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Introduction to Medical Image Data Analysis




— Medical Imaging —

Is the technique and process used to
create images of the human body for clinical purposes or ‘
medical science. ( )

« X-ray radiography
Q These imaging methods are essential for delineating the * Computerized tomography (CT)
« Magnetic resonance imaging (MRI)
Each modality employs a distinct targeting agent, < Ultrasound

generates data in varying dimensions, extracts unique * Positron emission tomography (PET)
features, and serves specific purposes within clinical and % Electroencephalography (EEG)
research contexts. < Magnetoencephalography (MEG)
» Functional near-infrared spectroscopy (fNIRS)
N Rna! » Mammography
P \\ | ‘ » Light microscopy images
N ?"\e ) > Fluoroscopy
| \o ) > Echocardiography
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— Cardiac Imaging
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— Image Processing Analysis Methods —

How to enhance and extract signals of interest in imaging data?
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Organ parcellation

Surgical planning
Image-guided interventions
Computer-aided diagnosis
Quantification of organ change

Structural Learning —
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Localization of pathology
Automated image segmentation
Multimodal fusion

Population analysis
Quantification of organ changes




— Light Microscopy Imaging at Single Cell  +—
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State-of-the-Art Al Applications in Medical Imaging and
Statistical Challenges




— Al Milestones —

Annotated Datasets Deep Learning
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— Al Milestones —

Reinforcement Learning Al Products
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— Al for Image Segmentation —

Segmentation Annotation

simpleclick Demo -o @

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick:
Interactive Image Segmentation with Simple Vision Transformers.
ICCV., 22290-22300. 2023.
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R. Azad et al., “Medical Image Segmentation Review:

The success of U-Net.” arXiv, Nov. 27, 2022.

Minaee, Shervin, et al. "Image segmentation using

deep learning: A survey." IEEE PAMI 44.7 (2021): 3523-3542.



—iSuperfast Spherical Surface Registration +—

Subject surface Deformation field Moved subject surface Atlas surface

Zhao F, Wu zZ, Wang F, Lin W, Xia S, Shen D, Wang L, Li G. S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Trans Med Imaging 2021; 40(8)-
1964-1976.



— Cross-Modality Image Synthesis  +—

(i

1 128 64 32 16

Real MRI

1632 128

e "\ 5
I’ 7X7 X7 Convolution .

_ e A\
Residual Net Block
I’ 4X4X4 Convolution (BBIB)

———

I’ 3X3X%X3 Convolution

Ii 3X3%X3 Deconvolution

@ Addition
N

) Real PET




— Computer-Aided Medical Data Analysis+—

Multimodality Image Feature Prediction
Processing Extraction/Selection Model
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— Major Challenges —

device, acquisition, noises)

00 Months 00 Months
00 Months

» Thereis no publicly available, high-quality imaging datasets with detailed

annotation information that cover a large spectrum of segmentation tasks in
healthcare.

» How to quantify the uncertainty and generalizarability of atlases as well as
deconvolution and structural learning methods and results?

» How to develop RL method for various segmentation and registration tasks?
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Opportunities for Statisticians in Advancing Medical
Imaging Data Analysis




— Application to ABC —
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— Brain Imaging Genetics Paradigm —

Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders
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—— Causal Genetics Imaging Clinical Pathway —

Environment
E

Unseen Unseen
Confounder Confounder
U U

Cognition Behavior; Disease
@ Treatment N

T
Confounder
./ :

LN p—— (L
|

G

l

Unseen

Confounder
U

UNC Biostatistics BIG-KP | https://bigkp.org/



—  Methodological Challenges —
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— Important Statistical Topics —

“* Experimental Design
¢ Statistical Parametric Mapping

* Object Oriented Data (OOD) Analysis

“* Imputation Methods
*» Data Integration Methods

Zhu, H., Li, T., & Zhao, B. Statistical learning methods for
neuroimaging data analysis with applications. Annual
Review of Biomedical Data Science, Volume 6, Issue 1, 2023.

» Dimension Reduction Methods
» Image Genetics

» Causality Research

» Predictive Analysis

» Knowledge-based Methods

» Reinforcement Learning



- Other Important Topics —

Large Language Model

PR

Interpretability

Unbalanced Data

Generalizability ‘ ‘ Data Privacy




Samples (k)
AD Cases (k)
Other ADRD (k)
AD Candidate (k)
MCI Cases (k)
Longitudinal
Female (%)
Race (%)
White
Black
Other
Ethnicity (%)
Non-Hispanic
Age range
Genetic/Omics
data
Imaging data (# N (2k) (1.7k) N (45k) (k)
of subjects) (0.3k) (1.3k) (0.45k)

Other A A A
varlables/ A A

phenotypes

: Subjects with AD-proxy for UKB (if either parent has AD)  *: AD candidates (for Ad) with an “elevated” level of amyloid plague detected from the PET scan

GWAS [ Protein and RNA @ Brain MRI 4 Cardiovascular risk factors/biomarkers ~ Neurologic function A P-amyloid Total/phosphorylated tau
WES WGS PET scan Braak staging A Functional status Echo/Electro-cardiography

(0.91k)
(0.78k)
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UK Biobank has collected and continues to collect
extensive environmental, lifestyle, and genetic data
on half a million participants.

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health

information from half a million UK participants. The database is regularly augmented with additional data and is globally
accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is
a major contributor to the advancement of modern medicine and treatment and has enabled several scientific

discoveries that improve human health.
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Brain, heart and full body MR imaging, plus full
body DEXA scan of the bones and joints and an ultrasound of
the carotid arteries. The goal is to image 100,000 participants,
and to invite participants back for a repeat scan some years
later.

Genotyping, whole exome sequencing & whole
genome sequencing for all participants.
Linkage to a wide range of electronic
health-related records, including death, cancer,
hospital admissions and primary care records.

Data on more than 30 key biochemistry
markers from all participants, taken from samples collected at
recruitment and the first repeat assessment.

Physical activity data over a 7-day period
collected via a wrist-worn activity monitor for 100,000
participants plus a seasonal follow-up on a subset.

Data on a range of exposures and
health outcomes that are difficult to assess via routine health
records, including diet, food preferences, work history, pain,
cognitive function, digestive health and mental health.

A full baseline assessment
is undertaken during the imaging assessment of 100,000
participants.
Blood & urine was collected from all participants,
and saliva for 100,000.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078

— Data Preprocessing and Data Modeling
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— Image Analysis Pipeline (—

(a) Non-vessel structure analysis (b) Non-vessel structure function

evaluation
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Prediction Models —
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Two pathophysiological progression trajectories in schizophrenia
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Neuroimaging Biomarkers for
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Heart-Brain Connections

Shared genetic and genomic Ao oA oRA
factors 0D 0 LV RV

(For example, shared risk loci,
Broce et al. (2), PMID: 30413934)
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Aging and specific disease processes
(For example, diabetes,
Jensen etal. (20),

PMID: 31522551)

Mental health issues-induced behavioral and
hiological processes
(For example, smoking initiation and
dysregulation of the autonomic nervous
Cardiovascular risk factors system, Levine et al. (11), PMID: 33486973)

(For example, smoking, high blood
pressure, high cholesterol, and unhealthy  demm—

diet, Cox et al. (19), PMID: 30854560) Regional brain volume Cortical thickness DTl parameters Resting fMRI Task MRl

Zhao, B., Li, T., ...., Stein, J. L., & Zhu, H. Heart-brain connections: Phenotypic and genetic insights from
magnetic resonance images. Science, 380(6648), abn6598, 2023.




—Brain- Heart Imaging Genetics Knowledge Portalt—

Brain Imaging Genetics Knowledge Portal (BIG-KP)

Genetics Discoveries in Human Brain by Big Data Integration

’\

Heart Imaing Genetics
Knowledge Portal

Brain Imaging Genetics Knowledge Portal Heart Imaging Genetics Knowledge Portal

(BIG-KP) (Heart-KP)

Aim to build the best knowledge database of neuroimaging genetics




Knowledge Graph Construction
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Foundation Models for GMAI

Perspective

a . Estimate the risk (in percentages) of developing a cardiovascular disease within 10 years
fo the person below.
57 year old female, without diabetes, without hypertension, non smoker, total cholesterol

Multimodal self-supervised training Medical domain knowledge Flexible interactions i oo gty Seinilpagviggrrsiege. Sl Lpwlidniiel sl el

pressure 137 mmHg, diastolic blood pressure 86 mmHg, BMI 20.72
Please answer exactly in the format below, without blank lines, and no further information
A or answer is required.
Risk percentage=(in percentages, round to one decimal place)
) Risk percentage=8.2%
Text z E ] Literature [ Publications
Images

Fig. 2 | Example of a ChatGPT prompt and response for risk stratification. Tabular data
[ )
Q&A exchanges extracted from the UK biobank and KoGES were organized and queried into a sentence format

like the example above. The 10-year CVD risk percentage was extracted using regular
Clinical Knowledge Multimodal inputs o from the correshonding answe
EHRs ol graphs and outputs expressions from the corresponding answers.
Reasoning with multiple Dynamic task specification
knowledge sources

medRxiv preprint doi: hitps Jidol.org/10.1101/2023 05,22 33280843 this version posted May 24, 2023. The copyright holder lor this preprint
(which was not certified by peer review) is the authorfunder. who has grantad medfxiv se to display the preprint in perpatuity.
tis made available under a CG-BY- .0 Internaticna o

" a [ \ [ [ 1 ( Table 2 | Performance comparison of Framingham, Bard, and ChatGPT Risk Score
Applications | \ | \ | \ | \ |
, / Accuracy | Sensitivity | Specificity PPV NPV F1 score
N A ’ UK biobanlk

Chatbots for Interactive Augmented Grounded Text-to-protein Bedside decision GPT-4
patients note-taking procedures radiology reports generation support GPT-3-5

Bard
Framingha

Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity
KoGES

Fig.1|Overview ofaGMAImodel pipeline.a, AGMAImodelis trained on outtasks that the user can specify in real time. For this, the GMAImodel can GPT-4 0-902 0-153 0926 | o062 [ 09872 0-088
multiple medical datamodalities, through techniques such as self-supervised  retrieve contextualinformation from sources such as knowledge graphs or errs-s 0-836 0273 0-83% | 0036 | 0974 0093
learning. Toenable flexible interactions, datamodalities suchasimagesordata  databases, leveraging formal medical knowledge to reason about previously | ?,‘::““gm o779 0307 oot e o7 79
fromEHRs can be paired with language, eitherinthe formof textor speechdata.  unseentasks. b, The GMAImodel builds the foundation for numerous =

Next, the GMAImodelneedsto access various sources of medical knowledgeto  applicationsacross clinical disciplines, eachrequiring careful validationand PPV: positive predictive value, NPV: negative predictive value. Bold font indicates the highest value of the
carry out medical reasoning tasks, unlocking a wealth of capabilities that can regulatory assessment. 3 corresponding metric

beusedindownstreamapplications. The resulting GMAI model then carries

0874 0278 0-893 0077 0975 0120

Moor, M., ... ., Rajpurkar, P. (2023) Foundation models for generalist Han,C.., ... ., Yoon, D. (2023) Large-language-model-based 10-year
medical artificial intelligence. Nature. risk prediction of cardiovascular disease: insight from the UK
biobank data. medRxiv
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