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Motivation

Ride-sharing Platform
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Motivation
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Motivation

Experimental Design in Two-sided Marketplace

Policy evaluation

Comparison btw new & old policies in spatio-temporal system

A/B Testing

The Goal

•  Evaluating treatment effects

• Improve key platform metrics

• Exploring order dispatch policies and customer recommendation initiatives

• Leading to a more efficient and user-friendly transportation system

Improve the service quality

Drivers Riders Platform
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Motivation

Trustworthy Machine Learning & Quantile Regression

Enhancing Robustness

Models variability beyond the mean for a fuller data picture.

Improves reliability against outliers and skewed distributions.

Improving Interpretability

Reveals variable relationships across the distribution.

Enhances model transparency and trust with detailed insights.

Promoting Fairness

Mitigates disparities across subgroups at different quantiles.

Identifies and corrects biases for equitable outcomes.

Quantifying Uncertainty

Facilitates prediction interval estimation, measuring uncertainty.

Supports informed decision-making with accountable models.
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Motivation

An introduction example
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Figure: A toy simulation example to visualize the disadvantage of the conditional
average treatment effect (CATE) with heavy-tailed outcomes. Panel A plots the data
distribution for treatments 0 and 1 with circles and stars. The blue and orange lines are
the conditional mean and median estimators. Panel B displays the corresponding CATE.
The green dashed line depicts the Median treatment effect values.
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Methods

Problem formulation

Let (X ,Y ) ∼ PX ,Y , QR concerns the τ th conditional quantile

Qτ
Y (x) = F−1

Y |X=x(τ), for τ ∈ (0, 1).

Given τ ∈ (0, 1), the Qτ
Y (x) can be consistently estimated by

arg min
f∈F

EX ,Y [ρτ (Y − f (X ))],

where ρτ (a) = a[τ − 1(a < 0)] is the check loss and F is a class of neural

networks.

Objective of distributional learning: Qτ1
Y (x), . . . ,QτK

Y (x) at K levels:

arg min
f∈F

L(f ) = argmin
f∈F

K∑
k=1

1

K
EX ,Y [ρτk (Y − fk(X ))]. (1)
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Methods

Crossing-quantile Problems

The learned quantile curves f̂1(x), . . . , f̂K (x) have
crossing-quantile problems even when x is
one-dimensional.
f̂1(x) ≤ f̂2(x) ≤ · · · ≤ f̂K (x) does not hold.
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Methods

Quantile Crossing

Quantile estimations with CROSSING. Quantile estimations with NO CROSSING.

Figure: An example of quantile crossing problem in bone mineral density (BMD) data
set. Estimated quantile curves at τ = 0.1, 0.2, . . . , 0.9 and the observations are depicted.
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Methods

Non-Crossing Quantile Layer

Non-crossing Quantile Network with Delta Layer and Value Layer.

Non-Crossing Quantile Network

Figure: The delta layer d(·; θδ) produce non-crossing zero-mean quantile vector.
And the value layer v(·; θv ) predicts the mean of quantiles. Adding them together
would finally produce the quantile predictions NQ(x) = v(x ; θv )⊕ d(x ; θδ).
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Methods

Non-Crossing Quantile Estimation

We use the right figure to show how
to formulate non-crossing estimation
of quantiles.

Output of a base deep neural
network.

Apply the activation function
σ(x) = ELU(x) + 1 to create
non-negative outputs.

Apply the cumsum function to
generate non-crossing quantiles.

Center the outputs.

(A)

(B)

(C)

(D)
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Methods

NQ neural networks

NQ net f (x) = v(x)⊕ (ELU + 1)(d(x)) ∈ RK with D hidden layers(
v(x)
d(x)

)
= LD ◦ σ ◦ LD−1 ◦ σ ◦ · · · ◦ σ ◦ L1 ◦ σ ◦ L0(x), x ∈ Rd0 .

1 Li (x) = Wix + bi is the i-th linear transformation with x ∈ Rpi where
Wi ∈ Rpi+1×pi is the weight matrix and bi ∈ Rpi+1 is the bias vector.

2 σ = max{x , 0} is the rectified linear unit (ReLU) activation function

Class of NQ networks F =
{f over all possible choice of {(Wi,bi)}Di=0, and ∥f∥∞ ≤ B, ∥ ∂

∂τ f∥∞ ≤ B′}.

1 Depth D, width W = max{p1, ..., pD}
2 Size S =

∑D
i=0{pi+1 × (pi + 1)}

3 Number of neurons U =
∑D

i=1 pi
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Methods

Learning Guarantee

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth QY are β-Hölder smooth. For any integers U,M ∈ N+, let the class

of networks F uniformly bounded by B, has width W = 38(K + 1)(⌊β⌋+ 1)2d
⌊β⌋+1
0 U log2(8U)

and depth D = 21(⌊β⌋+ 1)2d
⌊β⌋+1
0 M log2(8M). Then for any δ > 0, with prob. at least 1− δ

R(f̂N) := L(f̂N)− L(QY ) ≤
2
√
2(K + 2)B
√
N

(
C
√

KSD log(S) log(N) +
√

log(1/δ)

)
+ 18(K + 2)B(⌊β⌋+ 1)2d

⌊β⌋+(β∨1)/2
0 (UM)−2β/d0 + (K + 2) exp(−B)

for N ≥ c · DS log(S) where C , c > 0 are universal constants, and d0 is the input dimension of

the target quantile functions QY and also neural networks in F .

Stochastic error(variance) increasing in network size, decreasing in sample size N.

Approximation error(bias) decreasing in network size, smoothness β of target QY .
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Methods

Bias and Variance Trade-off

Stochastic error(variance) increasing in network size, decreasing in sample size N.

Approximation error(bias) decreasing in network size, smoothness β of target QY .

NQ-Net 2024 17 / 48



Methods

Bias and Variance Trade-off

Stochastic error(variance) increasing in network size, decreasing in sample size N.

Approximation error(bias) decreasing in network size, smoothness β of target QY .

NQ-Net 2024 17 / 48



Methods

Learning Guarantee

Theorem (Non-asymptotic upper bounds)
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for N ≥ c · DS log(S) where C , c > 0 are universal constants, and d0 is the input dimension of

the target quantile functions QY and also neural networks in F .

Stochastic error(variance) increasing in network size, decreasing in samplesize N.

Approximation error(bias) decreasing in network size, smoothness β of target QY .

Let U = 1, M = Nd0/[2(d0+2β)] and B = log(N), then R(f̂N) = Op((logN)4N−β/(2β+d0)).

ptsize Self-calibration:
∑K

k=1 E|fτk (X )− Q
τk
Y (X )|2 ≤ c · R(f ). under proper condition.
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Methods

Learning Guarantee with low-dim data

Assumption

The predictor X is supported on Mρ, a ρ-neighborhood of M ⊂ [0, 1]d0 , where M is a compact
dM-dimensional Riemannian sub-manifold and

Mρ = {x ∈ [0, 1]d0 : inf{∥x − y∥2 : y ∈ M} ≤ ρ}, ρ ∈ (0, 1).

Figure: An example of data with low-dimensional support.
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Methods

Learning Guarantee with low-dim data

Theorem (Non-asymptotic upper bounds with low-dim data)

Suppose the ground truth QY are β-Hölder smooth. For any integers U,M ∈ N+, let class of
networks F uniformly bounded by B, has width W = 38(K + 1)(⌊β⌋+ 1)2(d∗

0 )
⌊β⌋+1U log2(8U)

and depth D = 21(⌊β⌋+ 1)2(d∗
0 )

⌊β⌋+1M log2(8M). Then for any δ > 0, with prob. at least
1− δ

R(f̂N) :=L(f̂N)− L(QY ) ≤
2
√
2(K + 2)B
√
N

(
C
√

KSD log(S) log(N) +
√

log(1/δ)

)
+ 18(K + 2)B(⌊β⌋+ 1)2(d∗

0 )
⌊β⌋+(β∨1)/2(UM)−2β/(d∗0 ) + (K + 2) exp(−B)

for d∗
0 = O(dMlog(d0/δ)/δ2) is an integer satisfying dM ≤ d∗

0 < d0 for any given δ ∈ (0, 1)

and ρ ≤ C2(UM)−2β/d∗0 (β + 1)2d
1/2
0 (d∗

0 )
3β/2(

√
d0/d∗

0 + 1− δ)−1(1− δ)1−β .

d∗
0 is effective instead of d0 where d∗

0 ≤ d0.

Let U = 1, M = Nd∗
0 /[2(d

∗
0 +2β)] and B = log(N), then

R(f̂N) = Op((logN)4N−β/(2β+d∗
0 )).
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2(K + 2)B
√
N

(
C
√

KSD log(S) log(N) +
√

log(1/δ)

)
+ 18(K + 2)B(⌊β⌋+ 1)2(d∗

0 )
⌊β⌋+(β∨1)/2(UM)−2β/(d∗0 ) + (K + 2) exp(−B)

for d∗
0 = O(dMlog(d0/δ)/δ2) is an integer satisfying dM ≤ d∗

0 < d0 for any given δ ∈ (0, 1)

and ρ ≤ C2(UM)−2β/d∗0 (β + 1)2d
1/2
0 (d∗

0 )
3β/2(

√
d0/d∗

0 + 1− δ)−1(1− δ)1−β .

d∗
0 is effective instead of d0 where d∗

0 ≤ d0.

Let U = 1, M = Nd∗
0 /[2(d

∗
0 +2β)] and B = log(N), then

R(f̂N) = Op((logN)4N−β/(2β+d∗
0 )).
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Application to Conditional Average Treatment Effect

There are different types of UI design for the same APP. How to
personalize the UI for each user based on their preference.

Figure: An example of uplift modeling
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Applications

Application to Conditional Average Treatment Effect

Problem definition

Given observed features x , we want to estimate conditional average
treatment effect (CATE), τt(x) = E [Y ∗(t)− Y ∗(0)|X = x ], under
different treatment t, where Y ∗(t) is the potential outcome under
treatment t.

Assumption of CATE estimation

(A1) Y = Y ∗(T ).
(A2) T is independent of (Y ∗(0),Y ∗(1), . . . ,Y ∗(M − 1)) given X .
(A3) π0(t|x) : = P(T = t|X = x) > 0 for ∀x , t.
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Baselines

Usually, baselines such as TARNET or DragonNet use a share-bottom
architecture to learn response of each treatment with MSE loss function.

Share-bottom Arch
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Model illustration: DNet

Based on NQ-network, one can implement a DNet.

DNet with R-Tower being our NQ network

A BaseNet b(·) = b(·; θb) that learns a shared representation for all treatments.

A R-Tower associated with each individual treatment t, represented by R(·, t; θr ) with the
last layer being our proposed non-crossing quantile network.

A T-Tower, a simple softmax layer that estimates the propensity vector,
π(x ; θπ) = {P(T = t|X = x , θπ)}M−1

t=0 .
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Model training: DNet

For the R-Tower ’s, we consider quantile Huber loss or check loss ℓγk :

ℓq(R(b(x), t; θr ), y) =
1

K

K∑
k=1

ℓγk (y − qγk (b(x), t)),

where qγk (b(x), t) is the kth qauntile output of R(b(x), t; θr ) under treatment t.

For the T-Tower ’s, we consider the cross entropy loss

ℓce(π(b(x); θπ), t) =
1

M

M−1∑
k=0

t(k) log(π(b(x), ; θπ)
(k)), (2)

where t = (t(0), t(1), . . . , t(M−1))T is the one-hot vector of treatment, and

π(b(x); θπ) = (π(b(x); θπ)
(0), π(b(x); θπ)

(1), . . . , π(b(x); θπ)
(M−1))T is the

predicted score.

The final loss of DNet for on sample {(xi , ti , yi )}Ni=1 is given by

LN(b,R, π) =
1

N

N∑
i=1

ℓq(R(b(xi ), ti ; θr ), yi ) + ωℓce(π(b(xi ); θπ), ti ),

where ω is a weight parameter that balances the two loss components.
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Learning Guarantee: Assumption

Define the target function of the BaseNet, R-Tower and the T-Tower to be b0, R0

and π0 respectively, which satisfy

(b0,R0, π0) = arg min
(b,R,π)

L(b,R, π).

Let b̂N ,R̂N and π̂N denote the empirical risk minimizer of the empirical loss, i.e.,

(b̂N , R̂N , π̂N) = arg min
b∈Fb,R∈FR ,π∈Fπ

LN(b,R, π).

Assumption

(C1) : The domain of the input of b0 is X = [0, 1]d . The probability distribution of X is
absolutely continuous w.r.t the Lebesgue measure.

(C2) : The target b0 is βb-Hölder smooth with constant Bb.

(C3) : The target R0 is βR -Hölder smooth with constant BR .

(C4) : The target π0 is βπ-Hölder smooth with constant Bπ.
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(C2) : The target b0 is βb-Hölder smooth with constant Bb.

(C3) : The target R0 is βR -Hölder smooth with constant BR .

(C4) : The target π0 is βπ-Hölder smooth with constant Bπ.

NQ-Net 2024 27 / 48



Applications

Learning Guarantee

Theorem (Non-asymptotic Upper bounds)

For any integers Nb,Mb, NR ,MR and Nπ ,Mπ , let widths and depths in Fb,FR ,Fπ be

Wb = 38(⌊βb⌋+ 1)2d1d
⌊βb⌋+1
0 Nb log2(8Nb),Db = 21(⌊βb⌋+ 1)2d

⌊βb⌋+1
0 Mb log2(8Mb),

WR = 38(⌊βR⌋+ 1)2Kd
⌊βR⌋+1
1 NR log2(8NR),DR = 21(⌊βR⌋+ 1)2d

⌊βR⌋+1
1 MR log2(8MR),

Wπ = 38(⌊βπ⌋+ 1)2Md
⌊βπ⌋+1
1 Nπ log2(8Nπ),Dπ = 21(⌊βπ⌋+ 1)2d

⌊βπ⌋+1
1 Mπ log2(8Mπ),

then for any δ > 0, with probability at least 1− δ
R(b̂N , R̂N , π̂N) = L(b̂N , R̂N , π̂N)− L(b0,R0, π0)

≤ 6BR{(Sb + SR)(Db +DR)(d0 + 1) log(N max{Wb,WR})}1/2N−1/2

+ 6ω(log(M) + 2Bπ){(Sb + Sπ)(Db +Dπ)d0 log(N max{Wb,Wπ})}1/2N−1/2

+ 6(ω(log(M) + 2Bπ) + BR){log(4max{M,K}/δ)}1/2(2N)−1/2

+ 18BR(⌊βR⌋+ 1)2d
⌊βR⌋+1+(βR∨1)/2
1 (NRMR)

−2βR/d1

+ 18ωBπ(⌊βπ⌋+ 1)2d
⌊βπ⌋+1+(βπ∨1)/2
1 (NπMπ)

−2βπ/d1

+ 18(BR + ωBπ)Bb(⌊βb⌋+ 1)2d
⌊βb⌋+1+(βb∨1)/2
0 (NbMb)

−2βb/d0 ,

where d0 and d1 is the dimension of the input and output respectively of neural networks in Fb.
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Learning Guarantee
Corollary

Suppose the conditions in previous Theorem hold and βb/d0 < min{βR/d1, βπ/d1}. Let
Nb = NR = Nπ = 1, and Mb = Nd0/[2(d0+2βb)], MR = Nd1/[2(d1+2βR )], Mπ = Nd1/[2(d1+2βπ)].
Then then for any δ > 0, with probability at least 1− δ,

R(b̂N , R̂N , π̂N) ≤ C0[BR + ω(log(M) + 2Bπ)](logN)3N−βb/(2βb+d0)

+ 6(ω(log(M) + 2Bπ) + BR){log(4max{M,K}/δ)}1/2(2N)−1/2,

where C0 > 0 is a constant depending only on βb, βR , βπ , d0, d1,M and K. Simply

R(b̂N , R̂N , π̂N) = Op((logN)3N−βb/(2βb+d0)).

d0, d1 are the dimension of the covariate and embedded features, βb, βR , βπ are the

smoothness of the targets b0,R0 and π0.

Assumed βb/d0 < min{βR/d1, βπ/d1} as in practice d0 is usually large and d1

extracted features is relatively small.

Generally, the rate is Op(N
−min{βb/(2βb+d0),βR/(2βR+d1),βπ/(2βπ+d1)}) depends on

ratios βb/d0, βR/d1, and βπ/d1.
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Implementation Variants

There are some variants of DNet implementations used to accommodate
some real-world tasks.

Mono-DNet

We propose a monotonic DNet
(Mono-DNet) by imposing the
monotonic treatment constraint
during the training phase.

ZI-DNet

Involving an auxiliary task for
predicting whether the outcome
is zero to predict response from
a zero-inflated heavy-tailed
distribution.
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Semi-synthetic Datasets

IHDP ACIC√
ϵPEHEin

√
ϵPEHEout

√
ϵPEHEin

√
ϵPEHEout

TARNET 0.88 0.95 4.35 4.69
CFR Wass 0.71 0.76 3.10 3.42
CFR MMD 0.73 0.77 3.08 3.38
DragonNet 0.68 0.77 4.04 4.35

DNet 0.49±0.02 0.56±0.03 1.87± 0.18 2.34± 0.15

Table: Performance summary of IHDP (Infant Health and Development Program)
and ACIC (2019 Atlantic Causal Inference Conference competition. in stands for
train and validation datasets while out stands for test set. PEHE denotes the
Precision in Estimation of Heterogeneous Effect (PEHE) as the evaluation metric.
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Real Data

To evaluate the effectiveness of the proposed DNet architecture in
real-world scenarios, we conduct online randomized controlled experiments
and collect two datasets from a leading technology company.
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Figure: Histograms of outcomes in Ads/Search datasets. .
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Real Data:DNet

Ads Search

TARNET 0.53± 0.03 1.12± 0.05
CFR Wass 0.48± 0.05 0.89± 0.04
CFR MMD 0.49± 0.03 0.87 ± 0.03
DragonNet 0.56± 0.03 1.13± 0.05

DNet 0.59±0.02 1.16±0.04

Table: Average AUUC of all treatments for Ads and Search datasets.
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Real Data:Mono-DNet

T=1 T=2 T=3 T=4 Mean

DNet 0.53 0.58 0.68 0.58 0.59

Mono-DNet 0.70 0.70 0.84 0.79 0.76

Table: The Areas Under Uplift Curve (AUUC) of DNet and Monotonic-DNet
models on value to advertiser in the ads dataset.
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Real Data:ZI-DNet

T=1 T=2 T=3 T=4

DNet 0.84 1.02 0.96 1.05

ZI-DNet 0.90 1.12 1.04 1.11
T=5 T=6 T=7 T=8 Mean

DNet 1.33 2.13 0.96 0.98 1.16

ZI-DNet 1.52 2.26 1.13 0.96 1.26

Table: AUUCs of DNet and ZI-DNet models on search counts in the search
dataset.
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Ablation Study
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Figure: Validation PEHE
versus training epochs.
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IHDP dataset of models
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quantiles in NCQ Layer.
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Online Deployment

In the rewarded ads example, the optimal policy based on DNet
architecture was able to achieve 2.8% significant increases in value to
advertisers,

In the search example, ZI-DNet was able to improve the number of
search counts by more than 13%.

Additionally, the DNet model has been adopted by the monetization
department to improve user experience, resulting in a significant 0.1%
increase in user activity.
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Application to Distributional Reinforcement Learning

Figure: An Atari example to show how the crossing issue may affect
the exploration efficiency.
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Application to Distributional Reinforcement Learning

Given a Markov decision process (MDP) with (X ,A,R,P, γ),

X and A are state and action spaces

R is the r.v. reward function and γ ∈ [0, 1) is the discount factor

P(x ′ | x , a) is the transition probability

A policy π(· | x) maps each state x ∈ X to a distribution over A.
For a fixed π, the return is a r.v. of the sum of discounted rewards observed along
one trajectory of states while following π.

Zπ =
∞∑
t=0

γtRt .

Problem definition

We want to estimate the distribution of Zπ as well as get an optimal one
Zπ∗

in the sense that EZπ∗ ≥ EZπ for any π.
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Algorithm

Algorithm 1 Distributional RL with fitted NC Iteration

Require: MDP (X ,A,P,R, γ), sampling distribution σ, # samples N, # quantile levels

K , # iterations M, NC networks F , the initial estimator Z (0) = (Z
(0)
1 , . . . ,Z

(0)
K ).

for iteration m = 0 to M − 1 do
Sample i.i.d. observations {(xi , ai , ri , x ′

i )}i∈[N].

Compute (T Z (m)
k )i = ri + γZ

(m)
k (x ′, a′) where a′ = argmaxa∈A

∑K
k=1 Z

(m)
k (x ′, a)

Update the estimation

Z (m+1) ← arg min
Z∈F

1

N

N∑
i=1

K∑
k=1

K∑
j=1

ρτk

(
(T Z (m)

j )i − Zk(xi , ai )
)
,

end for
Define policy πM as the greedy policy with respect to Q(M).
Output: An estimator Z (M) of Z∗ and the policy πM
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Applications

Learning Guarantee: Assumptions

Modify NQ networks FN for the value distribution estimation of distribution RL:

F (RL)
N = {f : X ×A → R : f (·, a) ∈ FN for any a ∈ A}. (3)

Assumption (Approximation efficiency characterization)

For any f ∈ F (RL)
N and any a, a′ ∈ A, the function Rτ (·, a) + γf (·, a′) is β-Hölder smooth with

constant B, where Rτ (x , a) denotes the τ -th conditional quantile of the reward given the state x
and action a.

Assumption (Self-calibration)

There exist constants C > 0 and c > 0 such that for any |δ| ≤ C and m = 0, . . . ,M − 1,

|PT Z (m)|x,a((T Z (m))τ (x + δ, a))− PT Z (m)|x,a((T Z (m))τ (x))| ≥ c|δ|,

for all τ ∈ (0, 1) and x ∈ X , a ∈ A up to a negligible set, where PT Z (m)|x,a(·) denotes the

conditional distribution function of T Z (m) given x and a and (T Z (m))τ denotes the τ
conditional quantile given x and a.
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Applications

Learning Guarantee

Theorem

Let {Z (m)}Mm=0 be the iterates in Algorithm 1 using NQ networks F (RL)
N . Let the width and

depth for networks be W = 114(⌊β⌋+ 1)2(K + 1)(d0)⌊β⌋+1 and depth
D = 21(⌊β⌋+ 1)2(d0)⌊β⌋+1Nd0/[2(d0+2β)] log2(8N

d0/[2(d0+2β)]) and bound B = log(N) where N
is the sample size. Denote ZπM by the action-value distribution w.r.t the greedy policy πM from
Z (M). Then

∥EZπM − EZ∗∥1,µ ≤
2c · cM,σ,µ(K + 2)3γ

(1− γ)2
|A|(logN)4N−β/(2β+d0) +

4γM+1

(1− γ)2
Rmax , (4)

where cµ,σ > 0 is a constant that only depends on the prob. dist. µ and sampling dist. σ and

c > 0 is a universal constant.

Prediction error: the sum of estimation error and algorithmic error

Algorithmic error converges to zero linearly in # iterations M. Estimation error dominates

when iterations M ≥ C [log |A|−1 + (β/(2β + d0)) log(N)]

Then prediction error has rate |A|N−β/(2β+d0), which is linearly in the cardinality |A|
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Applications

Application to Distributional Reinforcement Learning

Figure: Performance comparison with QR-DQN. Each
training curve is averaged by seeds.
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Conclusion

Non-crossing Quantile regression network.

Delta layer with ELU activation for non-negative outputs
Learning guarantees, faster rate with low-dim structured data

Applications to Conditional Average Treatment Effect
1 Extension to DNet, a robust non-crossing NN architecture for quantile

ITE estimation with heavy-tailed outcomes.
2 Two variants of DNet that lead to improved AUUC scores in real-world

applications.

Applications to Distributional Reinforcement Learning
1 Making use of global information to ensure the batch-based

monotonicity of the learned quantile function based on NQ network.
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