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Two-sided Marketplace



What is a Two-Sided Market?

MORE THAN JOURNEY     didiglobal.com

Rochet –Tirole  
2006

Alvin E. Roth  
Nobel Memorial Prize in Economic

@ SIGKDD 2018, 08/2018 

Two-sided markets are roughly 

defined as markets where one or 

several platforms enable interactions 

between end-users, and try to get 

the two (or multiple) sides “on board” 

by appropriately pricing each side. 

“—  In many markets, you care 

who you are dealing with, and 

prices don’t do all the work 

  —  (In some matching markets, 

we don’t even let prices do any of 

the work...) ”

UNC Biostatistics UNC Biostatistics



Examples of Two-Sided Market

Networked

 Market

Side 1

Side 2

Platform

Providers

Hosts Retailers Organizations Drivers

Travelers Consumers Developers Passengers

Airbnb eBay Amazon
Ridesharing

Platform

UNC Biostatistics UNC Biostatistics
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Ride-sharing Platform is a Complex Ecosystem

Spatio-temporal Nonlinear Interactive Uncertainty Causal

Riders

Drivers

Complex Spatio-temporal SystemTwo-sided Platform

UNC Biostatistics UNC Biostatistics
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Leverage Supply-Demand Network Effect

Market 

AlphaZero
Lifetime Value

Supply-Demand Forecasting

Lifetime Value

Policy Optimization

Supply-Demand Diagnosis

Policy Assessment

UNC Biostatistics UNC Biostatistics



Policy Evaluation

Comparison btw new & old policies in spatio-temporal system

A/B Testing

Interference

Challenges

• How to design the experiments (or spatio-temporal units)? 

• How to measure the treatment effects? 

Oversupply Regions

No orders!

Large variation of key metrics

Internal
Driver

Repositio
n

Incentives

Order
Dispatch

Pricing

External Holidays
Events

Seasonal

Weather

Traffic

Interaction of Multiple Policies

UNC Biostatistics UNC Biostatistics



Causal Inference and Experimental Design



Policy Evaluation for Temporal and /or Spatial
Dependent Experiments

S Luo, Y Yang, C Shi, F Yao, J Ye, H Zhu. Policy Evaluation for Temporal and/or Spatial Dependent 
Experiments JRSSB，in press. 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lI8rKkoAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=lI8rKkoAAAAJ:yRRszJvrVdAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lI8rKkoAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=lI8rKkoAAAAJ:yRRszJvrVdAC


Policy evaluation

Comparison btw new & old policies in spatio-temporal system

A/B Testing

The Goal

•  Evaluating treatment effects

• Improve key platform metrics

• Exploring order dispatch policies and customer recommendation initiatives

• Leading to a more efficient and user-friendly transportation system

Improve the service quality

Drivers Riders Platform



Datasets

Datasets collected from Didi Chuxing

•  A time-dependent A/B experiment from 2021.12.1 to

2021.12.23， each day was divided 24 time intervals

• A new order dispatching policy aimed to increase the number

of fulfilled ride requests and boost drivers’ total revenue

• A spatio-temporal dependent A/B experiment from 2020.2.19

to 2020.3.12, each day is divided into 48 time intervals

• A time-dependent A/A experiment from 2021.7.13-2021.9.17

Demand and Supply

Supply Demand

Data Description

Collected Data

A B A B

A

A

B

• Drivers’ total income

• Answer Rate

• Completion Rate



Treatment Effect Evaluation

Challenges Goal

Data Generating Process

Spatio-temporal random effects

Interference

Dynamic treatment effects

Temporal carryover effects

Spatial spillover effects



Related Work

Off-policy Evaluation

Causal Inference
under Interference

➢ Four major types of models for the interference processes

➢ Augmented inverse propensity score weighting methods for valid OPE (Zhang et al., 2013;
Jiang and Li, 2016)

➢ Efficient model-free OPE under the Markov decision process model assumption (Kallus and
Uehara, 2020; Liao et al., 2021, 2022)

✓  The AIPW methods suffer from the curse of horizon
✓ The MDP model assumption excludes the existence of random effects and is typically violated in our application

✓ Most aforementioned works studied the interference effect across time or space
✓ They were motivated by research questions in environmental and epidemiological studies
✓ It remains unknown about their generalization to ride-sharing markets

• Assume specific structure models to restrict the interference process (Lee, 2007)

• The partial interference assumption (Sobel, 2006; Halloran and Hudgens, 2016; Pollmann,2020)

• The local or network-based interference assumption (Bakshy et al., 2014; Aronow et al. 2020)

• Capture the interference effect via congestion or price effects (Johari et al., 2022)



ATE in Temporal dependent Experiments

𝑨𝑻𝑬 = 

𝒕=𝟏

𝒎

𝑬{𝒀𝒕
∗ 𝟏𝒕 − 𝒀𝒕

∗(𝟎𝒕)}

• Each day is divided into 𝑚 intervals

• 𝐴𝑡: the policy implemented at 𝑡th interval

• 𝑆𝑡: state variables measured at 𝑡th interval

Decomposition

Average Treatment Effect (ATE)

• 𝑌𝑡: the outcome of interest measured at time 𝑡

• ത𝑎𝑡 = 𝑎1, … , 𝑎𝑡
⊤ ∈ 0,1 𝑡 , the treatment history up to t

• 𝑆𝑡
∗（ത𝑎𝑡−1） and Yt

∗（ത𝑎𝑡） as the counterfactual state and outcome

𝑬 𝒀𝒕
∗ ഥ𝒂𝒕 𝑺𝒕

∗ ഥ𝒂𝒕−𝟏, , 𝒀𝒕−𝟏
∗ ഥ𝒂𝒕−𝟏 , … , 𝑺𝟏 = 𝑹𝒕(𝒂𝒕, 𝑺𝒕

∗ ഥ𝒂𝒕−𝟏 , 𝒂𝒕−𝟏, 𝑺𝒕−𝟏
∗ (ഥ𝒂𝒕−𝟐), … , 𝑺𝟏)|

• Conditional mean of the outcome given the data history

𝑨𝑻𝑬 = 

𝒕=𝟏

𝒎

𝑬{𝑹𝒕(𝟏, 𝑺𝒕
∗ 𝟏𝒕−𝟏 , 𝟏, 𝑺𝒕−𝟏

∗ (𝟏𝒕−𝟐), … , 𝑺𝟏)| − 𝑹𝒕(𝟎𝒕, 𝑺𝒕
∗ 𝟎𝒕−𝟏 , 𝟎𝒕−𝟏, 𝑺𝒕−𝟏

∗ (𝟎𝒕−𝟐, … , 𝑺𝟏)|}

= 

𝒕=𝟏

𝒎

𝑬{𝑹𝒕(𝟏, 𝑺𝒕
∗ 𝟎𝒕−𝟏 , 𝟎, 𝑺𝒕−𝟏

∗ (𝟎𝒕−𝟐), … , 𝑺𝟏)| − 𝑹𝒕(𝟎𝒕, 𝑺𝒕
∗ 𝟎𝒕−𝟏 , 𝟎𝒕−𝟏, 𝑺𝒕−𝟏

∗ (𝟎𝒕−𝟐, … , 𝑺𝟏)|}

+ 

𝒕=𝟏

𝒎

𝑬{𝑹𝒕(𝟏, 𝑺𝒕
∗ 𝟏𝒕−𝟏 , 𝟏, 𝑺𝒕−𝟏

∗ (𝟏𝒕−𝟐), … , 𝑺𝟏)| − 𝑹𝒕(𝟏, 𝑺𝒕
∗ 𝟎𝒕−𝟏 , 𝟎, 𝑺𝒕−𝟏

∗ (𝟎𝒕−𝟐), … , 𝑺𝟏)|)|}

𝐃𝐄

I𝐄



Identification

• Estimate ATE for the spatio-temporal dependent switchback experiments

• Test the following hypotheses

Estimable from the data

Problem of interest

𝑯𝟎
𝑫𝑬: 𝐃𝐄 ≤ 𝟎,  𝒗. 𝒔.  𝑯𝟏

𝑫𝑬 : 𝐃𝐄 > 𝟎

𝑯𝟎
𝑰𝑬: 𝐈𝐄 ≤ 𝟎,  𝒗. 𝒔.  𝑯𝟏

𝑰𝑬 : 𝐈𝐄 > 𝟎

Lemma 1: Under consistency assumption, the sequential randomization assumption and the positivity assumption, the causal

estimand can be represented as a function of the observed data such that

𝑹𝒕 𝒂𝒕, 𝒔𝒕, … , 𝒔𝟏 = 𝑬 𝒀𝒕 𝑨𝒕 = 𝒂𝒕, 𝑺𝒕 = 𝒔𝒕, … , 𝑺𝟏 = 𝒔𝟏 ,|

𝑬{𝑹𝒕 𝒂𝒕, 𝑺𝒕, … , 𝑺𝟏 } = 𝑬[𝑬 𝑹𝒕 𝒂𝒕, 𝑺𝒕, … , 𝑺𝟏 {𝑨𝒋= 𝒂𝒋}𝟏≤𝒋≤𝒕, {𝑺𝒋, 𝒀𝒋}𝟏≤𝒋≤𝒕 ],|



TVCDP Models

Temporal VCDP

𝑆𝑖,𝑡+1 = 𝑓2,𝑡 𝑍𝑖,𝑡 + 휀𝑖,𝑡𝑆𝑌𝑖,𝑡 = 𝑓1,𝑡 𝑍𝑖,𝑡 + 𝑒𝑖,𝑡

• Current State-Action pair 𝑍𝑖,𝑡 = 𝑆𝑖,𝑡
⊤ , 𝐴𝑖,𝑡

⊤

Example: L-TVCDP

𝑆𝑖,𝑡+1 = 𝜙0 𝑡 + 𝛷 𝑡 𝑆𝑖,𝑡 + 𝐴𝑖,𝑡Γ 𝑡 + +휀𝑖,𝑡𝑆 = Θ 𝑡 𝑍𝑖,𝑡 + 휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = 𝛽0 𝑡 + 𝑆𝑖,𝑡
⊤ 𝛽 𝑡 + 𝐴𝑖,𝑡𝛾 𝑡 + 𝑒𝑖,𝑡 = 𝑍𝑖,𝑡

⊤ 𝜃 𝑡 + 𝑒𝑖,𝑡

𝑫𝑬 = 

𝒕=𝟏

𝒎

𝜸(𝒕, 𝝉 )

𝑰𝑬 = 

𝒕

𝒎

𝜷 𝒕, 𝝉 ⊤ 

𝒌=𝟏

𝒕−𝟏

[ ෑ

𝒍=𝒌+𝟏

𝒕−𝟏

𝚽 𝒍 ]𝚪(𝒌)

Example: NN-TVCDP

𝑆𝑖,𝑡+1 = 𝐺0 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 0 + 𝐺1 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 1 + 휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = 𝑔0 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 0 + 𝑔1 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 1 + 𝑒𝑖,𝑡

• 𝑔0, 𝑔1, 𝐺0 and 𝐺1 are parametrized via some
(deep) neural networks

𝑫𝑬 = 

𝒕=𝟏

𝒎

𝑬{𝒈𝟏 𝒕, 𝑺𝒕
𝟎 − 𝒈𝟎 𝒕, 𝑺𝒕

𝟎 }

I𝑬 = σ𝒕=𝟏
𝒎 𝑬{𝒈𝟏 𝒕, 𝑺𝒕

𝟏 − 𝒈𝟎 𝒕, 𝑺𝒕
𝟎 }

𝑺𝒕
𝟎 = 𝑮𝟎 𝒕 − 𝟏, 𝑺𝒕−𝟏

𝟎 , 𝑺𝒕
𝟏 = 𝑮𝟎 𝒕 − 𝟏, 𝑺𝒕−𝟏

𝟏



Estimation and Testing in L-TVCDP

Inference of DE

𝑆𝑖,𝑡+1 = 𝜙0 𝑡 + 𝛷 𝑡 𝑆𝑖,𝑡 + 𝐴𝑖,𝑡Γ 𝑡 + +휀𝑖,𝑡𝑆 = Θ 𝑡 𝑍𝑖,𝑡 + +휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = 𝛽0 𝑡 + 𝑆𝑖,𝑡
⊤ 𝛽 𝑡 + 𝐴𝑖,𝑡𝛾 𝑡 + 𝑒𝑖,𝑡 = 𝑍𝑖,𝑡

⊤ 𝜃 𝑡 + 𝑒𝑖,𝑡 𝑫𝑬 = 

𝒕=𝟏

𝒎

𝜸(𝒕, 𝝉 )

Estimation and Testing Algorithm

• Compute the OLS estimator 𝜃

• Employ kernel smoothing to compute a refined estimator ෨𝜃 = Ω 𝜃 and obtain 𝐷𝐸

• Estimate the variance of 𝜃 by the sandwich estimator

• Estimate the variance of ෨𝜃 by ෨𝑉𝜃 = Ω 𝑉𝜃Ω⊤ and compute ෝs𝑒 (𝐷𝐸)

• Reject 𝐻0
𝐷𝐸 if 𝐷𝐸/ ෝs𝑒 (𝐷𝐸) exceeds the upper 𝛼th quantile of 𝑁(0,1)



Estimation and Testing in L-TVCDP

Inference of IE

𝑆𝑖,𝑡+1 = 𝜙0 𝑡 + 𝛷 𝑡 𝑆𝑖,𝑡 + 𝐴𝑖,𝑡Γ 𝑡 + +휀𝑖,𝑡𝑆 = Θ 𝑡 𝑍𝑖,𝑡 + 휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = 𝛽0 𝑡 + 𝑆𝑖,𝑡
⊤ 𝛽 𝑡 + 𝐴𝑖,𝑡𝛾 𝑡 + 𝑒𝑖,𝑡 = 𝑍𝑖,𝑡

⊤ 𝜃 𝑡 + 𝑒𝑖,𝑡

Estimation and Bootstrap-based Testing Algorithm

• Compute the OLS estimator Θ = Θ 1 , … , Θ 𝑚 − 1
⊤

• Compute the refined estimator ෩Θ = ΩΘand obtain 𝐼𝐸

• Compute the estimated residual Ƹ휀𝑖,𝑡𝑆 = 𝑆𝑖,𝑡+1 − ෩Θ 𝑡 𝑍𝑖,𝑡

• For 𝑏 = 1, … 𝐵

Generate i.i.d. standard normal variable 𝜉𝑖
𝑏

𝑖=1

𝑛

Generate pseudo outcomes

Use the pseudo outcomes to compute 𝐼𝐸b

• Reject 𝐻0
𝐼𝐸 if 𝐼𝐸 exceeds the upper 𝛼th quantile of 𝐼𝐸b  − 𝐼𝐸

𝑏

𝑰𝑬 = 

𝒕

𝒎

𝜷 𝒕, 𝝉 ⊤ 

𝒌=𝟏

𝒕−𝟏

[ ෑ

𝒍=𝒌+𝟏

𝒕−𝟏

𝚽 𝒍 ]𝚪(𝒌)

መ𝑆𝑖,𝑡+1 = ෩Θ 𝑡 ෨𝑍𝑖,𝑡 + 𝜉𝑖 Ƹ휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = መ𝑍𝑖,𝑡
⊤ ෨𝜃 𝑡 + 𝜉𝑖 Ƹ𝑒𝑖,𝑡



Estimation in NN-TVCDP

Inference of DE

Estimation and Testing Algorithm

• Use neural networks to obtain ො𝑔0, ො𝑔1, 𝐺0 and 𝐺1

• Employ the residual Ƹ휀𝑖,𝑡𝑆 and compute the density function estimator መ𝑓𝜀𝑡𝑆

• Use Monter Carlo (k = 1, … , 𝑀) to estimate the distribution of 𝑆𝑖,𝑡
∗ (1𝑡−1) and 𝑆𝑖,𝑡

∗ (0𝑡−1) conditional on 𝑆𝑖,1

• Obtain the estimator

𝑆𝑖,𝑡+1 = 𝐺0 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 0 + 𝐺1 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 1 + 휀𝑖,𝑡𝑆

𝑌𝑖,𝑡 = 𝑔0 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 0 + 𝑔1 𝑡, 𝑆𝑖,𝑡 𝐼 𝐴𝑖,𝑡 = 1 + 𝑒𝑖,𝑡

𝑫𝑬 =
𝟏

𝐧𝐌


𝒊=𝟏

𝒏



𝒌=𝟏

𝑴



𝒕=𝟏

𝒎

ෝ𝒈𝟏 𝒕, 𝑺𝒊,𝒌,𝒕
𝟎 − ෝ𝒈𝟎 𝒕, 𝑺𝒊,𝒌,𝒕

𝟎 }

I𝑬 =
𝟏

𝐧𝐌
σ𝒊=𝟏

𝒏 σ𝒌=𝟏
𝑴 σ𝒕=𝟏

𝒎 ෝ𝒈𝟏 𝒕, 𝑺𝒊,𝒌,𝒕
𝟏 − ෝ𝒈𝟎 𝒕, 𝑺𝒊,𝒌,𝒕

𝟎 }



ATE in Spatio-Temporal dependent Experiments

𝑨𝑻𝑬 = 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝑬{𝒀𝒕,𝜾
∗ 𝟏𝒕,[𝟏:𝒓] − 𝒀𝒕,𝜾

∗ (𝟎𝒕,[𝟏:𝒓])}

Decomposition

Average Treatment Effect (ATE)

𝑫𝑬𝒔𝒕 = 

𝜾

𝒓



𝒕=𝟏

𝒎

𝑬{𝑹𝒕,𝜾(𝟏𝒕, 𝟏:𝒓 , 𝑺𝒕
∗ 𝟎𝒕−𝟏, 𝟏:𝒓 , 𝟎𝒕−𝟏, 𝟏:𝒓 , 𝑺𝟏)| − 𝑹𝒕,𝜾(𝟎𝒕, 𝟏:𝒓 , 𝑺𝒕

∗ 𝟎𝒕−𝟏, 𝟏:𝒓 , 𝟎𝒕−𝟏, 𝟏:𝒓 , … , 𝑺𝟏|}

𝑫𝑬𝒔𝒕 = 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝑬{𝑹𝒕,𝜾(𝟏𝒕, 𝟏:𝒓 , 𝑺𝒕
∗ 𝟏𝒕−𝟏,𝒕−𝟏 , 𝟏𝒕−𝟏, 𝟏:𝒓 , 𝑺𝟏)| − 𝑹𝒕(𝟏𝒕, 𝟏:𝒓 , 𝑺𝒕

∗ 𝟎𝒕−𝟏,𝜾 , 𝟎𝒕−𝟏, 𝟏:𝒓 , … , 𝑺𝟏)|)|}

• ത𝑎𝑡,𝜄 = 𝑎1,𝜄 , … , 𝑎𝑡,𝜄
⊤

∈ 0,1 𝑡 , the treatment history up to t for the 𝜄th region

• ത𝑎𝑡,𝜄 = ത𝑎𝑡,𝜄, … , ത𝑎𝑡,𝑟
⊤

denote the treatment history associated with all regions

• St,𝜄
∗ （ത𝑎𝑡−1,[1:𝑟]） and 𝑌t,𝜄

∗（ത𝑎𝑡−1,[1:𝑟]） as the counterfactual state and outcome for the 𝜄th region

𝑯𝟎: 𝑫𝑬𝝉𝒔𝒕 ≤ 𝟎 𝒗. 𝒔.  𝑫𝑬𝝉𝒔𝒕 > 𝟎

𝑯𝟎: 𝑰𝑬𝝉𝒔𝒕 ≤ 𝟎 𝒗. 𝒔.  𝑰𝑬𝝉𝒔𝒕 > 𝟎



Estimation and Testing in L-STVCDP

Model

𝑆𝑖,𝑡+1,𝜄 = 𝜙0 𝑡, 𝜄 + 𝛷 𝑡, 𝜄 𝑆𝑖,𝑡,𝜄 + 𝐴𝑖,𝑡,𝜄Γ1 𝑡, 𝜄 + ҧ𝐴𝑖,𝑡,𝑁𝜄
Γ2 𝑡, 𝜄 + 휀𝑖,𝑡,𝜄

𝑌𝑖,𝑡,𝜄 = 𝛽0 𝑡, 𝜄 + 𝑆𝑖,𝑡,𝜄
⊤ 𝛽 𝑡, 𝜄 + 𝐴𝑖,𝑡,𝜄𝛾1 𝑡, 𝜄 + ҧ𝐴𝑖,𝑡,𝑁𝜄

𝛾2 𝑡, 𝜄 + 𝑒𝑖,𝑡,𝜄

IE𝑠𝑡 = 

𝜄=1

𝑟



𝜏=1

𝑚

𝛽 𝜏, 𝜄 ⊤ 

𝑘=1

𝜏−1

ෑ

𝑗=𝑘+1

𝜏−1

𝛷 𝑗, 𝜄 (𝛤1 𝑘, 𝜄 + 𝛤2 𝑘, 𝜄 )

DE𝑠𝑡 = 

𝜄=1

𝑟



𝜏=1

𝑚

{ 𝛾1 𝜏, 𝜄 + 𝛾2 𝜏, 𝜄 } Wald statistic

Gaussian appx.

Multiplier bootstrap



Theoretical Analysis

Validity of test for DE
Theorem 1: Under suitable conditions, if the bandwidth ℎ = 𝑜 𝑛−

1

4 , and 𝑚ℎ → 0 𝑚 ≫ 𝑛 , and as 𝑛 → ∞, then under 𝐻0
𝐷𝐸,

It approaches to 1 under under 𝐻0
𝐼𝐸 .

P
 𝐷𝐸

ෞ𝑠𝑒 𝐷𝐸
> 𝑧_𝛼 = 𝛼 + 𝑜 1 ,

Validity of test for IE
Theorem 2: Under suitable conditions, if the bandwidth ℎ = 𝑜 𝑛−

1

4 , 𝑚 ≍ 𝑛𝑐 for some 0.5 < 𝑐 < 1.5, and 𝑚ℎ → 0 as 𝑛 → ∞,

with probability approaching 1, for some positive constant 𝐶.

sup
𝑧

|𝑃 𝐼𝐸 − 𝐼𝐸 ≤ 𝑧 − 𝑃 𝐼𝐸𝑏 − 𝐼𝐸|𝐷𝑎𝑡𝑎 ≤ 𝑧 | ≤ 𝐶( 𝑛ℎ2 + 𝑛𝑚 + 𝑛−1/8)



Theoretical Analysis

Switchback and alternating day design

Theorem 3: Suppose Σ𝑒(𝑡1, 𝑡2) is nonnegative for any 𝑡1, 𝑡2, then under L-TVCDP, as as 𝑛 → ∞

𝑛𝑀𝑆𝐸 𝐷𝐸𝑠𝑏 ≤ 𝑛𝑀𝑆𝐸 𝐷𝐸𝑎𝑑 + 𝑜 1 .

If Σ𝑒 𝑡1, 𝑡2 = c𝜌|𝑡1−𝑡2|, then

𝑀𝑆𝐸 𝐷𝐸𝑠𝑏

𝑀𝑆𝐸 𝐷𝐸𝑎𝑑

=
1 − 𝜌 2

(1 + 𝜌)2 + 𝑜 1 .

𝜌

𝜌 = 0.5



Real Data Based Simulation

Temporal alternative design-setting

• Simulation experiments are conducted based on two real dataset collected from the A/A experiment

• Obtain the other estimates by setting 𝛾 𝑡, 𝜏 = Γ 𝑡 = 0 and obtain the estimated error processes

𝛾 𝑡, 𝜏 =
𝛿

100
𝐸(𝑌𝑡)

෨Γ 𝑡, 𝜏 =
𝛿

100
𝐸(𝑆𝑡)



Real Data Based Simulation

Temporal alternative design-results

• The more frequently we switch back and forth between the two policies, the more powerful the resulting test



Real Data Analysis

Temporal Experiment

• DTI: drivers’ tatoal income

• ART: anwser rate

• CRT: completion rate

• Four cities with policies 𝑆1, … 𝑆4

• policy S1 is proposed to reduce 

the answer time

• Both policy S2 and policy 

designed to reduce drivers' idle 

time ratio.

• S4 aims to balance drivers' 

downtime and their average 

pick-up distance.



Real Data Analysis

Spatiotemporal Experiment

• The city is divided into 17 regions.

• Policies are implemented based on alternating 30-minute time intervals within each region.

• Outcome: drivers’ total income

• State variable: the number of call orders 

• The new policy significantly increases drivers' income. 
• It fails to reject the null hypotheses for AA data



Evaluating Dynamic Conditional Quantile
Treatment Effects

T Li, C Shi, Z Lu, Y Li, H Zhu. Evaluating Dynamic Conditional Quantile Treatment Effects with 

Applications in Ridesharing JASA, in revision. 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lI8rKkoAAAAJ&sortby=pubdate&citation_for_view=lI8rKkoAAAAJ:VFGfXyYpp08C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lI8rKkoAAAAJ&sortby=pubdate&citation_for_view=lI8rKkoAAAAJ:VFGfXyYpp08C


Treatment Effect Evaluation

Interference

Additional Challenges

No orders!

Spatio-temporal data Non-stationary data generating process

0:00 am

24:00 pm

Rush hours

Non-normal and heavy-tailed outcome



Datasets

Characteristics

Interested Questions



Related Work

Off-policy Evaluation

A/B testing
➢ Most existing A/B testing methods that focus on the Average Treatment Effect.

➢ Liu et al. (2019) proposed a scalable method to test QTE and construct associated confidence 
intervals.

➢ Wang and Zhang (2021) developed a nonparametric method to estimate QTEs at a 
continuous range of quantile locations.

➢ Chernozhukov and Hansen (2006), Fripo (2007) and Blanco et al. (2020) considered the
estimation of (conditional) QTEs.

➢ The majority of existing studies primarily concentrate on inferring the expected return under 
a fixed target policy or a data-dependent estimated optimal policy (Zhang et al.; 2013, Shi et
al. 2020; Kallus and Uehara, 2022). 

➢ Wang et al.(2018), Qi et al. (2022) and Xu et al. (2022) proposed using inverse probability
weighted estimators to evaluate specific robust metrics under a given target policy.

These methods are subject to the curse of horizon and become less effective in long-horizon settings
Policy evaluation in spatiotemporal dependent experiments remains unexplored

These methods address single-stage decision-making.



CQTE in Temporal dependent Experiments

Quantile Treatment Effect (QTE) Conditional QTE (CQTE)

𝑸𝑻𝑬𝝉 = 𝑸𝝉 

𝒕=𝟏

𝒎

𝒀𝒕
∗ 𝟏𝒕 − 𝑸𝝉 

𝒕

𝒎

𝒀𝒕
∗ 𝟎𝒕

• 𝐴𝑡: the policy implemented at 𝑡th interval

• 𝑆𝑡: state variables measured at 𝑡th interval

• 𝑌𝑡: the outcome of interest measured at time 𝑡

• ത𝑎𝑡 = 𝑎1, … , 𝑎𝑡
⊤ ∈ 0,1 𝑡 , the treatment history

up to t

• 𝑆𝑡
∗（ത𝑎𝑡−1） and Yt

∗（ത𝑎𝑡） as the counterfactual

state and outcome

Challenges

𝑪𝑸𝑻𝑬𝝉 = 𝑸𝝉 

𝒕=𝟏

𝒎

𝒀𝒕
∗ 𝟏𝒕 |ℇ𝒎 − 𝑸𝝉 

𝒕=𝟏

𝒎

𝒀𝒕
∗ 𝟎𝒕 |ℇ𝒎

• ℇ𝒕： the set of features that have an impact on 

the outcomes up to time 𝑡, but are not influenced 

by the treatment history

• When 𝑚 = 1, it reduces to single –stage decision

making

Benefits



Summed CQTE

SCQTE

𝑺𝑪𝑸𝑻𝑬𝝉 = 

𝒕=𝟏

𝒎

𝑸𝝉 𝒀𝒕
∗ 𝟏𝒕 |ℇ𝒕 − 

𝒕=𝟏

𝒎

𝑸𝝉 𝒀𝒕
∗ 𝟎𝒕 |ℇ𝒕

Proposition 1: Suppose that for any time point 𝑡, 𝒀𝒕
∗ ഥ𝒂𝒕  follows the structural quantile model 𝒀𝒕

∗ ഥ𝒂𝒕 = 𝝓𝒕 ℇ𝒕, ഥ𝒂𝒕, 𝑼 for a specific 

deterministic function 𝝓𝒕 and a uniformly distributed random variable 𝑼 ∼ 𝑼(𝟎, 𝟏),which is independent of {ℇ𝒕}𝒕=𝟏
𝒎 . Furthermore, 

assume that 𝝓𝒕 ℇ𝒕, 𝟏𝒕, 𝝉 and 𝝓𝒕 ℇ𝒕, 𝟎𝒕, 𝝉 are strictly increasing functions of 𝝉 for any ℇ𝒕. Under these conditions, we find that

𝑺𝑪𝑸𝑻𝑬𝝉 = 𝑪𝑸𝑻𝑬𝝉



Summed CQTE

𝒀∗ 𝒂 = 𝒒 𝒂, 𝒙, 𝑼 , 𝑼 ∼ 𝑼(𝟎, 𝟏)

𝒒 𝒂, 𝒙, 𝝉 is strictly increasing in 𝜏

• 𝑼

𝑸𝝉 𝒀∗ 𝒂 𝑿 = 𝒙 = 𝒒(𝒂, 𝒙, 𝝉)



Testing CQTE

𝑯𝟎: 𝑪𝑸𝑻𝑬𝝉 ≤ 𝟎 𝒗. 𝒔.  𝑪𝑸𝑻𝑬𝝉 > 𝟎

𝑯𝟎: 𝑺𝑪𝑸𝑻𝑬𝝉 ≤ 𝟎 𝒗. 𝒔.  𝑺𝑪𝑸𝑻𝑬𝝉 > 𝟎



VCDP Models

𝑌𝑖,𝑡 = 𝛽0 𝑡, 𝑈𝑖 + 𝑆𝑖,𝑡
⊤ 𝛽 𝑡, 𝑈𝑖 + 𝐴𝑖,𝑡𝛾 𝑡, 𝑈𝑖 = 𝑍𝑖,𝑡

⊤ 𝜃(𝑡, 𝑈𝑖)

𝑆𝑖,𝑡+1 = 𝜙0 𝑡 + 𝛷 𝑡 𝑆𝑖,𝑡 + 𝐴𝑖,𝑡Γ 𝑡 + 𝐸𝑖 𝑡 + 1 = Θ 𝑡 𝑍𝑖,𝑡 + 𝐸𝑖 𝑡 + 1

Temporal VCDP

• 𝑼𝒊 ∼ 𝑼(𝟎, 𝟏)

• 𝐸(𝐸𝑖 𝑡 + 1 𝑆𝑖,𝑡, 𝐴𝑖,𝑡 = 0, 𝐸𝑖(𝑡)

𝐸𝑖(𝑡 + 1) 

𝑪𝑸𝑻𝑬𝝉 = 𝑺𝑸𝑻𝑬𝝉 = 

𝒕=𝟏

𝒎

𝜸(𝒕, 𝝉 ) + 

𝒕

𝒎

𝜷 𝒕, 𝝉 ⊤ 

𝒌=𝟏

𝒕−𝟏

[ ෑ

𝒍=𝒌+𝟏

𝒕−𝟏

𝚽 𝒍 ]𝚪(𝒌)

A

B

C

D

E



Two –step Estimation

Step One

𝑪𝑸𝑻𝑬𝝉 = 

𝒕=𝟏

𝒎

𝜸(𝒕, 𝝉 ) + 

𝒕

𝒎

෩𝜷 𝒕, 𝝉 ⊤ 

𝒌=𝟏

𝒕−𝟏

[ ෑ

𝒍=𝒌+𝟏

𝒕−𝟏

෩𝚽 𝒍 ]෩𝚪(𝒌)

መ𝜃 𝑡, 𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝜌𝜏 𝑌𝑖,𝑡 − 𝑍𝑖,𝑡
⊤ 𝜃 𝑡, 𝜏 , 𝑡 = 1, … , 𝑚

Θ(𝜈) 𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝑆𝑖,𝑡
(𝜈)

− 𝑍𝑖,𝑡
⊤ Θ(𝑣)(𝑡)

2
, 𝑡 = 1, … , 𝑚 − 1, 𝜈 = 1, … , 𝑑

Step Two

෨𝜃 𝑡, 𝜏 = 

𝑗

𝑚

𝜔𝑗,ℎ
መ𝜃 𝑗, 𝜏 , 𝑡 = 1, … , 𝑚

Θ(𝜈) 𝑡 = 

𝑗

𝑚

𝜔𝑗,ℎ
Θ(𝑣) 𝑗 , 𝑡 = 1, … , 𝑚 − 1, 𝜈 = 1, … , 𝑑

Reduce Variance



Testing Procedure

Bootstrap Testing

Theorem 1: Under suitable conditions, if the bandwidth ℎ = 𝑜 𝑛−
1

4 , 𝑚 ≍ 𝑛𝑐 for some 0.5 < 𝑐 < 1.5, and 𝑚ℎ → 0 as 𝑛 → ∞,

with probability approaching 1, for some 𝜖 ∈ (0,1) and some positive constant 𝐶.

sup
𝜖

sup
𝑧

|𝑃 𝑇𝜏 − 𝐶𝑄𝑇𝐸𝜏 ≤ 𝑧 − 𝑃 𝑇𝜏
𝑏 − 𝑇𝜏|𝐷𝑎𝑡𝑎 ≤ 𝑧 | ≤ 𝐶( 𝑛ℎ2 + 𝑛𝑚 + 𝑛−1/8)



Extension to Spatiotemporal Experiment

CQTE and SCQTE

• ത𝑎𝑡,𝜄 = 𝑎1,𝜄, … , 𝑎𝑡,𝜄
⊤

∈ 0,1 𝑡 , the treatment history up to t for the 𝜄th region

• St,𝜄
∗ （ത𝑎𝑡−1,[1:𝑟]） and 𝑌t,𝜄

∗（ത𝑎𝑡−1,[1:𝑟]） as the counterfactual state and outcome for the 𝜄th region

𝑪𝑸𝑻𝑬𝝉𝒔𝒕 = 𝑸𝝉 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝒀𝒕
∗ 𝟏𝒕,[𝟏:𝒓] |ℇ𝒎,[𝟏:𝒓] − 𝑸𝝉 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝒀𝒕
∗ 𝟎𝒕,[𝟏:𝒓] |ℇ𝒎,[𝟏:𝒓]

𝑺𝑪𝑸𝑻𝑬𝝉𝒔𝒕 = 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝑸𝝉 𝒀𝒕
∗ 𝟏𝒕,[𝟏:𝒓] |ℇ𝒎,[𝟏:𝒓] − 

𝜾=𝟏

𝒓



𝒕=𝟏

𝒎

𝑸𝝉 𝒀𝒕
∗ 𝟎𝒕,[𝟏:𝒓] |ℇ𝒎,[𝟏:𝒓]

𝑯𝟎: 𝑪𝑸𝑻𝑬𝝉𝒔𝒕 ≤ 𝟎 𝒗. 𝒔.  𝑪𝑸𝑻𝑬𝝉𝒔𝒕 > 𝟎



Spatiotemporal Models

𝑌𝑖,𝑡,𝜄 = 𝛽0 𝑡, 𝜄, 𝑈𝑖 + 𝑆𝑖,t,𝜄
⊤ 𝛽 t, 𝜄, 𝑈𝑖 + 𝐴𝑖,𝑡,𝜄𝛾1 𝑡, 𝜄, 𝑈𝑖 + ᪄𝐴𝑖,𝑡,𝒩𝜄

𝛾2 t, 𝜄, 𝑈𝑖

𝑆𝑖,𝑡+1,𝜄 = 𝜙0 𝑡, 𝜄 + 𝛷 𝑡, 𝜄 𝑆𝑖,𝑡,𝜄 + 𝐴𝑖,𝑡,𝜄𝛤1 𝑡, 𝜄 + ᪄𝐴𝑖,𝑡,𝒩𝜄
𝛤2 𝑡, 𝜄 + 𝐸𝑖(𝑡 + 1, 𝜄)

𝑪𝑸𝑻𝑬𝝉𝐬𝐭 = 

𝜾=𝟏

𝒓



𝝉=𝟏

𝒎

{ 𝜸𝟏 𝝉, 𝜾 + 𝜸𝟐 𝝉, 𝜾 } + 

𝜾=𝟏

𝒓



𝝉=𝟏

𝒎

𝜷 𝝉, 𝜾 ⊤ 

𝒌=𝟏

𝝉−𝟏

ෑ

𝒋=𝒌+𝟏

𝝉−𝟏

𝜱 𝒋, 𝜾 (𝜞𝟏 𝒌, 𝜾 + 𝜞𝟐 𝒌, 𝜾 )

Extension

¢

• ᪄𝐴𝑖,𝑡,𝒩𝜄
denotes the average of the treatments of its neighboring regions



Direct and Indirect Effects

CQDE and CQIE

𝑪𝑸𝑫𝑬𝝉 = 

𝒕=𝟏

𝒎

𝜸(𝒕, 𝝉 )

𝑪𝑸𝑰𝑬𝝉

= 

𝒕

𝒎

𝜷 𝒕, 𝝉 ⊤ 

𝒌=𝟏

𝒕−𝟏

[ ෑ

𝒍=𝒌+𝟏

𝒕−𝟏

𝚽 𝒍 ]𝚪(𝒌)

𝑪𝑸𝑫𝑬𝝉 = 𝑸𝝉 

𝒕

𝒎

𝒀𝒕
∗ 𝟏𝒕 |ℇ𝒎 − 𝑸𝝉 

𝒕

𝒎

𝒀𝒕
∗ 𝟎, 𝟏𝒕−𝟏 |ℇ𝒎

𝑪𝑸𝑫𝑬𝝉 = 𝑸𝝉 

𝒕

𝒎

𝒀𝒕
∗ 𝟎, 𝟏𝒕−𝟏 |ℇ𝒎 − 𝑸𝝉 

𝒕

𝒎

𝒀𝒕
∗ 𝟎𝒕 |ℇ𝒎

• CQDE: direct effect of the treatment at time 𝑡.

• CQIE: carryover effects of past treatments on the current outcome

𝑯𝟎: 𝑪𝑸𝑫𝑬𝝉 ≤ 𝟎 𝒗. 𝒔.  𝑪𝑸𝑫𝑬𝝉 > 𝟎

𝑯𝟎: 𝑪𝑸𝑻𝑬𝝉 ≤ 𝟎 𝒗. 𝒔.  𝑪𝑸𝑻𝑬𝝉 > 𝟎



Simulation Results

• Outcome of Interest: drivers‘ total 
income 

• State variable : the number of call 
orders and drivers' total online time

• Obtain the other estimates by setting
𝛾 𝑡, 𝜏 = Γ 𝑡 = 0 and obtain the
estimated error processes

𝛾 𝑡, 𝜏 = 𝛿𝑄𝜏 𝑌𝑡
෨Γ 𝑡, 𝜏 = 𝛿𝐸(𝑆𝑡)



Real Data Analysis

Temporal Experiment Results

• The proposed test does not reject the null hypothesis at any quantile level when applied to the A/A experiment.

• The new policy demonstrates significant quantile direct effects on the business outcome at most quantile levels .

• In contrast, the indirect effects are not significant. 

• The new policy is designed to fulfill more call orders and 

elevate drivers' total income.



Real Data Analysis

Spatiotemporal Experiment Results

• The treatment effects are significant at most quantile levels

• Both the estimated direct and indirect effects are positive across all quantiles. 

• The new policy doesn't seem to boost the lower quantile of the outcome.

• It reveals the heterogeneous effects of the new policy across different quantile levels. 

• The city is divided into 12 regions.

• Policies are implemented based on 

alternating 30-minute time intervals 

within each region.

• Outcome: drivers’ total income

• State variable: the number of call orders 



Real Data Analysis

Spatiotemporal Experiment Results

• There may be several outliers in the data

• This observation further supports the use of quantiles as the evaluation metric.



Optimal Dynamic Treatment Allocation for
Efficient Policy Evaluation

T Li, C Shi,J Wang, F. Zhou, H Zhu. Optimal Dynamic Treatment Allocation for Efficient Policy 

Evaluation in Sequential Decision Making. NeurIPS 2023.  



Dynamic Treatment Allocation

Motivation



Dynamic Treatment Allocation

The Goal

𝑂1 𝐴1 𝑅1 𝑂2 𝐴2 𝑅2 𝑂3

𝑂1 𝐴1 𝑅1 𝑂2 𝐴2 𝑅2 𝑂3

𝑂1 𝐴1 𝑅1 𝑂2 𝐴2 𝑅2 𝑂3

(a) NMDP

(b) TMDP

(c) MDP



Related Work

➢ There is an extensive body of literature on experimental design for clinical trials, with a 
multitude of optimal designs proposed.

➢ Ugander et al. (2013), Li et al. (2019) and Leung (2022), among others studied experimental
designs with spatial/network spillover effects.

➢ A few designs have been developed for modern technological companies (Nandy et al. 2021,
Johari et al. 2022)

✓ These studies did not utilize NMDP or TMDP models for experimental designs.

✓ These methods were designed for i.i.d. data and thus are not directly applicable to our settings.

• 𝐷-optimality; 𝐷𝐴-optimality (Jones and Goos, 2009; Atkinson and Pedrosa, 2017)

• 𝐴-optimality; A𝐴-optimality (Sverdlov and Rosenberger, 2013; Yin and Zhou, 2017)

• Covariate-adaptive designs (Zhu and Hu, 2019)

• Response-adaptive designs (Yu et al. 2022)

• Covariate-adaptive response-adaptive designs (Zhang et al., 2007)

Experimental
designs



Design in NMDPS

𝑬𝑩𝟏 𝝅𝒃 = 𝑻−𝟐 

𝒂∈{𝟎,𝟏}



𝒕=𝟏

𝑻

𝑬𝝅𝒃
[𝝈𝒕 𝑯𝒕, 𝒂 ෑ

𝒌≤𝒕

𝑰 𝑨𝒌 = 𝒂

𝝅𝒌
𝒃(𝒂|𝑯𝒌)

] + 𝑻−𝟐𝑽𝒂𝒓(𝑽𝟏
𝟏 𝑶𝟏 − 𝑽𝟏

𝟎(𝑶𝟏))

• 𝝅𝒃 : the behavior policy that generated the

experimental data

• 𝑂𝑡: time varying features

• 𝑅𝑡: reward at time 𝑡

The proposed designs

Efficiency Bound for ATE

• History dependent policy, 𝜋𝑡 𝑡≥1 with 𝜋𝑡(⋅ |𝐻𝑡)

• 𝐻𝑡  : the observed data up to time 𝑡

• 𝑉𝑡
𝑎 ℎ = σ𝑘=𝑡

𝑇 𝐸𝑎(𝑅𝑘|𝐻𝑡 = ℎ) is the value function

• 𝝈𝒕
𝟐 𝑯𝒕, 𝒂 : conditional variance of the temporal difference given 𝑯𝒕

𝑨𝑻𝑬 = 𝑻−𝟏 

𝒕=𝟏

𝑻

[𝑬𝟏 𝑹𝒕 − 𝑬𝟎(𝑹𝒕)]

𝝅𝒃∗ = 𝒂𝒓𝒈𝒎𝒊𝒏 𝑬𝑩𝟏(𝝅𝒃)

✓ Our objective lies in the design of an optimal behavior policy so that the mean squared error of the subsequent ATE 
estimator is minimized. 



Implementation and Evaluation in NMDPS

The proposed design

Theorem 1: In NMDP, 𝝅𝒃∗ satisfies (1) for any 𝑎 ∈ 0,1 ,

𝜋1
𝑏∗(𝑎|𝑂1) =

𝜎∗ 𝑂1, 𝑎

𝜎∗ 𝑂1, 0 + 𝜎∗ 𝑂1, 1
， 𝜎∗

2 𝑂1, 𝑎 = 𝐸𝑎[ 

𝑡

𝑅𝑡 − 𝐸𝑎𝑅𝑡

2

|𝑂1, 𝐴1 = 𝑎]

(2) for any 𝑎 ∈ 0,1 , 𝜋2
𝑏∗ 𝐴1 𝐻2 = 𝜋3

𝑏∗ 𝐴1 𝐻3 = ⋯ = 𝜋𝑇
𝑏∗(𝐴1|𝐻𝑇) = 1 almost surely, or equivalently 𝐴1 = 𝐴2, … , 𝐴T under 𝝅𝒃∗

Treatment Allocation Algorithm for NMDPS

• The burn-in period 𝑚0for each global policy and the termination day 𝑛

• Run each global policy for 𝑚0 days 

• While 2𝑚0 < 𝑚 ≤ 𝑛, using the collected data to estimate the unknown terms

• Assign 𝐴1
(𝑚)

according to the plugged in probability

• Set 𝐴2
(𝑚)

= ⋯ = 𝐴𝑇
𝑚

= 𝐴1
(𝑚)



Design in TMDPS

𝑬𝑩𝟐 𝝅𝒃 = 𝑻−𝟐 

𝒂∈{𝟎,𝟏}



𝒕=𝟏

𝑻

𝑬𝝅𝒃
[
𝑰 𝑨𝒕 = 𝒂 𝒑𝒕

𝒂(𝑶𝒕)

𝒑𝒕
𝒃 𝑶𝒕, 𝒂

]𝟐 +𝑻−𝟐𝑽𝒂𝒓(𝑽𝟏
𝟏 𝑶𝟏 − 𝑽𝟏

𝟎(𝑶𝟏))

• 𝒑𝒕
𝟏(⋅): the probability density function of 𝑶𝒕 under the new policy

• 𝒑𝒕
𝟎(⋅): the probability density function of 𝑶𝒕 under the control policy

• 𝒑𝒕
𝒃(⋅,⋅): the probability density function of (𝑶𝒕, 𝑨𝒕) under the behavior policy

The proposed designs

Efficiency Bound for ATE

𝝅𝒃∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝝅𝒃∈𝚷𝐛 𝑬𝑩𝟏 𝝅𝒃

✓ In contrast to NMDPs, the marginal distribution function 𝒑𝒕
𝒃 in TMDPs cannot be represented in a closed-form as a function of 𝝅𝒃

✓ The dependence of 𝒑𝒕
𝒃 on 𝝅𝒃 makes it exceptionally challenging to identify the optimal 𝝅𝒃 that minimizes 𝑬𝑩𝟐 𝝅𝒃

✓ We shift our focus to finding the optimal in-class behavior policy

𝚷𝐛 = {𝜋𝑏: 𝜋2
𝑏 𝐴1 𝐻2 = 𝜋3

𝑏 𝐴1 𝐻3 = ⋯ = 𝜋𝑇
𝑏(𝐴1|𝐻𝑇) = 1}

✓ The optimal behavior policy 𝝅𝒃∗ belongs to 𝚷𝐛 in NMDPs
✓ This not the case in TMDPs without additional assumptions.



Implementation and Evaluation in TMDPS

The proposed design

Theorem 2: Under 𝛽-mixing condition, an asymptotically optimal in-class behavior policy 𝝅𝒃∗ satisfies (1) for any 𝑎 ∈ 0,1 ,

 
𝜋1

𝑏∗(𝑎|𝑂1) =
𝜎𝑎∗

𝜎1∗ + 𝜎𝑎∗
， 𝜎𝑎∗

2 = 𝐸𝑎[𝜎𝑡
2(𝑂𝑡, 𝑎)]

(2) for any 𝑎 ∈ 0,1 , 𝜋2
𝑏∗ 𝐴1 𝐻2 = 𝜋3

𝑏∗ 𝐴1 𝐻3 = ⋯ = 𝜋𝑇
𝑏∗(𝐴1|𝐻𝑇) = 1 almost surely.

Additionally, suppose the proportionality condition holds such that 𝜎𝑡
2(𝑜, 1)/ 𝜎𝑡

2 𝑜, 0 = 𝑐 for some constant 𝑐 and any 𝑜, 𝑡. Then 
𝝅𝒃∗ is the optimal one among all the candidate behavior policies.

✓ The estimation algorithm is similar to that in NMDP by adaptively assign the treatment by plugged-in estimators

✓ The design under MDP is similar to TMDP with the difference that 𝜎𝑡
2 are not time varying given (𝑂𝑡 , 𝑎）



Experiment

I. Synthetic Dispatch

• Construct a small-scale synthetic dispatch environment.

• Simulate drivers and orders in a 9 × 9 spatial grid with a duration of 20 time steps each day 

• Greedy: 𝜖-greedy method

• Random: 𝑃 𝐴𝑖,𝑡 = 1 = 0.5

• Half-half: treatment for the
first 𝑛/2 days, the control for
the remaining days

• NMDP: the proposed design
under NMDP

• MDP: the proposed design
nuder MDP



Experiment

I. Real-Data Dispatch

• A dispatch simulator based on a city-scale order-driver historical dataset from Didi Chuxing.

•  Generate data based on the historical dataset.

• The distributions of drivers and orders are set to be identical to the distributions of historical data.

• The proposed method outperforms all its counterparts.



Thanks!
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