped
genes, 440 of which were not identified in
MAGMA (table S16). Moreover, 91 MAGMA or
FUMA-identified genes had a high probability
of being loss-of-function intolerant (113) (pLI >
0.98), indicating significant enrichment of in-
tolerance of loss-of-function variation among
these CMR-associated genes (P = 1.68 × 10−4).
We conducted MAGMA gene-set analysis to
prioritize enriched biological pathways and

performed partitioned heritability analyses
(114) to identify tissues and cell types (115) in
which genetic variation contributed to differ-
ences in CMR traits [fig. S114, table S17, and
supplementary text (59)].
Ten geneswere targets for 32 cardiovascular

system drugs (116), such as 15 calcium chan-
nel blockers [anatomical therapeutic chemical
(ATC) code: C08] to lower blood pressure, five
cardiac glycosides (ATC code: C01A) to treat
heart failure and irregular heartbeats, and
three antiarrhythmics (ATC code: C01B) to

treat heart rhythmdisorders (table S18). Three
of these genes, CACNA1I, ESR1, and CYP2C9,
and fourmore CMR-associated genes, ALDH2,
HDAC9,NPSR1, and TRPA1, were targets for 11
nervous system drugs, including four anti-
epileptic drugs (ATC code: N03A) and two
drugs for addictive disorders (ATC code:N07B).
Some drug target genes have known biolog-
ical functions in both the heart and the brain.
For example, ALDH2 plays a role in clearance
of toxic aldehydes, which is an important
mechanism related tomyocardial and cerebral
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Fig. 5. Genetic correlations between CMR traits and other complex traits and diseases. (A) We illustrated selected genetic correlations between CMR traits
(x axis) and complex traits and diseases (y axis). The asterisks highlight genetic correlations that have passed multiple testing adjustments using the Benjamini-Hochberg
procedure to control the FDR at the 5% level. (B to E) Illustration of CMR traits that exhibited genetic correlations with stroke (B), schizophrenia (C), anorexia nervosa (D),
and cognitive function (E).
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ischemia–reperfusion injury (117). Therefore,
ALDH2 has been proposed to be a protective
target for heart and brain diseases and dys-
functions triggered by ischemic injury and
related risk factors (118, 119).
Finally, we conducted complex trait and dis-

ease prediction using both genetic and multi-
organ MRI data. We found that integrating
genetic PRS, CMR traits, and brain MRI traits
could enhance the prediction of multisystem
diseases (e.g., diabetes) compared with using
only one data type [figs. S115 and 116, tables
S19 and S20, and supplementary text (59)].

Discussion

The intertwined connections between heart
and brain health are gaining increasing at-
tention. This study quantified the heart-brain

associations using CMR and brain MRI data
from >40,000 individuals in one study cohort
(UKB). After accounting for various bodymea-
surements, shared risk factors, and imaging
confounders, we discovered that CMR traits
were associated with specific brain regions,
white matter tracts, and functional networks.
For example, LV traits and aortic areas were
connected to white matter microstructure,
with FA and MD values exhibiting opposite
directions. Univariate analysis and CCA indi-
cated that aortic traits were associated with
basal forebrain volumes in both the left and
right hemispheres. The basal forebrain cho-
linergic system, which is the primary cholin-
ergic output of the central nervous system, is
crucial in cognitive decline and dementia
(120, 121). Reduced basal forebrain volume

and vascular dysregulation are early predictors
of Alzheimer’s disease pathology (122, 123).
Moreover, several CMR traits, including LVM
and ejection fraction measures, were asso-
ciated with the somatomotor, auditory, and
default mode networks in resting fMRI. The
CMR associations with the default mode and
other networks were generally in opposite
directions. Increased LVM and reduced ejec-
tion fraction traits are associatedwith a higher
risk of cardiac diseases (55). Our findings sug-
gest that abnormal functional connectivity
within these networks could potentially act
as an early biomarker of brain dysfunction
associated with adverse cardiac conditions.
Overall, our research indicates that there are
associations between multimodal MRI mea-
surements of the heart and brain, hinting at
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Fig. 6. Genetic causal effects of CMR traits on psychiatric disorders. We illustrated selected significant (P < 1.68 × 10−4) causal genetic links from CMR traits
(exposure) to psychiatric disorders (outcome) after adjusting for multiple testing using the Benjamini-Hochberg procedure to control the FDR at the 5% level.
Category, the category of CMR traits; #IVs, the number of genetic variants used as instrumental variables. Different Mendelian randomization methods and their
regression coefficients are labeled with different colors. See table S14 for data resources of psychiatric disorders.
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potential connections between cardiovascu-
lar and neurological health.
We used multiorgan imaging data to iden-

tify genetic variations that can affect both the
heart and brain. Comprehending the genetic
pleiotropies and the intricate directional and
bidirectional interactions of human organs
is a complex task (11). Our study provides evi-
dence of causal genetic effects between CMR
traits and brain disorders through MR analy-
sis. Because CMR traits are endophenotypes of
various cardiovascular diseases (e.g., hyper-
tension and hypertensive diseases), these find-
ings suggest that early intervention in heart
conditions and the management of cardiac
risk may have a positive impact on brain
health. Numerous studies have examined the
cognitive and neuropsychiatric effects of anti-
hypertensive medications, such as b-blockers
and calcium channel blockers (124, 125), and
some recent studies reported their benefi-
cial effects on psychiatric and neurological
disorders. For example, in a meta-analysis of
209 studies, antihypertensive medications
were found to reduce dementia risk by 21%
(126). Brain-penetrant calcium channel block-
ers were associated with a lower incidence of
neuropsychiatric disorders (127). The CMR
and brain MRI traits prioritized in our heart-
brain analyses could be helpful in identifying
potential therapeutic targets and evaluating
the therapeutic potential (or side effects) of
existing antihypertensive drugs and heart dis-
easemedications formental health and neuro-
degenerative disorders.
To mitigate the confounding effects of body

size, our analyses have adjusted for a wide
range of variables collected by the UKB study,
including height, weight, whole-body fat free
mass, waist-to-hip ratio, body surface area,
and nonlinear high-order terms (128). How-
ever, unobserved biological interactions and
environmental factors may still confound
the identified heart-brain connections. The
concept of large-scale multiorgan imaging ge-
netics analysis is relatively new, and future
research using additional data resources, such
as long-term longitudinal data and large-scale
omics data from multiple organs, may pro-
vide further insights into the shared biology
between the brain and heart. In addition,
our analyses faced challenges because of the
use of different brain MRI traits generated
from multiple imaging modalities. For exam-
ple, previous studies have shown that lower
FA and higher MD of white matter are as-
sociated with accelerated brain aging, indicat-
ing reduced microstructural coherence with
aging (129). Resting functional connectivity
strength has also been often found to be lower
in the aging brain (130). In our analyses, cer-
tain CMR traits correlated with distinct cat-
egories of brain MRI traits in contrasting
directions. For example, higher wall thick-

ness was linked to larger subcortical regional
brain volumes in structural MRI, lower FA in
diffusion MRI, and mostly stronger functional
connectivity strength in resting fMRI of cor-
tical brain areas. These findings may suggest
that white matter and gray matter are differ-
entially associated with certain heart func-
tions. However, potential confounding factors
cannot be completely ruled out, because the
MRI traits were from different areas of the
brain and extracted using different brainmaps
and processing procedures. To better establish
and investigate these patterns, future studies
could incorporate new brain MRI traits, such
as microstructure measures in gray matter
brain regions, and produce diffusion MRI and
fMRI traits in the same brain atlas, allowing
for amore comprehensive analysis of the struc-
tural and functional relationships between the
heart and the brain.
In this study, imaging data were mainly

from individuals of European ancestry. Com-
paring UKB GWAS results with those of BBJ,
we found both similarities and differences for
genetic influences on CMR traits. For exam-
ple, participants in UKB and BBJ had similar
genetic effects on cardiac conditions at 22q11.23
and 8q24.13, but only the BBJ cohort showed
genetic effects at 10q22.2. There was also a
reduction in PRS performance in the BBJ-UKB
prediction compared with the prediction anal-
ysis within the UKB study. Furthermore, the
UKB study is well known for its “healthy vol-
unteer” selection bias and may not be an ideal
representation of the general European popu-
lation (131). It can be expected that some of
the genetic components that underlie heart-
brain connections may be population specific
or UKB specific. More open and large-scale
imaging datasets (132) collected from global
populations may help to identify causal var-
iants associated with CMR traits in globally
diverse populations and quantify population-
specific heterogeneity of genetic effects. These
new data will also enable the development of
a better picture of neurological-cardiac inter-
actions and allow researchers to examine the
reproducibility of scientific findings.
This paper specifically focuses on heart-brain

connections. Because of the large amount of
data collected in the UKB study, it is also
possible to study the relationships between
the brain and other human organs and sys-
tems (133). For example, increasing evidence
supports the gut-brain axis, which involves
complex interactions between the central ner-
vous system and the enteric nervous system
(134). Patients with inflammatory bowel disease
(e.g., Crohn’s disease) show a higher risk ofmen-
tal disorders such as depression and anxiety
(135). Multisystem analysis using biobank-scale
data may provide insights for interorgan patho-
physiological mechanisms and guide the pre-
vention and early detection of brain diseases.

Methods summary
Our study aimed to explore the connection be-
tween the heart and brain by analyzing multi-
organ imaging data obtained from >40,000
subjects.We used recently developed pipelines
for cardiac and aortic MRI (55–57) to generate
imaging traits for four cardiac chambers, LV,
LA, RV, and RA, and two aortic sections, AAo
and DAo. Moreover, we extracted various im-
aging traits from multiple brain MRI modal-
ities, including structural MRI (47), diffusion
MRI (49), and resting-state and task-based
fMRI (51). We then performed phenotypic and
genetic analyses on these multiorgan imaging
traits to examine the relationship between the
heart and brain.
We performed a discovery-replication anal-

ysis to assess pairwise phenotypic associations
between heart and brain imaging traits while
controlling for various covariates such as body
size (128), shared risk factors, and imaging con-
founders. Additionally, we conducted separate
univariate analyses of structural and func-
tional connection patterns for both female and
male subjects. To better understand the rela-
tionship betweenCMR traits and different brain
MRI modalities, we used CCA (66) to examine
multivariate associations.
We used data fromUKB individuals of British

ancestry to estimate the SNP heritability of
82 CMR traits (67) and performed GWAS using
linear mixed-effect models implemented in
fastGWA (136). To ensure the robustness of
our findings, we conducted separate GWASs
with independent holdout datasets to repli-
cate the identified loci. We also conducted sex-
specific SNP heritability and GWAS analyses
to compare the genetic effects on CMR traits
between males and females. Additionally, we
generated PRS (70) to assess the proportion of
variation in CMR traits that could be predicted
by genetic variants in European and non-
European testing cohorts. To investigate gene-
level associations, we used MAGMA (95), and
we mapped GWAS signals to genes using func-
tional genomic information in FUMA (38).
We used GWAS results of CMR traits to un-

cover the genetic overlaps with other complex
traits and diseases previously identified in
GWASs, including our brain MRI traits and
those catalogued in the NHGRI-EBI GWAS
database (71). We applied Bayesian colocal-
ization analysis (72) to examine the presence
of shared causal genetic variants underlying
genetic pleiotropy. Additionally, we used cross-
trait LDSC (102) to estimate genome-wide ge-
netic correlations between CMR traits and
other complex traits and diseases.
We further investigated genetic associations

by examining the relationship between PRS of
CMR traits and phenotypes collected in the
UKB study. We also used additional data re-
sources, such as FinnGen (104), which pro-
vided GWAS results on brain-related clinical
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outcomes, to conduct a two-sample MR anal-
ysis (103) to investigate the genetic causal
relationships between CMR traits and brain
disorders. Additionally, we evaluated the pre-
dictive ability of CMR traits for complex traits
and diseases in the UKB study, and improved
prediction accuracy by integrating genetic PRS,
CMR traits, and brain MRI traits.
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Editor’s summary
It is known that cardiovascular disorders correlate with some neurological and psychiatric conditions, but it is not
always clear what the connections are and whether they are caused by an innate predisposition or by the stress
induced by having a medical condition. To detangle these questions, Zhao et al. examined imaging and genetic data
from tens of thousands of participants in the UK Biobank and BioBank Japan (see the Perspective by Sacher and
Witte). Through this large-scale analysis, the authors uncovered correlations between structure and function of both
the heart and the brain, such as links between specific features of cardiac imaging and neuropsychiatric disorders. The
authors also used Mendelian randomization to demonstrate shared genetic influences on both the brain and the heart.
—Yevgeniya Nusinovich
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