NQ-Net: Deep Non-crossing Quantile Learning

Hongtu Zhu¹

¹The University of North Carolina at Chapel Hill

My collaborators: Guohao Shen (PolyU), Shikai Luo (Bytedance), and Chengchun Shi (LSE)

2024

イロト イヨト イヨト イヨト

э

Table of Contents

3 Applications

4 Conclusion

< □ > < □ > < □ > < □ > < □ >

э

Ride-sharing Platform

Market Alphazero in Two-sided Marketplace

Experimental Design in Two-sided Marketplace

6/48

2024

Trustworthy Machine Learning & Quantile Regression

Enhancing Robustness

- Models variability beyond the mean for a fuller data picture.
- Improves reliability against outliers and skewed distributions.

Improving Interpretability

- Reveals variable relationships across the distribution.
- Enhances model transparency and trust with detailed insights.

Promoting Fairness

- Mitigates disparities across subgroups at different quantiles.
- Identifies and corrects biases for equitable outcomes.

Quantifying Uncertainty

- Facilitates prediction interval estimation, measuring uncertainty.
- Supports informed decision-making with accountable models.

< ロ > < 同 > < 回 > < 回 > < 回 > <

2024

An introduction example

Figure: A toy simulation example to visualize the disadvantage of the conditional average treatment effect (CATE) with heavy-tailed outcomes. Panel A plots the data distribution for treatments 0 and 1 with circles and stars. The blue and orange lines are the conditional mean and median estimators. Panel B displays the corresponding CATE. The green dashed line depicts the Median treatment effect values.

2024

Table of Contents

< □ > < □ > < □ > < □ > < □ >

э

Problem formulation

• Let $(X, Y) \sim P_{X,Y}$, QR concerns the τ th conditional quantile

$$Q_Y^{ au}(x) = F_{Y|X=x}^{-1}(au), \qquad ext{for } au \in (0,1).$$

2024

2

イロト イヨト イヨト イヨト

Problem formulation

• Let $(X, Y) \sim P_{X,Y}$, QR concerns the auth conditional quantile

$$Q^{ au}_{Y}(x) = F^{-1}_{Y|X=x}(au), \qquad ext{for } au \in (0,1).$$

• Given $au \in (0,1)$, the $Q_Y^ au(x)$ can be consistently estimated by

$$\arg\min_{f\in\mathcal{F}}\mathbb{E}_{X,Y}[\rho_{\tau}(Y-f(X))],$$

where $\rho_{\tau}(a) = a[\tau - 1(a < 0)]$ is the check loss and \mathcal{F} is a class of neural networks.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2024

Problem formulation

• Let $(X, Y) \sim P_{X,Y}$, QR concerns the auth conditional quantile

$$Q^{ au}_{Y}(x) = F^{-1}_{Y|X=x}(au), \qquad ext{for } au \in (0,1).$$

• Given $au \in (0,1)$, the $Q_Y^{ au}(x)$ can be consistently estimated by

$$\arg\min_{f\in\mathcal{F}}\mathbb{E}_{X,Y}[\rho_{\tau}(Y-f(X))],$$

where $\rho_{\tau}(a) = a[\tau - 1(a < 0)]$ is the check loss and \mathcal{F} is a class of neural networks.

• Objective of distributional learning: $Q_Y^{\tau_1}(x), \ldots, Q_Y^{\tau_K}(x)$ at K levels:

$$\arg\min_{f\in\mathcal{F}} \underline{L}(f) = \arg\min_{f\in\mathcal{F}} \sum_{k=1}^{K} \frac{1}{K} \mathbb{E}_{X,Y}[\rho_{\tau_k}(Y - f_k(X))].$$
(1)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへ⊙

10/48

2024

Crossing-quantile Problems

- The learned quantile curves $\hat{f}_1(x), \ldots, \hat{f}_K(x)$ have crossing-quantile problems even when x is one-dimensional.
- $\hat{f}_1(x) \leq \hat{f}_2(x) \leq \cdots \leq \hat{f}_{\mathcal{K}}(x)$ does not hold.

2024

Methods

Quantile Crossing

Quantile estimations with CROSSING.

Quantile estimations with NO CROSSING.

< □ > < □ > < □ > < □ > < □ > < □ >

2024

12 / 48

Figure: An example of quantile crossing problem in bone mineral density (BMD) data set. Estimated quantile curves at $\tau = 0.1, 0.2, \ldots, 0.9$ and the observations are depicted.

Non-Crossing Quantile Layer

Non-crossing Quantile Network with Delta Layer and Value Layer.

Non-Crossing Quantile Network

Figure: The delta layer $d(\cdot; \theta_{\delta})$ produce non-crossing zero-mean quantile vector. And the value layer $v(\cdot; \theta_v)$ predicts the mean of quantiles. Adding them together would finally produce the quantile predictions $NQ(x) = v(x; \theta_v) \oplus d(x; \theta_{\delta})$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

2024

We use the right figure to show how to formulate non-crossing estimation of quantiles.

< □ > < 同 > < 回 > < 回 > < 回 >

2024

We use the right figure to show how to formulate non-crossing estimation of quantiles.

• Output of a base deep neural network.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2024

We use the right figure to show how to formulate non-crossing estimation of quantiles.

- Output of a base deep neural network.
- Apply the activation function
 σ(x) = ELU(x) + 1 to create
 non-negative outputs.

• • = • • = •

2024

We use the right figure to show how to formulate non-crossing estimation of quantiles.

- Output of a base deep neural network.
- Apply the activation function
 σ(x) = ELU(x) + 1 to create
 non-negative outputs.
- Apply the cumsum function to generate non-crossing quantiles.

・ 何 ト ・ ヨ ト ・ ヨ ト

2024

We use the right figure to show how to formulate non-crossing estimation of quantiles.

- Output of a base deep neural network.
- Apply the activation function
 σ(x) = ELU(x) + 1 to create
 non-negative outputs.
- Apply the cumsum function to generate non-crossing quantiles.
- Center the outputs.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\begin{pmatrix} v(x) \\ d(x) \end{pmatrix} = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_{1} \circ \sigma \circ \mathcal{L}_{0}(x), x \in \mathbb{R}^{d_{0}}$$

イロト イヨト イヨト イヨト

2024

3

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\left(\begin{array}{c} \mathsf{v}(\mathsf{x}) \\ \mathsf{d}(\mathsf{x}) \end{array}\right) = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(\mathsf{x}), \mathsf{x} \in \mathbb{R}^{d_0}.$$

• $\mathcal{L}_i(x) = W_i x + b_i$ is the *i*-th linear transformation with $x \in \mathbb{R}^{p_i}$ where $W_i \in \mathbb{R}^{p_{i+1} \times p_i}$ is the weight matrix and $b_i \in \mathbb{R}^{p_{i+1}}$ is the bias vector.

イロト 不得 トイヨト イヨト

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\left(\begin{array}{c} \mathsf{v}(x) \\ \mathsf{d}(x) \end{array}\right) = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(x), x \in \mathbb{R}^{d_0}.$$

L_i(x) = W_ix + b_i is the *i*-th linear transformation with x ∈ ℝ^{p_i} where
 W_i ∈ ℝ^{p_{i+1}×p_i} is the weight matrix and b_i ∈ ℝ^{p_{i+1}} is the bias vector.

 σ = max{x, 0} is the rectified linear unit (ReLU) activation function

< □ > < □ > < □ > < □ > < □ > < □ >

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\begin{pmatrix} \mathsf{v}(\mathsf{x}) \\ \mathsf{d}(\mathsf{x}) \end{pmatrix} = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(\mathsf{x}), \mathsf{x} \in \mathbb{R}^{d_0}.$$

- *L_i(x) = W_ix + b_i* is the *i*-th linear transformation with x ∈ ℝ^{p_i} where
 W_i ∈ ℝ^{p_{i+1}×p_i} is the weight matrix and *b_i* ∈ ℝ<sup>p_{i+1}</sub> is the bias vector.

 σ = max{x, 0} is the rectified linear unit (ReLU) activation function

 </sup>
- Class of NQ networks $\mathcal{F} = \{f \text{ over all possible choice of } \{(W_i, b_i)\}_{i=0}^{\mathcal{D}}, \text{and } \|f\|_{\infty} \leq \mathcal{B}, \|\frac{\partial}{\partial \tau}f\|_{\infty} \leq \mathcal{B}'\}.$

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\begin{pmatrix} \mathsf{v}(\mathsf{x}) \\ \mathsf{d}(\mathsf{x}) \end{pmatrix} = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(\mathsf{x}), \mathsf{x} \in \mathbb{R}^{d_0}.$$

- *L_i(x) = W_ix + b_i* is the *i*-th linear transformation with x ∈ ℝ^{p_i} where
 W_i ∈ ℝ^{p_{i+1}×p_i} is the weight matrix and b_i ∈ ℝ^{p_{i+1}} is the bias vector.

 σ = max{x, 0} is the rectified linear unit (ReLU) activation function
- Class of NQ networks $\mathcal{F} = \{f \text{ over all possible choice of } \{(W_i, b_i)\}_{i=0}^{\mathcal{D}}, \text{and } \|f\|_{\infty} \leq \mathcal{B}, \|\frac{\partial}{\partial \tau} f\|_{\infty} \leq \mathcal{B}'\}.$
 - 1 Depth \mathcal{D} , width $\mathcal{W} = \max\{p_1, ..., p_{\mathcal{D}}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\begin{pmatrix} v(x) \\ d(x) \end{pmatrix} = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(x), x \in \mathbb{R}^{d_0}.$$

- *L_i(x) = W_ix + b_i* is the *i*-th linear transformation with x ∈ ℝ^{p_i} where
 W_i ∈ ℝ^{p_{i+1}×p_i} is the weight matrix and b_i ∈ ℝ^{p_{i+1}} is the bias vector.

 σ = max{x, 0} is the rectified linear unit (ReLU) activation function
- Class of NQ networks $\mathcal{F} = \{f \text{ over all possible choice of } \{(W_i, b_i)\}_{i=0}^{\mathcal{D}}, \text{and } \|f\|_{\infty} \leq \mathcal{B}, \|\frac{\partial}{\partial \tau}f\|_{\infty} \leq \mathcal{B}'\}.$
 - 1 Depth \mathcal{D} , width $\mathcal{W} = \max\{p_1, ..., p_{\mathcal{D}}\}$

2 Size
$$S = \sum_{i=0}^{D} \{ p_{i+1} \times (p_i + 1) \}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2024

• NQ net $f(x) = v(x) \oplus (ELU + 1)(d(x)) \in \mathbb{R}^{K}$ with \mathcal{D} hidden layers

$$\begin{pmatrix} \mathsf{v}(\mathsf{x}) \\ \mathsf{d}(\mathsf{x}) \end{pmatrix} = \mathcal{L}_{\mathcal{D}} \circ \sigma \circ \mathcal{L}_{\mathcal{D}-1} \circ \sigma \circ \cdots \circ \sigma \circ \mathcal{L}_1 \circ \sigma \circ \mathcal{L}_0(\mathsf{x}), \mathsf{x} \in \mathbb{R}^{d_0}.$$

- *L_i(x) = W_ix + b_i* is the *i*-th linear transformation with x ∈ ℝ^{p_i} where
 W_i ∈ ℝ^{p_{i+1}×p_i} is the weight matrix and b_i ∈ ℝ^{p_{i+1}} is the bias vector.

 σ = max{x, 0} is the rectified linear unit (ReLU) activation function
- Class of NQ networks $\mathcal{F} = \{f \text{ over all possible choice of } \{(W_i, b_i)\}_{i=0}^{\mathcal{D}}, \text{and } \|f\|_{\infty} \leq \mathcal{B}, \|\frac{\partial}{\partial \tau}f\|_{\infty} \leq \mathcal{B}'\}.$
 - 1 Depth \mathcal{D} , width $\mathcal{W} = \max\{p_1, ..., p_{\mathcal{D}}\}$
 - 2 Size $S = \sum_{i=0}^{D} \{p_{i+1} \times (p_i + 1)\}$
 - Solution Number of neurons $\mathcal{U} = \sum_{i=1}^{\mathcal{D}} p_i$

2024

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let the class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(K+1)(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} U \log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} M \log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1 - \delta$

$$\mathcal{R}(\hat{f}_{N}) := \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \left(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \right) \\ + 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}d_{0}^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/d_{0}} + (K+2)\exp(-\beta) \right)$$

for $N \ge c \cdot DS \log(S)$ where C, c > 0 are universal constants, and d_0 is the input dimension of the target quantile functions Q_Y and also neural networks in \mathcal{F} .

2024

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let the class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(K+1)(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} U \log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} M \log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1 - \delta$

$$\mathcal{R}(\hat{f}_{N}) := \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \left(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \right) \\ + 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}d_{0}^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/d_{0}} + (K+2)\exp(-\beta)$$

for $N \ge c \cdot DS \log(S)$ where C, c > 0 are universal constants, and d_0 is the input dimension of the target quantile functions Q_Y and also neural networks in \mathcal{F} .

• Stochastic error(variance) increasing in network size, decreasing in sample size N.

< □ > < □ > < □ > < □ > < □ > < □ >

2024

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let the class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(K+1)(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} U \log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} M \log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1 - \delta$

$$\mathcal{R}(\hat{f}_{N}) := \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \left(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \right) \\ + 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}d_{0}^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/d_{0}} + (K+2)\exp(-\beta) \right)$$

for $N \ge c \cdot DS \log(S)$ where C, c > 0 are universal constants, and d_0 is the input dimension of the target quantile functions Q_Y and also neural networks in \mathcal{F} .

- Stochastic error(variance) increasing in network size, decreasing in sample size N.
- Approximation error(bias) decreasing in network size, smoothness β of target Q^{Y} .

・ロト ・四ト ・ヨト ・ ヨト

2024

Bias and Variance Trade-off

• Stochastic error(variance) increasing in network size, decreasing in sample size N.

A D N A B N A B N A B N

2024

Bias and Variance Trade-off

- Stochastic error(variance) increasing in network size, decreasing in sample size N.
- Approximation error(bias) decreasing in network size, smoothness β of target Q^{Y} .

(日) (同) (日) (日)

2024

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let the class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(K+1)(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} U \log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} M \log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1 - \delta$

$$\begin{aligned} \mathcal{R}(\hat{f}_{N}) &:= \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \bigg(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \bigg) \\ &+ 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}d_{0}^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/d_{0}} + (K+2)\exp(-\beta) \bigg) \end{aligned}$$

for $N \ge c \cdot DS \log(S)$ where C, c > 0 are universal constants, and d_0 is the input dimension of the target quantile functions Q_Y and also neural networks in \mathcal{F} .

- Stochastic error(variance) increasing in network size, decreasing in samplesize N.
- Approximation error(bias) decreasing in network size, smoothness β of target Q^{γ} .
- Let U = 1, $M = N^{d_0/[2(d_0+2\beta)]}$ and $\mathcal{B} = \log(N)$, then $\mathcal{R}(\hat{f}_N) = O_p((\log N)^4 N^{-\beta/(2\beta+d_0)})$.

イロト 不得 トイラト イラト 一日

2024

Theorem (Non-asymptotic upper bounds)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let the class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(K+1)(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} U \log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2 d_0^{\lfloor \beta \rfloor + 1} M \log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1 - \delta$

$$\begin{split} \mathcal{R}(\hat{f}_{N}) &:= \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \bigg(C\sqrt{KS\mathcal{D}\log(\mathcal{S})\log(N)} + \sqrt{\log(1/\delta)} \bigg) \\ &+ 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}d_{0}^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/d_{0}} + (K+2)\exp(-\beta\beta) \bigg) \bigg) \end{split}$$

for $N \ge c \cdot DS \log(S)$ where C, c > 0 are universal constants, and d_0 is the input dimension of the target quantile functions Q_Y and also neural networks in \mathcal{F} .

- Stochastic error(variance) increasing in network size, decreasing in samplesize N.
- Approximation error(bias) decreasing in network size, smoothness β of target Q^{Y} .
- Let U = 1, $M = N^{d_0/[2(d_0+2\beta)]}$ and $\mathcal{B} = \log(N)$, then $\mathcal{R}(\hat{f}_N) = O_p((\log N)^4 N^{-\beta/(2\beta+d_0)})$.
- ptsize Self-calibration: $\sum_{k=1}^{K} \mathbb{E} |f_{\tau_k}(X) Q_Y^{\tau_k}(X)|^2 \le c \cdot \mathcal{R}(f)$. under proper condition.

2024

Learning Guarantee with low-dim data

Assumption

The predictor X is supported on \mathcal{M}_{ρ} , a ρ -neighborhood of $\mathcal{M} \subset [0,1]^{d_0}$, where \mathcal{M} is a compact $d_{\mathcal{M}}$ -dimensional Riemannian sub-manifold and

 $\mathcal{M}_{\rho} = \{ x \in [0,1]^{d_0} : \inf\{ \|x - y\|_2 : y \in \mathcal{M} \} \le \rho \}, \ \rho \in (0,1).$

・ 何 ト ・ ヨ ト ・ ヨ ト

2024

Learning Guarantee with low-dim data

Assumption

The predictor X is supported on \mathcal{M}_{ρ} , a ρ -neighborhood of $\mathcal{M} \subset [0,1]^{d_0}$, where \mathcal{M} is a compact $d_{\mathcal{M}}$ -dimensional Riemannian sub-manifold and

 $\mathcal{M}_{\rho} = \{x \in [0,1]^{d_0} : \inf\{\|x - y\|_2 : y \in \mathcal{M}\} \le \rho\}, \ \rho \in (0,1).$

Figure: An example of data with low-dimensional support.

NQ-Net

2024 19 / 48

A D N A B N A B N A B N
Learning Guarantee with low-dim data

Theorem (Non-asymptotic upper bounds with low-dim data)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(\mathcal{K}+1)(\lfloor\beta\rfloor+1)^2(d_0^*)^{\lfloor\beta\rfloor+1}U\log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor\beta\rfloor+1)^2(d_0^*)^{\lfloor\beta\rfloor+1}M\log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1-\delta$

$$\begin{aligned} \mathcal{R}(\hat{f}_{N}) &:= \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \left(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \right) \\ &+ 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}(d_{0}^{*})^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/(d_{0}^{*})} + (K+2)\exp(-\beta\beta) \right) \end{aligned}$$

for $d_0^* = O(d_{\mathcal{M}} \log(d_0/\delta)/\delta^2)$ is an integer satisfying $d_{\mathcal{M}} \le d_0^* < d_0$ for any given $\delta \in (0, 1)$ and $\rho \le C_2(UM)^{-2\beta/d_0^*}(\beta + 1)^2 d_0^{1/2} (d_0^*)^{3\beta/2} (\sqrt{d_0/d_0^*} + 1 - \delta)^{-1} (1 - \delta)^{1-\beta}$.

• d_0^* is effective instead of d_0 where $d_0^* \leq d_0$.

2024

Learning Guarantee with low-dim data

Theorem (Non-asymptotic upper bounds with low-dim data)

Suppose the ground truth Q^{Y} are β -Hölder smooth. For any integers $U, M \in \mathbb{N}^{+}$, let class of networks \mathcal{F} uniformly bounded by \mathcal{B} , has width $\mathcal{W} = 38(\mathcal{K}+1)(\lfloor\beta\rfloor+1)^2(d_0^*)^{\lfloor\beta\rfloor+1}U\log_2(8U)$ and depth $\mathcal{D} = 21(\lfloor\beta\rfloor+1)^2(d_0^*)^{\lfloor\beta\rfloor+1}M\log_2(8M)$. Then for any $\delta > 0$, with prob. at least $1-\delta$

$$\begin{aligned} \mathcal{R}(\hat{f}_{N}) &:= \mathcal{L}(\hat{f}_{N}) - \mathcal{L}(Q_{Y}) \leq \frac{2\sqrt{2}(K+2)\mathcal{B}}{\sqrt{N}} \left(C\sqrt{KS\mathcal{D}\log(S)\log(N)} + \sqrt{\log(1/\delta)} \right) \\ &+ 18(K+2)\mathcal{B}(\lfloor\beta\rfloor + 1)^{2}(d_{0}^{*})^{\lfloor\beta\rfloor + (\beta\vee1)/2} (UM)^{-2\beta/(d_{0}^{*})} + (K+2)\exp(-\mathcal{B}_{N})^{2\beta/2} \right) \end{aligned}$$

for $d_0^* = O(d_{\mathcal{M}} \log(d_0/\delta)/\delta^2)$ is an integer satisfying $d_{\mathcal{M}} \le d_0^* < d_0$ for any given $\delta \in (0, 1)$ and $\rho \le C_2(UM)^{-2\beta/d_0^*}(\beta + 1)^2 d_0^{1/2} (d_0^*)^{3\beta/2} (\sqrt{d_0/d_0^*} + 1 - \delta)^{-1} (1 - \delta)^{1-\beta}$.

• d_0^* is effective instead of d_0 where $d_0^* \leq d_0$.

• Let
$$U = 1$$
, $M = N^{d_0^*/[2(d_0^*+2\beta)]}$ and $\mathcal{B} = \log(N)$, then $\mathcal{R}(\hat{f}_N) = O_p((\log N)^4 N^{-\beta/(2\beta+d_0^*)}).$

2024

Table of Contents

2024

< □ > < □ > < □ > < □ > < □ >

æ

Application to Conditional Average Treatment Effect

There are different types of UI design for the same APP. How to personalize the UI for each user based on their preference.

Figure: An example of uplift modeling

• • = • • = •

2024

Application to Conditional Average Treatment Effect

Problem definition

Given observed features x, we want to estimate conditional average treatment effect (CATE), $\tau_t(x) = E[Y^*(t) - Y^*(0)|X = x]$, under different treatment t, where $Y^*(t)$ is the potential outcome under treatment t.

23 / 48

2024

Application to Conditional Average Treatment Effect

Problem definition

Given observed features x, we want to estimate conditional average treatment effect (CATE), $\tau_t(x) = E[Y^*(t) - Y^*(0)|X = x]$, under different treatment t, where $Y^*(t)$ is the potential outcome under treatment t.

Assumption of CATE estimation

(A1)
$$Y = Y^*(T)$$
.
(A2) T is independent of $(Y^*(0), Y^*(1), \dots, Y^*(M-1))$ given X .
(A3) $\pi_0(t|x)$: $= P(T = t|X = x) > 0$ for $\forall x, t$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

2024

Baselines

Usually, baselines such as TARNET or DragonNet use a share-bottom architecture to learn response of each treatment with MSE loss function.

• • = • •

2024

Model illustration: DNet

Based on NQ-network, one can implement a DNet.

DNet with R-Tower being our NQ network

- A BaseNet $b(\cdot) = b(\cdot; \theta_b)$ that learns a shared representation for all treatments.
- A *R*-Tower associated with each individual treatment t, represented by $R(\cdot, t; \theta_r)$ with the last layer being our proposed non-crossing quantile network.

A 回 > < 三 >

2024

25 / 48

• A *T*-Tower, a simple softmax layer that estimates the propensity vector, $\pi(x; \theta_{\pi}) = \{P(T = t | X = x, \theta_{\pi})\}_{t=0}^{M-1}$.

Model training: DNet

• For the *R*-Tower's, we consider quantile Huber loss or check loss ℓ_{γ_k} :

$$\ell_q(R(b(x), t; \theta_r), y) = \frac{1}{K} \sum_{k=1}^K \ell_{\gamma_k}(y - q_{\gamma_k}(b(x), t)),$$

where $q_{\gamma_k}(b(x), t)$ is the *k*th quantile output of $R(b(x), t; \theta_r)$ under treatment *t*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2024

Model training: DNet

• For the *R*-Tower's, we consider quantile Huber loss or check loss ℓ_{γ_k} :

$$\ell_q(R(b(x), t; \theta_r), y) = \frac{1}{K} \sum_{k=1}^K \ell_{\gamma_k}(y - q_{\gamma_k}(b(x), t)),$$

where $q_{\gamma_k}(b(x), t)$ is the *k*th qauntile output of $R(b(x), t; \theta_r)$ under treatment *t*. • For the *T*-Tower's, we consider the cross entropy loss

$$\ell_{ce}(\pi(b(x);\theta_{\pi}),t) = \frac{1}{M} \sum_{k=0}^{M-1} t^{(k)} \log(\pi(b(x),;\theta_{\pi})^{(k)}),$$
(2)

26 / 48

2024

where $\mathbf{t} = (t^{(0)}, t^{(1)}, \dots, t^{(M-1)})^T$ is the one-hot vector of treatment, and $\pi(b(x); \theta_{\pi}) = (\pi(b(x); \theta_{\pi})^{(0)}, \pi(b(x); \theta_{\pi})^{(1)}, \dots, \pi(b(x); \theta_{\pi})^{(M-1)})^T$ is the predicted score.

Model training: DNet

• For the *R*-Tower's, we consider quantile Huber loss or check loss ℓ_{γ_k} :

$$\ell_q(R(b(x), t; \theta_r), y) = \frac{1}{K} \sum_{k=1}^K \ell_{\gamma_k}(y - q_{\gamma_k}(b(x), t)),$$

where $q_{\gamma_k}(b(x), t)$ is the *k*th qauntile output of $R(b(x), t; \theta_r)$ under treatment *t*. • For the *T*-Tower's, we consider the cross entropy loss

$$\ell_{ce}(\pi(b(x);\theta_{\pi}),t) = \frac{1}{M} \sum_{k=0}^{M-1} t^{(k)} \log(\pi(b(x),;\theta_{\pi})^{(k)}),$$
(2)

where $\mathbf{t} = (t^{(0)}, t^{(1)}, \dots, t^{(M-1)})^T$ is the one-hot vector of treatment, and $\pi(b(x); \theta_{\pi}) = (\pi(b(x); \theta_{\pi})^{(0)}, \pi(b(x); \theta_{\pi})^{(1)}, \dots, \pi(b(x); \theta_{\pi})^{(M-1)})^T$ is the predicted score.

• The final loss of DNet for on sample $\{(x_i, t_i, y_i)\}_{i=1}^N$ is given by

$$\mathcal{L}_{N}(b, R, \pi) = \frac{1}{N} \sum_{i=1}^{N} \ell_{q}(R(b(x_{i}), t_{i}; \theta_{r}), y_{i}) + \omega \ell_{ce}(\pi(b(x_{i}); \theta_{\pi}), t_{i}),$$

where ω is a weight parameter that balances the two loss components.

NQ-Net

2024

Learning Guarantee: Assumption

 Define the target function of the BaseNet, R-Tower and the T-Tower to be b₀, R₀ and π₀ respectively, which satisfy

$$(b_0, R_0, \pi_0) = \arg\min_{(b, R, \pi)} \mathcal{L}(b, R, \pi).$$

< □ > < 同 > < 回 > < 回 > < 回 >

Learning Guarantee: Assumption

 Define the target function of the BaseNet, R-Tower and the T-Tower to be b₀, R₀ and π₀ respectively, which satisfy

$$(b_0, R_0, \pi_0) = \arg\min_{(b, R, \pi)} \mathcal{L}(b, R, \pi).$$

• Let \hat{b}_N , \hat{R}_N and $\hat{\pi}_N$ denote the empirical risk minimizer of the empirical loss, i.e.,

$$(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = \arg\min_{b \in \mathcal{F}_b, R \in \mathcal{F}_R, \pi \in \mathcal{F}_\pi} \mathcal{L}_N(b, R, \pi).$$

< □ > < 同 > < 回 > < 回 > < 回 >

2024

Learning Guarantee: Assumption

 Define the target function of the BaseNet, R-Tower and the T-Tower to be b₀, R₀ and π₀ respectively, which satisfy

$$(b_0, R_0, \pi_0) = \arg\min_{(b,R,\pi)} \mathcal{L}(b, R, \pi).$$

• Let \hat{b}_N, \hat{R}_N and $\hat{\pi}_N$ denote the empirical risk minimizer of the empirical loss, i.e.,

$$(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = \arg\min_{b \in \mathcal{F}_b, R \in \mathcal{F}_R, \pi \in \mathcal{F}_\pi} \mathcal{L}_N(b, R, \pi).$$

Assumption

- (C1) : The domain of the input of b_0 is $\mathcal{X} = [0, 1]^d$. The probability distribution of X is absolutely continuous w.r.t the Lebesgue measure.
- (C2) : The target b_0 is β_b -Hölder smooth with constant B_b .
- (C3) : The target R_0 is β_R -Hölder smooth with constant B_R .
- (C4) : The target π_0 is β_{π} -Hölder smooth with constant B_{π} .

< □ > < □ > < □ > < □ > < □ > < □ >

2024

Theorem (Non-asymptotic Upper bounds)

For any integers N_b , M_b , N_R , M_R and N_{π} , M_{π} , let widths and depths in \mathcal{F}_b , \mathcal{F}_R , \mathcal{F}_{π} be $\mathcal{W}_{b} = 38(|\beta_{b}|+1)^{2} d_{1} d_{0}^{\lfloor \beta_{b} \rfloor+1} N_{b} \log_{2}(8N_{b}), \mathcal{D}_{b} = 21(|\beta_{b}|+1)^{2} d_{0}^{\lfloor \beta_{b} \rfloor+1} M_{b} \log_{2}(8M_{b}),$ $\mathcal{W}_{R} = 38(|\beta_{R}|+1)^{2} K d_{1}^{\lfloor \beta_{R} \rfloor + 1} N_{R} \log_{2}(8N_{R}), \mathcal{D}_{R} = 21(|\beta_{R}|+1)^{2} d_{1}^{\lfloor \beta_{R} \rfloor + 1} M_{R} \log_{2}(8M_{R}),$ $\mathcal{W}_{\pi} = 38(|\beta_{\pi}|+1)^2 M d_1^{\lfloor \beta_{\pi} \rfloor+1} N_{\pi} \log_2(8N_{\pi}), \mathcal{D}_{\pi} = 21(|\beta_{\pi}|+1)^2 d_1^{\lfloor \beta_{\pi} \rfloor+1} M_{\pi} \log_2(8M_{\pi}),$ then for any $\delta > 0$, with probability at least $1 - \delta$ $\mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = \mathcal{L}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) - \mathcal{L}(b_0, R_0, \pi_0)$ $\leq 6\mathcal{B}_R\{(\mathcal{S}_b+\mathcal{S}_R)(\mathcal{D}_b+\mathcal{D}_R)(d_0+1)\log(N\max\{\mathcal{W}_b,\mathcal{W}_R\})\}^{1/2}N^{-1/2}$ $+ 6\omega (log(M) + 2B_{\pi}) \{ (S_b + S_{\pi}) (D_b + D_{\pi}) d_0 \log(N \max\{W_b, W_{\pi}\}) \}^{1/2} N^{-1/2}$ $+ 6(\omega(\log(M) + 2B_{\pi}) + B_R) \{\log(4\max\{M, K\}/\delta)\}^{1/2} (2N)^{-1/2}$ $+ 18B_{R}(|\beta_{R}| + 1)^{2}d_{1}^{\lfloor \beta_{R} \rfloor + 1 + (\beta_{R} \lor 1)/2}(N_{R}M_{R})^{-2\beta_{R}/d_{1}}$ $+ 18\omega B_{\pi}(|\beta_{\pi}|+1)^2 d_1^{\lfloor \beta_{\pi} \rfloor + 1 + (\beta_{\pi} \vee 1)/2} (N_{\pi} M_{\pi})^{-2\beta_{\pi}/d_1}$ $+ 18(B_{R} + \omega B_{\pi})B_{b}(|\beta_{b}| + 1)^{2}d_{0}^{\lfloor\beta_{b}\rfloor + 1 + (\beta_{b} \vee 1)/2}(N_{b}M_{b})^{-2\beta_{b}/d_{0}}.$

where d_0 and d_1 is the dimension of the input and output respectively of neural networks in \mathcal{F}_b .

イロト 不得 トイヨト イヨト

2024

Corollary

Suppose the conditions in previous Theorem hold and $\beta_b/d_0 < \min\{\beta_R/d_1, \beta_\pi/d_1\}$. Let $N_b = N_R = N_\pi = 1$, and $M_b = N^{d_0/[2(d_0+2\beta_b)]}$, $M_R = N^{d_1/[2(d_1+2\beta_R)]}$, $M_\pi = N^{d_1/[2(d_1+2\beta_\pi)]}$. Then then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\begin{aligned} \mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) &\leq C_0 [\mathcal{B}_R + \omega (\log(M) + 2B_\pi)] (\log N)^3 N^{-\beta_b/(2\beta_b + d_0)} \\ &+ 6(\omega (\log(M) + 2B_\pi) + B_R) \{\log(4 \max\{M, K\}/\delta)\}^{1/2} (2N)^{-1/2}, \end{aligned}$$

where $C_0 > 0$ is a constant depending only on $\beta_b, \beta_R, \beta_\pi, d_0, d_1, M$ and K. Simply

$$\mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = O_p((\log N)^3 N^{-\beta_b/(2\beta_b + d_0)}).$$

d₀, d₁ are the dimension of the covariate and embedded features, β_b, β_R, β_π are the smoothness of the targets b₀, R₀ and π₀.

- 4 目 ト - 4 日 ト

2024

Corollary

Suppose the conditions in previous Theorem hold and $\beta_b/d_0 < \min\{\beta_R/d_1, \beta_\pi/d_1\}$. Let $N_b = N_R = N_\pi = 1$, and $M_b = N^{d_0/[2(d_0+2\beta_b)]}$, $M_R = N^{d_1/[2(d_1+2\beta_R)]}$, $M_\pi = N^{d_1/[2(d_1+2\beta_\pi)]}$. Then then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\begin{aligned} \mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) &\leq C_0 [\mathcal{B}_R + \omega (\log(M) + 2B_\pi)] (\log N)^3 N^{-\beta_b/(2\beta_b + d_0)} \\ &+ 6(\omega (\log(M) + 2B_\pi) + B_R) \{\log(4 \max\{M, K\}/\delta)\}^{1/2} (2N)^{-1/2}, \end{aligned}$$

where $C_0 > 0$ is a constant depending only on $\beta_b, \beta_R, \beta_\pi, d_0, d_1, M$ and K. Simply

$$\mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = O_p((\log N)^3 N^{-\beta_b/(2\beta_b + d_0)}).$$

- d₀, d₁ are the dimension of the covariate and embedded features, β_b, β_R, β_π are the smoothness of the targets b₀, R₀ and π₀.
- Assumed β_b/d₀ < min{β_R/d₁, β_π/d₁} as in practice d₀ is usually large and d₁ extracted features is relatively small.

< ロ > < 同 > < 回 > < 回 > < 回 > <

2024

Corollary

Suppose the conditions in previous Theorem hold and $\beta_b/d_0 < \min\{\beta_R/d_1, \beta_\pi/d_1\}$. Let $N_b = N_R = N_\pi = 1$, and $M_b = N^{d_0/[2(d_0+2\beta_b)]}$, $M_R = N^{d_1/[2(d_1+2\beta_R)]}$, $M_\pi = N^{d_1/[2(d_1+2\beta_\pi)]}$. Then then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\begin{aligned} \mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) &\leq C_0 [\mathcal{B}_R + \omega (\log(M) + 2B_\pi)] (\log N)^3 N^{-\beta_b/(2\beta_b + d_0)} \\ &+ 6(\omega (\log(M) + 2B_\pi) + B_R) \{\log(4 \max\{M, K\}/\delta)\}^{1/2} (2N)^{-1/2}, \end{aligned}$$

where $C_0 > 0$ is a constant depending only on $\beta_b, \beta_R, \beta_\pi, d_0, d_1, M$ and K. Simply

$$\mathcal{R}(\hat{b}_N, \hat{R}_N, \hat{\pi}_N) = O_p((\log N)^3 N^{-\beta_b/(2\beta_b + d_0)}).$$

- d₀, d₁ are the dimension of the covariate and embedded features, β_b, β_R, β_π are the smoothness of the targets b₀, R₀ and π₀.
- Assumed β_b/d₀ < min{β_R/d₁, β_π/d₁} as in practice d₀ is usually large and d₁ extracted features is relatively small.
- Generally, the rate is $O_p(N^{-\min\{\beta_b/(2\beta_b+d_0),\beta_R/(2\beta_R+d_1),\beta_\pi/(2\beta_\pi+d_1)\}})$ depends on ratios β_b/d_0 , β_R/d_1 , and β_π/d_1 .

2024

Implementation Variants

There are some variants of DNet implementations used to accommodate some real-world tasks.

Mono-DNet

 We propose a monotonic DNet (Mono-DNet) by imposing the monotonic treatment constraint during the training phase.

• ZI-DNet

 Involving an auxiliary task for predicting whether the outcome is zero to predict response from a zero-inflated heavy-tailed distribution.

・ 何 ト ・ ヨ ト ・ ヨ ト

2024

Semi-synthetic Datasets

	IHDP		ACIC		
	$\sqrt{\epsilon_{PEHE_{in}}}$	$\sqrt{\epsilon_{\text{PEHE}_{out}}}$	$\sqrt{\epsilon_{\text{PEHE}_{in}}}$	$\sqrt{\epsilon_{\text{PEHE}_{out}}}$	
TARNET	0.88	0.95	4.35	4.69	
CFR Wass	0.71	0.76	3.10	3.42	
CFR MMD	0.73	0.77	3.08	3.38	
DragonNet	0.68	0.77	4.04	4.35	
DNet	0.49±0.02	0.56±0.03	$1.87{\pm}~0.18$	$\textbf{2.34}{\pm 0.15}$	

Table: Performance summary of IHDP (Infant Health and Development Program) and ACIC (2019 Atlantic Causal Inference Conference competition. *in* stands for train and validation datasets while *out* stands for test set. PEHE denotes the Precision in Estimation of Heterogeneous Effect (PEHE) as the evaluation metric.

< □ > < □ > < □ > < □ > < □ > < □ >

2024

Real Data

To evaluate the effectiveness of the proposed DNet architecture in real-world scenarios, we conduct online randomized controlled experiments and collect two datasets from a leading technology company.

Figure: Histograms of outcomes in Ads/Search datasets. .

NQ-Net

・ 何 ト ・ ヨ ト ・ ヨ ト

2024

Real Data:DNet

	Ads	Search	
TARNET	0.53 ± 0.03	$1.12\pm$ 0.05	
CFR Wass	$0.48\pm$ 0.05	0.89 ± 0.04	
CFR MMD	0.49± 0.03	0.87 ± 0.03	
DragonNet	$0.56\pm$ 0.03	$1.13\pm$ 0.05	
DNet	0.59±0.02	$1.16{\pm}0.04$	

Table: Average AUUC of all treatments for Ads and Search datasets.

イロン イ理 とくほとう ほんし

2024

2

Real Data:Mono-DNet

	T=1	T=2	T=3	T=4	Mean
DNet	0.53	0.58	0.68	0.58	0.59
Mono-DNet	0.70	0.70	0.84	0.79	0.76

Table: The Areas Under Uplift Curve (AUUC) of DNet and Monotonic-DNet models on value to advertiser in the ads dataset.

イロト イポト イヨト イヨト

2024

Real Data:ZI-DNet

	T=1	T=2	T=3	T=4	
DNet	0.84	1.02	0.96	1.05	
ZI-DNet	0.90	1.12	1.04	1.11	
	T=5	T=6	T=7	T=8	Mean
DNet	1.33	2.13	0.96	0.98	1.16
ZI-DNet	1.52	2.26	1.13	0.96	1.26

Table: AUUCs of DNet and ZI-DNet models on search counts in the search dataset.

<ロト < 四ト < 三ト < 三ト

2024

э

Ablation Study

Figure: Validation PEHE versus training epochs.

Figure: Rooted PEHE on Figure: Relative IHDP dataset of models differences of rooted with different number of PEHE on various tasks. quantiles in NCQ Layer.

▲ 同 ▶ → 三 ▶

∃ →

36 / 48

2024

Online Deployment

- In the rewarded ads example, the optimal policy based on DNet architecture was able to achieve 2.8% significant increases in value to advertisers,
- In the search example, ZI-DNet was able to improve the number of search counts by more than 13%.
- Additionally, the DNet model has been adopted by the monetization department to improve user experience, resulting in a significant 0.1% increase in user activity.

A 回 > A 回 > A 回 >

2024

Figure: An Atari example to show how the crossing issue may affect the exploration efficiency.

< 回 > < 三 > < 三 >

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

 $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces

< □ > < 同 > < 回 > < 回 > < 回 >

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

- $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces
- *R* is the r.v. reward function and $\gamma \in [0, 1)$ is the discount factor

- 4 回 ト 4 ヨ ト 4 ヨ ト

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

- $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces
- R is the r.v. reward function and $\gamma \in [0,1)$ is the discount factor
- $P(x' \mid x, a)$ is the transition probability

- 4 回 ト 4 ヨ ト 4 ヨ ト

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

- $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces
- R is the r.v. reward function and $\gamma \in [0,1)$ is the discount factor
- $P(x' \mid x, a)$ is the transition probability
- A policy $\pi(\cdot \mid x)$ maps each state $x \in \mathcal{X}$ to a distribution over \mathcal{A} .

・ 何 ト ・ ヨ ト ・ ヨ ト

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

- $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces
- *R* is the r.v. reward function and $\gamma \in [0, 1)$ is the discount factor
- $P(x' \mid x, a)$ is the transition probability
- A policy $\pi(\cdot \mid x)$ maps each state $x \in \mathcal{X}$ to a distribution over \mathcal{A} .
- For a fixed π, the return is a r.v. of the sum of discounted rewards observed along one trajectory of states while following π.

$$Z^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_t.$$

2024

Given a Markov decision process (MDP) with $(\mathcal{X}, \mathcal{A}, R, P, \gamma)$,

- $\bullet~~\mathcal{X}$ and \mathcal{A} are state and action spaces
- R is the r.v. reward function and $\gamma \in [0,1)$ is the discount factor
- $P(x' \mid x, a)$ is the transition probability
- A policy $\pi(\cdot \mid x)$ maps each state $x \in \mathcal{X}$ to a distribution over \mathcal{A} .
- For a fixed π, the return is a r.v. of the sum of discounted rewards observed along one trajectory of states while following π.

$$Z^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_t.$$

Problem definition

We want to estimate the distribution of Z^{π} as well as get an optimal one Z^{π^*} in the sense that $\mathbb{E}Z^{\pi^*} \ge \mathbb{E}Z^{\pi}$ for any π .

A D F A B F A B F A B

2024

Algorithm

Algorithm 1 Distributional RL with fitted NC Iteration

Require: MDP $(\mathcal{X}, \mathcal{A}, P, R, \gamma)$, sampling distribution σ , # samples N, # quantile levels K, # iterations M, NC networks \mathcal{F} , the initial estimator $Z^{(0)} = (Z_1^{(0)}, \dots, Z_K^{(0)})$. **for** iteration m = 0 to M - 1 **do** Sample i.i.d. observations $\{(x_i, a_i, r_i, x'_i)\}_{i \in [N]}$. Compute $(\mathcal{T}Z_k^{(m)})_i = r_i + \gamma Z_k^{(m)}(x', a')$ where $a' = \arg \max_{a \in \mathcal{A}} \sum_{k=1}^K Z_k^{(m)}(x', a)$ Update the estimation

$$Z^{(m+1)} \leftarrow \arg\min_{Z \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{K} \rho_{\tau_k} \left((\mathcal{T} Z_j^{(m)})_i - Z_k(x_i, a_i) \right),$$

end for

Define policy π_M as the greedy policy with respect to $Q^{(M)}$. **Output:** An estimator $Z^{(M)}$ of Z^* and the policy π_M

イロト イヨト イヨト 一日

2024

Learning Guarantee: Assumptions

• Modify NQ networks \mathcal{F}_N for the value distribution estimation of distribution RL:

NQ-Net

$$\mathcal{F}_{N}^{(RL)} = \{ f : \mathcal{X} \times \mathcal{A} \to \mathbb{R} : f(\cdot, \mathbf{a}) \in \mathcal{F}_{N} \text{ for any } \mathbf{a} \in \mathcal{A} \}.$$
(3)

イロト イヨト イヨト イヨト

2024

э

Learning Guarantee: Assumptions

• Modify NQ networks \mathcal{F}_N for the value distribution estimation of distribution RL:

$$\mathcal{F}_{N}^{(RL)} = \{ f : \mathcal{X} \times \mathcal{A} \to \mathbb{R} : f(\cdot, \mathbf{a}) \in \mathcal{F}_{N} \text{ for any } \mathbf{a} \in \mathcal{A} \}.$$
(3)

イロト イヨト イヨト

2024

41 / 48

Assumption (Approximation efficiency characterization)

For any $f \in \mathcal{F}_N^{(RL)}$ and any $a, a' \in \mathcal{A}$, the function $R_{\tau}(\cdot, a) + \gamma f(\cdot, a')$ is β -Hölder smooth with constant B, where $R_{\tau}(x, a)$ denotes the τ -th conditional quantile of the reward given the state x and action a.
Learning Guarantee: Assumptions

• Modify NQ networks \mathcal{F}_N for the value distribution estimation of distribution RL:

$$\mathcal{F}_{N}^{(RL)} = \{ f : \mathcal{X} \times \mathcal{A} \to \mathbb{R} : f(\cdot, \mathbf{a}) \in \mathcal{F}_{N} \text{ for any } \mathbf{a} \in \mathcal{A} \}.$$
(3)

2024

41 / 48

Assumption (Approximation efficiency characterization)

For any $f \in \mathcal{F}_N^{(RL)}$ and any $a, a' \in \mathcal{A}$, the function $R_{\tau}(\cdot, a) + \gamma f(\cdot, a')$ is β -Hölder smooth with constant B, where $R_{\tau}(x, a)$ denotes the τ -th conditional quantile of the reward given the state x and action a.

Assumption (Self-calibration)

There exist constants C > 0 and c > 0 such that for any $|\delta| \leq C$ and $m = 0, \dots, M - 1$,

$$|\mathsf{P}_{\mathcal{TZ}^{(m)}|_{X,a}}((\mathcal{TZ}^{(m)})_{\tau}(x+\delta,a))-\mathsf{P}_{\mathcal{TZ}^{(m)}|_{X,a}}((\mathcal{TZ}^{(m)})_{\tau}(x))|\geq c|\delta|,$$

for all $\tau \in (0,1)$ and $x \in \mathcal{X}$, $a \in \mathcal{A}$ up to a negligible set, where $\mathcal{P}_{\mathcal{T}Z^{(m)}|_{X,a}}(\cdot)$ denotes the conditional distribution function of $\mathcal{T}Z^{(m)}$ given x and a and $(\mathcal{T}Z^{(m)})_{\tau}$ denotes the τ conditional quantile given x and a.

Theorem

Let $\{Z^{(m)}\}_{m=0}^{M}$ be the iterates in Algorithm 1 using NQ networks $\mathcal{F}_{N}^{(RL)}$. Let the width and depth for networks be $\mathcal{W} = 114(\lfloor \beta \rfloor + 1)^2(K+1)(d_0)^{\lfloor \beta \rfloor + 1}$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2(d_0)^{\lfloor \beta \rfloor + 1}N^{d_0/[2(d_0+2\beta)]}\log_2(8N^{d_0/[2(d_0+2\beta)]})$ and bound $\mathcal{B} = \log(N)$ where N is the sample size. Denote Z^{π_M} by the action-value distribution w.r.t the greedy policy π_M from $Z^{(M)}$. Then

$$\|\mathbb{E}Z^{\pi_{M}} - \mathbb{E}Z^{*}\|_{1,\mu} \leq \frac{2c \cdot c_{M,\sigma,\mu}(K+2)^{3}\gamma}{(1-\gamma)^{2}} |\mathcal{A}| (\log N)^{4} N^{-\beta/(2\beta+d_{0})} + \frac{4\gamma^{M+1}}{(1-\gamma)^{2}} R_{max}, \quad (4)$$

where $c_{\mu,\sigma} > 0$ is a constant that only depends on the prob. dist. μ and sampling dist. σ and c > 0 is a universal constant.

• Prediction error: the sum of estimation error and algorithmic error

< □ > < □ > < □ > < □ > < □ > < □ >

2024

Theorem

Let $\{Z^{(m)}\}_{m=0}^{M}$ be the iterates in Algorithm 1 using NQ networks $\mathcal{F}_{N}^{(RL)}$. Let the width and depth for networks be $\mathcal{W} = 114(\lfloor \beta \rfloor + 1)^2(K+1)(d_0)^{\lfloor \beta \rfloor + 1}$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2(d_0)^{\lfloor \beta \rfloor + 1}N^{d_0/[2(d_0+2\beta)]}\log_2(8N^{d_0/[2(d_0+2\beta)]})$ and bound $\mathcal{B} = \log(N)$ where N is the sample size. Denote Z^{π_M} by the action-value distribution w.r.t the greedy policy π_M from $Z^{(M)}$. Then

$$\|\mathbb{E}Z^{\pi_{M}} - \mathbb{E}Z^{*}\|_{1,\mu} \leq \frac{2c \cdot c_{M,\sigma,\mu}(K+2)^{3}\gamma}{(1-\gamma)^{2}} |\mathcal{A}| (\log N)^{4} N^{-\beta/(2\beta+d_{0})} + \frac{4\gamma^{M+1}}{(1-\gamma)^{2}} R_{max}, \quad (4)$$

where $c_{\mu,\sigma} > 0$ is a constant that only depends on the prob. dist. μ and sampling dist. σ and c > 0 is a universal constant.

- Prediction error: the sum of estimation error and algorithmic error
- Algorithmic error converges to zero linearly in # iterations M. Estimation error dominates when iterations M ≥ C[log |A|⁻¹ + (β/(2β + d₀)) log(N)]

イロト イヨト イヨト 一日

2024

Theorem

Let $\{Z^{(m)}\}_{m=0}^{M}$ be the iterates in Algorithm 1 using NQ networks $\mathcal{F}_{N}^{(RL)}$. Let the width and depth for networks be $\mathcal{W} = 114(\lfloor \beta \rfloor + 1)^2(K+1)(d_0)^{\lfloor \beta \rfloor + 1}$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2(d_0)^{\lfloor \beta \rfloor + 1}N^{d_0/[2(d_0+2\beta)]}\log_2(8N^{d_0/[2(d_0+2\beta)]})$ and bound $\mathcal{B} = \log(N)$ where N is the sample size. Denote Z^{π_M} by the action-value distribution w.r.t the greedy policy π_M from $Z^{(M)}$. Then

$$\|\mathbb{E}Z^{\pi_{M}} - \mathbb{E}Z^{*}\|_{1,\mu} \leq \frac{2c \cdot c_{M,\sigma,\mu}(K+2)^{3}\gamma}{(1-\gamma)^{2}} |\mathcal{A}| (\log N)^{4} N^{-\beta/(2\beta+d_{0})} + \frac{4\gamma^{M+1}}{(1-\gamma)^{2}} R_{max}, \quad (4)$$

where $c_{\mu,\sigma} > 0$ is a constant that only depends on the prob. dist. μ and sampling dist. σ and c > 0 is a universal constant.

- Prediction error: the sum of estimation error and algorithmic error
- Algorithmic error converges to zero linearly in # iterations M. Estimation error dominates when iterations M ≥ C[log |A|⁻¹ + (β/(2β + d₀)) log(N)]

イロト イヨト イヨト 一日

2024

Theorem

Let $\{Z^{(m)}\}_{m=0}^{M}$ be the iterates in Algorithm 1 using NQ networks $\mathcal{F}_{N}^{(RL)}$. Let the width and depth for networks be $\mathcal{W} = 114(\lfloor \beta \rfloor + 1)^2(K+1)(d_0)^{\lfloor \beta \rfloor + 1}$ and depth $\mathcal{D} = 21(\lfloor \beta \rfloor + 1)^2(d_0)^{\lfloor \beta \rfloor + 1} N^{d_0/[2(d_0+2\beta)]} \log_2(8N^{d_0/[2(d_0+2\beta)]})$ and bound $\mathcal{B} = \log(N)$ where N is the sample size. Denote Z^{π_M} by the action-value distribution w.r.t the greedy policy π_M from $Z^{(M)}$. Then

$$\|\mathbb{E}Z^{\pi_{M}} - \mathbb{E}Z^{*}\|_{1,\mu} \leq \frac{2c \cdot c_{M,\sigma,\mu}(K+2)^{3}\gamma}{(1-\gamma)^{2}} |\mathcal{A}| (\log N)^{4} N^{-\beta/(2\beta+d_{0})} + \frac{4\gamma^{M+1}}{(1-\gamma)^{2}} R_{max}, \quad (4)$$

where $c_{\mu,\sigma} > 0$ is a constant that only depends on the prob. dist. μ and sampling dist. σ and c > 0 is a universal constant.

- Prediction error: the sum of estimation error and algorithmic error
- Algorithmic error converges to zero linearly in # iterations M. Estimation error dominates when iterations M ≥ C[log |A|⁻¹ + (β/(2β + d₀)) log(N)]

2024

42 / 48

• Then prediction error has rate $|A|N^{-\beta/(2\beta+d_0)}$, which is linearly in the cardinality |A|

Applications

Application to Distributional Reinforcement Learning

Figure: Performance comparison with QR-DQN. Each training curve is averaged by seeds.

NQ-Net

3

43 / 48

2024

Table of Contents

2024

<ロト < 四ト < 三ト < 三ト

44 / 48

æ

Conclusion

- Non-crossing Quantile regression network.
 - Delta layer with ELU activation for non-negative outputs
 - Learning guarantees, faster rate with low-dim structured data
- Applications to Conditional Average Treatment Effect
 - Extension to DNet, a robust non-crossing NN architecture for quantile ITE estimation with heavy-tailed outcomes.
 - Two variants of DNet that lead to improved AUUC scores in real-world applications.
- Applications to Distributional Reinforcement Learning
 - Making use of global information to ensure the batch-based monotonicity of the learned quantile function based on NQ network.

< □ > < □ > < □ > < □ > < □ > < □ >

2024

Table of Contents

3 Applications

<ロト < 四ト < 三ト < 三ト

2024

æ

References

- Fan Zhou, Xiaocheng Tang, Chenfan Lu, Fan Zhang, Zhiwei Qin, Jieping Ye, and Hongtu Zhu "Multi-Objective Distributional Reinforcement Learning for Large-Scale Order Dispatching", *IEEE ICDM* 2021.
- Qin, Z., Zhu, H.T., and Jieping Ye. Reinforcement learning for ridesharing: an extended survey. *Transportation Research Part C: Emerging Technologies* 2022, 144, p. 103852.
- Wu, G., Song, G., Lv, X., Luo, S., Shi, C. and Zhu, H. DNet: Distributional network for distributional individualized treatment effects. *KDD* 2023.
- Shen, G., Luo, S., Shi, C., and Zhu, H. Deep Noncrossing Quantile Learning. In submission.
- Li, T., Shi, C., Lu, Z., Li, Y., and Zhu, H.T. Evaluating Dynamic Conditional Quantile Treatment Effects with Applications in Ridesharing. *Journal of American Statistical Association, AC & S*, 2024, in press.

イロト 不得 トイヨト イヨト

2024

3

Thank you!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2024