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Abstract 
The aim of this article is to establish a causal link between the policies implemented by technology companies 
and the outcomes they yield within intricate temporal and/or spatial dependent experiments. We propose a 
novel temporal/spatio-temporal Varying Coefficient Decision Process model, capable of effectively capturing 
the evolving treatment effects in situations characterized by temporal and/or spatial dependence. Our 
methodology encompasses the decomposition of the average treatment effect into the direct effect (DE) 
and the indirect effect (IE). We subsequently devise comprehensive procedures for estimating and making 
inferences about both DE and IE. Additionally, we provide a rigorous analysis of the statistical properties of 
these procedures, such as asymptotic power. To substantiate the effectiveness of our approach, we carry 
out extensive simulations and real data analyses. 
Keywords: A/B testing, policy evaluation, spatio-temporal dependent experiments, varying coefficient decision process 

1 Introduction 
The utilization of A/B testing, or randomized controlled experiments, has rapidly expanded 
across various technology companies, including Google and Twitter. This practice is employed 
to inform data-driven decisions regarding new policies, such as services, or products, effectively 
establishing itself as the gold standard for product development (see Larsen et al., 2023, for an 
overview). For instance, in the context of ride-sharing platforms such as Uber, prior to imple-
menting new policies related to order dispatch or subsidies, they frequently undertake a series 
of online experiments for policy evaluation. These platforms have significantly reshaped human 
transportation dynamics through the widespread adoption of smartphones and the Internet of 
Things (Alonso-Mora et al., 2017; Hagiu & Wright, 2019; Qin et al., 2022). These technology- 
driven companies strive to create efficient spatio-temporal systems incorporating various policies, 
all aimed at enhancing key platform metrics such as supply–demand equilibrium and total driver 
income (Qin et al., 2022; Zhou et al., 2021). The switchback design stands out as a widely 
adopted experimental approach within the domain of online experimentation. This design in-
volves dividing an experimental day into distinct non-overlapping time intervals, alternating be-
tween treatment and control policies across several cities for a specified duration, often spanning 
an even number of days, such as n = 14.1 
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In the realm of policy evaluation within these technology companies, several significant statis-
tical challenges arise. Firstly, the data-generating process is often non-stationary. Consider the 
context of ride-sharing platforms as an example. At specific time intervals, metrics like online driv-
er numbers (supply) and call order numbers (demand) can be visualized as spatio-temporal net-
works that exhibit substantial variation throughout a day, peaking during rush hours. These 
metrics interact across time and locations in intricate ways. Secondly, the market features typically 
exhibit daily trends, manifesting as spatio-temporal random effects. This trend violates the as-
sumption of conditional independence between market outcomes and past data history. For 
more in-depth discussions, refer to Section 2.2. Thirdly, complex spatio-temporal interference ef-
fects add further intricacy to the estimation and inference of treatment effects. Lastly, the sample 
size is often limited, while effect sizes tend to be small. In ride-sharing applications, for instance, 
most AB test experiment durations do not exceed 20 days (Shi et al., 2023), and the size of treat-
ment effects typically ranges between 0.5% and 2% (Tang et al., 2019). 

The primary objective of this article is to develop a robust statistical framework for analysing 
the causal connections between the policies implemented by these companies and their corre-
sponding outcomes, even in the presence of the aforementioned challenges. Our four major con-
tributions can be summarized as follows. Firstly, we address the challenges by introducing linear 
and neural network-based Varying Coefficient Decision Process (VCDP) models. These models ac-
commodate dynamic treatment effects over time and/or space, even in the presence of non- 
stationarity, random effects, interference, and spatial spillovers. These models account for market 
features as mediators to incorporate historical policy carryover effects. Furthermore, by assuming 
network interference and employing mean field approximation (as detailed in Section 3.2), we ef-
fectively operate an ‘effective treatment’ (Manski, 2013) or ‘exposure mapping’ (Aronow & 
Samii, 2017) in the spatio-temporal system. Our approach extends beyond the switchback design 
to any dynamic treatment allocation setup. 

Secondly, we develop estimation methods for our VCDPs. For linear VCDPs, we propose a two- 
step process involving the calculation of least squares estimates and kernel smoothing to refine the 
estimates. Kernel smoothing leverages neighbouring observations across time and/or space, enhan-
cing estimation efficiency and overcoming the challenge of weak signals and small sample sizes. 
Additionally, we decompose average treatment effects (ATEs) into direct effects (DE) and indirect 
effects (IE). Similar decompositions have been considered in the literature of causal inference in time 
series (see e.g. Bojinov & Shephard, 2019; Boruvka et al., 2018). We introduce a Wald test for DE 
detection and a parametric bootstrap for IE inference, enhancing the detectability of ATE in cases 
where IE’s variance significantly exceeds that of DE. This decomposition also aids decision-makers 
in understanding policy mechanisms and devising more effective strategies (refer to Section 7). 

Thirdly, we rigorously study the asymptotic properties of our test procedure under the setting 
where the number of treatment decision stages per day (m) diverges with the sample size (n). 
Although this aligns with ride-sharing platforms, it poses theoretical complexities as the continu-
ous mapping theorem (Van & Wellner, 1996) is inapplicable when m→∞. Details are provided 
in Section 4. Importantly, our analysis reveals that the switchback design is likely to yield more 
efficient estimators compared to a simple alternating-day design that randomly assigns treatment 
throughout each day. 

Fourthly, we evaluate the finite sample performance of our parameter estimators and test statis-
tics using extensive simulations and real datasets from Didi. Our empirical findings validate our 
theoretical assertions. Notably, the empirical power of our test increases with the frequency of 
switchbacks, further affirming the benefits of the switchback design. 

1.1 Related works 
The key idea of A/B testing is to apply causal inference methods to estimating the treatment effect 
of a new change under the assumption of ‘no interference’ as a part of the stable unit treatment 
value assumption (SUTVA, Rubin, 1980). Despite of its ubiquitousness, however, the standard 
A/B testing is not directly applicable for causal inference under interference, which frequently oc-
curs in many complex systems, particularly for spatio-temporal systems. For instance, researchers 
from Google and eBay have observed that advertisers (or users) interact within online auctions.  
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There has been substantial interest in the development of causal inference under interference. 
See the comprehensive reviews in Halloran and Hudgens (2016), Reich et al. (2020), and Sävje 
et al. (2021) and references therein. Since there is a consensus that causal inferences are impossible 
without any assumptions on the interference structure, capturing interference effects requires new 
definitions of the estimands of interest and new models for causal effects. For instance, Bojinov 
and Shephard (2019) considered the p lag causal effect, whereas (Aronow et al., 2020) introduced 
a spatial ‘average marginalized response’. In contrast, our target parameter is the global average 
treatment effect, which is the expected return difference under the new policy against the control 
policy in the entire market. In addition, there are four major types of models for the interference 
processes. Firstly, early methods assumed specific structural models to restrict the interference pro-
cess (Lee, 2007). Secondly, the partial interference assumption has been widely used to restrict 
interference only in known and disjoint groups of units (Halloran & Hudgens, 2016;  
Pollmann, 2020; Sobel, 2006; Tchetgen Tchetgen & VanderWeele, 2012; Zigler et al., 2012). 
Thirdly, the local or network-based interference assumption was introduced to deal with interfer-
ence between local units in a geographic space or connected nodes in an exposure graph (Aronow 
et al., 2020; Bakshy et al., 2014; Perez-Heydrich et al., 2014; Puelz et al., 2019; Verbitsky-Savitz & 
Raudenbush, 2012). Our VCDPs are closely related to the second and third types of models, but 
they focus on interference across time and space. Most aforementioned works studied the interfer-
ence effect across time or space and were motivated by research questions in environmental and 
epidemiological studies. It remains unknown about their generalization to ride-sharing markets. 
Fourthly, recent models capture the interference effect via congestion or price effects in a market-
place (Johari et al., 2022; Munro et al., 2021; Wager & Xu, 2021). These solutions rely on an as-
sumption of Markovanity or stationarity and are design-dependent. In contrast, our approach 
accommodates non-stationarity and is capable of managing non-Markovianity in scenarios where 
outcome errors exhibit time-correlated patterns. 

Our proposal is closely related to a growing literature on off-policy evaluation (OPE) meth-
ods in sequential decision making (see Uehara et al., 2022, for a review). In the literature, 
augmented inverse propensity score weighting methods (see e.g. Jiang & Li, 2016; Luedtke 
& Van Der Laan, 2016; Thomas & Brunskill, 2016; Zhang et al., 2013) have been proposed 
for valid OPE. Nonetheless, these methods suffer from the curse of horizon (Liu et al., 2018) 
in that the variance of the resulting estimator grows exponentially fast with respect to m, 
leading to inefficient estimates in the large m setting. Efficient model-free OPE methods 
have been proposed by Kallus and Uehara (2020, 2022), Liao et al. (2021, 2020), Luckett 
et al. (2020), Shi et al. (2021), and Shi et al. (2022b) under the Markov decision process 
(MDP, see e.g. Puterman, 2014) model assumption. Recently, Hu and Wager (2021) pro-
posed a model-free OPE method in partially observed MDPs (POMDPs) that avoids the curse 
of horizon. Our proposal is model-based and is ultimately different from most existing 
model-free OPE methods that did not consider the random effects, spatial interference effects, 
and the decomposition into DE and IE. In addition, little has been done on OPE for spatio- 
temporal dependent experiments. 

Finally, our article is related to a line of works on quantitative approaches to ride-sharing 
platforms. In particular, Bimpikis et al. (2019) proposed supply-and-demand models and in-
vestigated the impact of the demand pattern on the platform’s prices and profits. Castillo 
et al. (2017) studied how the surging prices can prevent wild goose chase (e.g. drivers pickup 
distant customers) and conducted regression analysis to verify the nonmonotonicity of supply 
on pickup times. However, estimation and inference of target policy’s treatment effect have 
not been considered in these papers. Cohen et al. (2022) employed the difference in differen-
ces methods to estimate the treatment effects of different types of compensation on the en-
gagement of riders who experienced a frustration. Their analysis is limited to staggered 
designs. Garg and Nazerzadeh (2022) studied the theoretical properties of driver-side pay-
ment mechanisms and compared additive surge against multiplicative surge numerically. 
However, they did not consider the spatial spillover effects of these policies. Our article com-
plements the existing literature by developing a general framework to efficiently infer a target 
policy’s direct and indirect effects based on data collected from spatio-temporal dependent 
experiments and analysing the advantage of switchback designs in the presence of spatio- 
temporal random effects.  
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1.2 Article outline 
The rest of the article is organized as follows. In Section 2, we introduce a potential outcome 
framework for problem formulation, propose two novel temporal VCDP models under temporal 
dependent experiments, and develop estimation and testing procedures for both DE and IE. In 
Section 3, we further propose two spatio-temporal VCDP models under spatio-temporal depend-
ent experiments and develop the associated estimation and testing procedures. In Section 4, we sys-
tematically investigate the theoretical properties of estimation and testing procedures (e.g. 
consistency and power) developed in Sections 2 and 3. We also illustrate the benefits of employing 
the switchback design in theory. In Section 5, we use numerical simulations to examine the finite 
sample performance of our estimation and testing procedures. Furthermore, we numerically ex-
plore the benefits of the switchback design. In Section 6, we apply the proposed procedures to 
evaluating different policies in Didi Chuxing. 

2 Policy evaluation for temporal dependent experiments 
In this section, we present the proposed methodology for policy evaluation in temporal dependent 
experiments for one experimental region. 

2.1 A potential outcome framework 
We use the potential outcome framework to present our model in non-stationary environments. We 
divide each day into m equally spaced non-overlapping intervals. At each time interval, the platform 
can implement either the new or old policy. We use Aτ to denote the policy implemented at the τth 
interval for any integer τ ≥ 1. Let Sτ be some state variables measured at the (τ − 1)th interval in a 
given day. All the states share the same support, which is assumed to be a compact subset of Rd, where 
d denotes the dimension of the state. Let Yτ ∈ R be the outcome of interest measured at time τ. 

Firstly, we define the average treatment effect (ATE) as the difference between the new and old 
policies. Let ̅aτ = (a1, . . . , aτ)

⊤ ∈ {0, 1}τ denote a treatment history vector up to time τ, where 1 and 
0 denote the new policy and the old one, respectively. We define S∗τ (a̅τ−1) and Y∗τ (a̅τ) as the coun-
terfactual state and the counterfactual outcome, respectively. Then, ATE can be defined as follows. 

Definition 1 ATE is the difference between two value functions given by 

ATE =
􏽘m

τ=1

E{Y∗τ (1τ) − Y∗τ (0τ)}, 

where 1τ and 0τ denote vectors of 1s and 0s of length τ, respectively. 

Secondly, we can decompose ATE as the sum of direct effects (DE) and indirect effects (IE). Let 
Rτ denote the conditional mean function of the outcome given the data history, 

E{Y∗τ (a̅τ) | S∗τ (a̅τ−1), Y∗τ−1(a̅τ−1), S∗τ−1(a̅τ−2), Y∗τ−2(a̅τ−2), . . . , S1}

= Rτ(aτ, S∗τ (a̅τ−1), aτ−1, S∗τ (a̅τ−2), . . . , S1).

It follows that ATE can be rewritten as 

􏽘m

τ=1

E{Rτ(1, S∗τ (1τ−1), 1, S∗τ−1(1τ−2), . . . , S1) − Rτ(0, S∗τ (0τ−1), 0, S∗τ−1(0τ−2), . . . , S1)}

=
􏽘m

τ=1

E{Rτ(1, S∗τ (0τ−1), 0, S∗τ−1(0τ−2), . . . , S1) − Rτ(0, S∗τ (0τ−1), 0, S∗τ−1(0τ−2), . . . , S1)}

􏽼�������������������������������������������������������􏽻􏽺�������������������������������������������������������􏽽
DE

+
􏽘m

τ=1

E{Rτ(1, S∗τ (1τ−1), 1, S∗τ−1(1τ−2), . . . , S1) − Rτ(1, S∗τ (0τ−1), 0, S∗τ−1(0τ−2), . . . , S1)}

􏽼�������������������������������������������������������􏽻􏽺�������������������������������������������������������􏽽
IE

. (1)  
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The DE represents the sum of the short-term treatment effects on the immediate outcome over time 
assuming that the baseline policy is being employed in the past. In contrast, IE characterizes the 
carryover effects of past policies. Our problems of interest are to estimate DE, IE and test the fol-
lowing hypotheses: 

HDE
0 : DE ≤ 0 vs. HDE

1 : DE > 0. (2) 

HIE
0 : IE ≤ 0 vs. HIE

1 : IE > 0. (3) 

If both HDE
1 and HIE

1 hold, then the new policy is better than the baseline one. 
Thirdly, since all other potential variables except S1 cannot be observed, we follow the causal 

inference literature and assume the consistency assumption (CA), the sequential randomization as-
sumption (SRA) and the positivity assumption (PA) as follows: 

• CA. S∗τ (A̅τ−1) = Sτ and Y∗(A̅τ) = Yτ for any τ ≥ 1, where A̅τ denotes the observed policy history 
up to time τ. 

• SRA. Aτ is conditionally independent of all potential variables given Sτ and {(Sj, Aj, Yj)}j<τ. 
• PA. For any τ ≥ 1, the probability2 that the observed action at time τ equals one given the ob-

served data history is strictly bounded between zero and one. 

The SRA allows the policy to be adaptively assigned based on the observed data history (e.g. via 
the ϵ-greedy algorithm). It is automatically satisfied under the temporal switchback design, in 
which the policy assignment mechanism is independent of the data. The PA is also automatically 
satisfied under this design, in which at each time, half actions equal zero whereas the other half 
equal one. Moreover, CA, SRA, and PA ensure that DE and IE are estimable from the observed 
data, as shown below. 

Lemma 1 Under CA, SRA, and PA, we have 

Rτ(aτ, sτ, . . . , s1) = E(Yτ |Aτ = aτ, Sτ = sτ, . . . , S1 = s1), (4) 

E{Rτ(a, S∗τ (a̅τ−1), . . . , S1)} = E[E[Rτ(a, Sτ, . . . , S1) | {Aj = aj}1≤j<τ, {Sj, Yj}1≤j<τ]].

(5)  

Lemma 1 implies that the causal estimand can be represented as a function of the observed data. 

2.2 TVCDP model 
We introduce two TVCDP regression models to model Yi,τ and the conditional distribution of Si,τ 
given the data history, forming the basis of our estimation and testing procedures. Suppose that the 
experiment is conducted over n days. Let (Si,τ, Ai,τ, Yi,τ) be the state-policy-outcome triplet meas-
ured at the τth time interval of the ith day for i = 1, . . . , n and τ = 1, . . . , m. The proposed TVCDP 
model is composed of the following set of additive noise models, 

Yi,τ = f1,τ(Si,τ, Ai,τ) + ei,τ,

Si,τ+1 = f2,τ(Si,τ, Ai,τ) + εi,τS,
(6) 

where f1,τ(·) and f2,τ(·) are the regression functions. 
We would like to highlight several key points. Firstly, in addition to defining the standard out-

come regression model f1,τ as described in equation (6), it is crucial to specify how past actions in-
fluence future states. This is accomplished through the inclusion of f2,τ, which plays a pivotal role 
in quantifying temporal interference effects. 

2 When data are not identically distributed, the observed data distribution corresponds to a mixture of individual 
trajectory distributions with equal weights.  
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Secondly, we introduce a specific assumption related to the error structure. This assumption is 
fundamental as it allows us to incorporate temporal random effects effectively. 

Assumption 1 (i) The outcome noise ei,τ = ηi,τ + εi,τ is a combination of two mutually 
independent stochastic processes: day-specific temporal variation ηi,τ 
and measurement error εi,τ. (ii) The processes {ηi,τ}i,τ are identical 
realizations of a zero-mean stochastic process with covariance func-
tion {Ση(τ1, τ2)}τ1,τ2

. Additionally, all components of Ση(t1, t2) have 
bounded and continuous second derivatives with respect to t1 and 
t2. (iii) The measurement errors {εi,τ}i,τ and {εi,τS}i,τ are independent 
over time. They have zero-mean values and exhibit Var(εi,τ) = σ2

ε,τ 
and Cov(εi,τS) = Σε,τS. 

It’s important to note that the day-specific random effects are present only in the outcome re-
gression model. However, our approach can be extended to scenarios where these random effects 
also exist in the state regression model. We provide a detailed discussion of this extension in 
Section 7. Additionally, it’s worth mentioning that both the conditional mean and covariance 
functions, namely f1,τ, f2,τ, σ2

ε,τ, and Σε,τS, are time-dependent. This captures the non-stationarity 
inherent in the data-generating process. 

Our TVCDP models (6) have strong connections with the MDP model that is commonly 
used in reinforcement learning. Specifically, models (6) reduce to non-stationary (or time- 
varying) MDP models (Kallus & Uehara, 2022) when there are no day-specific random effects 
in {ei,τ}i,τ. However, the proposed time varying models are no longer MDPs due to the existence 
of the day-specific random effects. In particular, Yi,τ in (6) is dependent upon past responses 
given Zi,τ = (1, S⊤

i,τ, Ai,τ)
⊤, leading to the violation of the conditional independence assumption. 

In addition, the market features at each time serve as mediators that mediate the effects of past 
actions on the current outcome. 

Next, we consider two specific function approximations for f1 and f2 and derive their related IE 
and DE as follows. 

Model 1 Linear temporal varying coefficient decision process (L-TVCDP) assumes 

Yi,τ = β0(τ) + S⊤
i,τβ(τ) + Ai,τγ(τ) + ei,τ = Z⊤

i,τθ(τ) + ei,τ,

Si,τ+1 = ϕ0(τ) + Φ(τ)Si,τ + Ai,τΓ(τ) + εi,τS = Θ(τ)Zi,τ + εi,τS, 

where θ(τ) = (β0(τ), β(τ)⊤, γ(τ))⊤ is a (d + 2) × 1 vector of time-varying 
coefficients, Θ(τ) = [ϕ0(τ)Φ(τ)Γ(τ)] is a d × (d + 2) coefficient matrix and 
Zi,τ = (1, S⊤

i,τ, Ai,τ)
⊤. 

Model 1 shares a close connection with the linear quadratic Gaussian model (LQG), well stud-
ied in the fields of RL and control theory (see e.g. Lale et al., 2021). To be more specific, Model 1 
can be seen as a simplified, one-dimensional observation variant of LQG under certain condi-
tions. This happens when the outcome regression model does not incorporate Ai,τ and the auto-
correlated noise ηi,τ. However, there’s a crucial distinction between LQG and our proposed 
model. In LQG, the state variables are hidden and must be deduced from the observed Yi,τ values. 
This contrasts with similar models used in literature for estimating dynamic treatment effects 
(Lewis & Syrgkanis, 2020). 

When {ηi,τ}i,τ become the fixed effects and satisfy ηi,τ = ηi for any i and τ, the outcome regres-
sion model of L-TVCDP includes both the day-specific fixed effects {ηi}i and the time-specific 
fixed effects {β0(τ)}τ. It is similar to the two-way fixed effects model in the panel data literature 
(Arkhangelsky et al., 2021; De Chaisemartin & d’Haultfoeuille, 2020; Imai & Kim, 2021;  
Wooldridge, 2021). Furthermore, we derive the closed-form expressions for DE and IE under 
L-TVCDP, whose proof can be found in online supplementary material, Section S.3 of the 
supplementary document.  
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Proposition 1 Under the L-TVCDP model, we have DE =
􏽐m

τ=1 γ(τ) and 

IE =
􏽘m

τ=2

β(τ)⊤
􏽘τ−1

k=1

Φ(τ − 1)Φ(τ − 2) . . . Φ(k + 1)
( 􏼁

Γ(k)

􏼨 􏼩

, (7) 

where by convention, the product Φ(τ − 1)Φ(τ − 2) . . . Φ(k + 1) = 1 when 
τ − 1 < k + 1. 

Model 2 Neural networks temporal varying decision process (NN-TVCDP) assumes 

Yi,τ = g0(τ, Si,τ) · I(Ai,τ = 0) + g1(τ, Si,τ) · I(Ai,τ = 1) + ei,τ,

Si,τ+1 = G0(τ, Si,τ) · I(Ai,τ = 0) + G1(τ, Si,τ) · I(Ai,τ = 1) + εi,τS, 

where I(·) denotes the indicator function of an event and g0( · , · ), g1( · , · ), 
G0( · , · ), and G1( · , · ) are parametrized via some (deep) neural networks. 

Under NN-TVCDP, DE, and IE are, respectively, given by 

DE =
􏽘m

τ=1

E g1 τ, S0
τ

􏼐 􏼑
− g0 τ, S0

τ

􏼐 􏼑􏽮 􏽯
and IE =

􏽘m

τ=1

E g1 τ, S1
τ

􏼐 􏼑
− g1 τ, S0

τ

􏼐 􏼑􏽮 􏽯
, (8) 

where S0
τ and S1

τ are defined recursively by S0
τ = G0(τ − 1, S0

τ−1) and S1
τ = G1(τ − 1, S1

τ−1). 

2.3 Estimation and testing procedures for DE in the L-TVCDP model 
We describe our estimation and testing procedures for DE in the L-TVCDP model and present 
their pseudocode in Algorithm 1 as follows. 

Step 1 of Algorithm 1 is to obtain an initial estimator of θ(τ) by computing its ordinary least 
squares (OLS) estimator, defined as 

􏽢θ(τ) =
􏽘n

i=1

Zi,τZ⊤
i,τ

􏼠 􏼡−1
􏽘n

i=1

Zi,τYi,τ

􏼠 􏼡

for 1 ≤ τ ≤ m. (9) 

Step 2 of Algorithm 1 is to employ kernel smoothing to refine the initial estimator. Specifically, for 
a given kernel function K(·), we introduce the refined estimator 

􏽥θ(τ) = (􏽥β0(τ),􏽥β(τ)⊤,􏽥γ(τ))⊤ =
􏽘m

τ=1

ωτ,h(t)􏽢θ(τ), (10) 

Algorithm 1 Inference of DE in the L-TVCDP model 

1: Compute the OLS estimator 􏽢θ according to (9). 

2: Employ kernel smoothing to compute a refined estimator 􏽥θ according to (10) and calculate the estimate 􏽣DE by (11). 

3: Estimate the variance of 􏽢θ as follows: 

4:  (3.1). Estimate the conditional variance of Y i given {Zi,τ}τ using (12); 

5:  (3.2). Estimate the variance of 􏽢θ by the sandwich estimator (13). 

6: Estimate the variance of 􏽥θ by 􏽥Vθ = Ω􏽢VθΩ⊤ and compute the standard error of 􏽣DE, denoted by 􏽢se(􏽣DE). 

7: Reject HDE
0 if 􏽣DE/􏽢se(􏽣DE) exceeds the upper αth quantile of a standard normal distribution.   
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for any t ∈ [0, m] and a bandwidth parameter h, where ωτ,h(t) = K((t − τ)/(mh))/
􏽐m

j=1 K((t − j)/
(mh)) is the weight function. Our DE estimator is given by 

􏽣DE =
􏽘m

τ=1

􏽥γ(τ). (11) 

We will show in Section 4 that as min (n, m)→∞, 􏽣DE is asymptotically normal. To derive a Wald test 
for (2), it remains to estimate its variance Var(􏽣DE). 

There are two major advantages of using the smoothing step here. First, it allows us to estimate 
the time-varying coefficient curve θ(t) without restricting t to the class of integers. Second, the 
smoothed estimator has smaller variance, leading to a more powerful test statistics. To elaborate, 
according to model (6) for L-TVCDP, the variation of the OLS estimator comes from two sources, 
the day-specific random effect and the measurement error. The use of smoothing removes the ran-
dom fluctuations due to the measurement error. See Theorem 1 in Section 4 for a formal statement. 
This smoothing technique has been widely applied in the analysis of varying-coefficient models 
(see e.g. Zhu et al., 2014). 

Step 3 of Algorithm 1 is to estimate the covariance matrix of the initial estimator 
􏽢θ = (􏽢θ⊤(1), . . . ,􏽢θ⊤(m))⊤. We first estimate the residual ei,τ by 􏽢ei,τ = Yi,τ − Z⊤

i,τ
􏽥θ(τ). It allows us to 

estimate the day-specific random effect via smoothing, i.e. 􏽢ηi(t) =
􏽐m

j=1 ωj,h(t)􏽢ei,τ. Second, the 
measurement error can be estimated by 􏽢εi,τ =􏽢ei,τ −􏽢ηi,τ for any i and τ, where 􏽢ηi,τ =􏽢ηi(τ). Third, 

we estimate the conditional covariance matrix of Y i = (Yi,1, . . . , Yi,m)⊤ given {Zi,τ}τ based on 
these estimated residuals. Under model (6) for L-TVCDP, the covariance between Yi,τ1 and 
Yi,τ2 conditional on {Zi,τ}τ is given by Σy(τ1, τ2) = σ2

ε,τ1
I(τ1 = τ2) + Ση(τ1, τ2), which can be consist-

ently estimated by 

􏽢Σy(τ1, τ2) ≡
1
n

􏽘n

i=1

􏽢ε2
i,τ1

I(τ1 = τ2) +
1
n

􏽘n

i=1

􏽢ηi,τ1
􏽢ηi,τ2

. (12) 

This allows us to estimate Var(Y i | {Zi,τ}τ) by 􏽢Σ = {􏽢Σy(τ1, τ2)}τ1,τ2
. Finally, the covariance matrix of 

􏽢θ can be consistently estimated by the sandwich estimator, 

􏽢Vθ =
􏽘n

i=1

Z⊤
i Zi

􏼠 􏼡−1
􏽘n

i=1

Z⊤
i
􏽢ΣZi

􏼠 􏼡
􏽘n

i=1

Z⊤
i Zi

􏼠 􏼡−1

, (13) 

where Zi is a block-diagonal matrix computed by aligning Z⊤
i,1, …, Z⊤

i,m along its diagonal. 
Step 4 of Algorithm 1 is to estimate the covariance matrix of the refined estimator 

􏽥θ = (􏽥θ⊤(1), . . . ,􏽥θ⊤(m))⊤. A key observation is that each 􏽥θ(τ) is essentially a weighted average of 
{􏽢θ(τ)}τ. Writing in matrix form, we have 􏽥θ = Ω􏽢θ, where Ω is a block-diagonal matrix computed 
by aligning ω1,h(τ)Jp, …, ωm,h(τ)Jp along its diagonal and Jp is a p × p matrix of ones. As such, 

we estimate the covariance matrix of 􏽥θ by 􏽥Vθ = Ω􏽢VθΩ⊤. This in turn yields a consistent estimator 
for the variance of 􏽣DE, as 􏽣DE is a linear combination of 􏽥θ. 

Step 5 of Algorithm 1 is to construct a Wald-type test statistic based on 􏽤DE and its standard 
error 􏽢se(􏽤DE). We reject the null hypothesis in (2) if 􏽤DE/􏽢se(􏽤DE) exceeds the upper αth quantile of 
a standard normal distribution. Size and power properties of the proposed test are investigated 
in Section 4. 

2.4 Estimation and testing procedures for IE in the L-TVCDP model 
We describe our estimation and testing procedures for IE in the L-TVCDP model and present their 
pseudocode in Algorithm 2 as follows.  
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Steps 1–3 of Algorithm 2 are to compute a consistent estimator 􏽢IE for IE. Specifically, in Step 1 
of Algorithm 2, we apply OLS regression to derive an initial estimator 􏽢Θ for 
Θ = {Θ(1), . . . , Θ(m − 1)}⊤. In Step 2 of Algorithm 2, we employ kernel smoothing to compute 
a refined estimator 􏽥Θ = Ω􏽢Θ to improve its statistical efficiency, as in Algorithm 1. In Step 3 of 
Algorithm 1, we plug in 􏽥Θ and 􏽥θ for Θ and θ in model 1, leading to 

􏽢IE =
􏽘m

τ=2

􏽥β(τ)⊤
􏽘τ−1

k=1

􏽥Φ(τ − 1)􏽥Φ(τ − 2) . . .􏽥Φ(k + 1)
􏼐 􏼑

􏽥Γ(k)

􏼨 􏼩

, (14) 

where 􏽥β(τ), 􏽥Φ(τ), and 􏽥Γ(τ) are the corresponding estimators for β(τ), Φ(τ), and Γ(τ), respectively. 
Step 4 of Algorithm 2 is to compute the estimated residuals 􏽢Ei,τ = Si,τ+1 − Zi,τ􏽥Θ(τ) for all 

i and τ, which are used to generate pseudo-outcomes in the subsequent bootstrap step. 
Step 5 of Algorithm 2 is to use bootstrap to simulate the distribution of 􏽢IE under the null hypoth-

esis. The key idea is to compute the bootstrap samples for 􏽥θ and 􏽥Θ and use the plug-in principle to 
construct the bootstrap samples for 􏽢IE. A key observation is that 􏽥θ and 􏽥Θ depend linearly on the 
random errors, so the wild bootstrap method (Wu, 1986) is applicable. We begin by generating 
i.i.d. standard normal random variables {ξi}

n
i=1. We next generate pseudo-outcomes given by 

􏽢Si,τ+1 =􏽥Θ(τ)􏽢Zi,τ + ξi􏽢εi,τS and 􏽢Yi,τ =􏽢Z⊤
i,τ
􏽥θ(τ) + ξi􏽢ei,τ, (15) 

where 􏽢Zi,τ is a version of Zi,τ with Si,τ replaced by 􏽢Si,τ. Furthermore, we apply Steps 1–2 of 

Algorithm 1 and Steps 1–3 of Algorithm 2 to compute the bootstrap version of 􏽢IE based on these 
pseudo-outcomes in (15). The above procedures are repeatedly applied to simulate a sequence of 
bootstrap estimators {􏽢IEb}B

b=1 based on which the decision region can be derived. 

2.5 Estimation procedure in NN-TVCDP model 
We first introduce how to estimate the regression functions g0, g1, G0, and G1. Take g0 as an in-
stance, we consider minimizing the following empirical objective function 

􏽘n

i=1

􏽘m

τ=1

(1 − Ai,τ) Yi,τ − g0(τ, Si,τ)
􏼈 􏼉2

.

Instead of separately estimating g0(τ, †) for each τ, we treat τ as part of the features and jointly es-
timate {g0(τ, †)}τ by solving the above optimization. It allows us to borrow information across dif-
ferent time points to improve the estimation accuracy. 

Algorithm 2 Inference of IE in the L-TVCDP model 

1: Compute the OLS estimator 

􏽢Θ = {􏽢Θ(1), . . . , 􏽢Θ(m − 1)}⊤ =
􏽘n

i=1

Zi,(−m)Z⊤
i,(−m)

􏼨 􏼩−1
􏽘n

i=1

Zi,(−m)S⊤
i,(−1)

􏼨 􏼩

, 

where Si,(−1) and Zi,(−m) are block-diagonal matrices computed by aligning S⊤
i,2, …, S⊤

i,m and Z⊤
i,1, …, Z⊤

i,m−1 along 
their diagonals, respectively. 

2: Compute the refined estimator 􏽥Θ = {􏽥Θ(1), . . . , 􏽥Θ(m − 1)}⊤ = Ω􏽢Θ. 

3: Construct the plug-in estimator 􏽢IE according to (14). 

4: Compute the estimated residual 􏽢εi,τS = Si,τ+1 − Zi,τ􏽥Θ(τ) for any i and τ. 
5: for b = 1, . . . , B do 

Generate i.i.d. standard normal random variables {ξb
i }n

i=1; 
Generate pseudo-outcomes {􏽢Sb

i,τ}i,τ and {􏽢Yb
i,τ}i,τ according to (15); 

Repeat Steps 1 and 2 in Algorithm 1 and Steps 1 and 3 in Algorithm 2 to compute 􏽢IEb. 

6: end for 

7: Reject HIE
0 if 􏽢IE exceeds the upper αth empirical quantile of {􏽢IEb − 􏽢IE}b.   
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Next, we introduce the estimation procedures for DE and IE. We impose a parametric model 
(e.g. Gaussian) for the density function fετS of the measurement error εi,τS and summarize the steps below.  

1. Use neural networks to estimate g0, g1, G0, and G1 by solving their corresponding least square 

objective functions. Denote the corresponding estimators by 􏽢g0, 􏽢g1, 􏽢G0, and 􏽢G1, respectively.  

2. Compute the residual 􏽢εi,τS = Si,τ+1 − {􏽢G0(τ, Si,τ) · I(Ai,τ = 0) + 􏽢G1(τ, Si,τ) · I(Ai,τ = 1)} and use 

􏽢εi,τS to compute the density function estimator 􏽢fετS . 
3. Use Monte Carlo to estimate the distributions of the potential states S∗i,τ(1τ−1) and S∗i,τ(0τ−1) con-

ditional on Si,1. Specifically, for τ = 1, . . . , m, i = 1, . . . , n, and k = 1, . . . , M, we use 􏽢fετS to 
generate error residuals {􏽢εi,τS,k}M

k=1, where M denotes the number of Monte Carlo replications. 

Next, we set 􏽢S1
i,1,k =􏽢S0

i,1,k = Si,1 for any i and k, and sequentially construct Monte Carlo samples 

{􏽢S1
i,τ,k}M

k=1, {􏽢S0
i,τ,k}M

k=1 by setting 􏽢S1
i,τ+1,k = 􏽢G1(τ,􏽢S1

i,τ,k) +􏽢εi,τS,k and 􏽢S0
i,τ+1,k = 􏽢G0(τ,􏽢S0

i,τ,k) +􏽢εi,τS,k.  
4. Based on (8), we estimate DE and IE by using 

􏽣DE =
1

nM

􏽘n

i=1

􏽘M

k=1

􏽘m

τ=1

􏽢g1(τ,􏽢S0
i,k,τ) −􏽢g0(τ,􏽢S0

i,k,τ)
􏽮 􏽯

and

􏽢IE =
1

nM

􏽘n

i=1

􏽘M

k=1

􏽘m

τ=2

􏽢g1(τ,􏽢S1
i,k,τ) −􏽢g1(τ,􏽢S0

i,k,τ)
􏽮 􏽯

.

3 Policy evaluation for spatio-temporal dependent experiments 
In this section, we present the proposed methodology for policy evaluation in spatio-temproal de-
pendent experiments by extending our proposal in temporal dependent experiments. We highlight 
several key differences between the spatio-temporal dependent experiment and the temporal de-
pendent one. 

3.1 A potential outcome framework 
Firstly, we introduce the spatio-temporal dependent experiments as follows. Specifically, a city is 
split into r non-overlapping regions. Each region receives a sequence of policies over time and dif-
ferent regions may receive different policies at the same time. In our application, we employ the 
spatio-temporal dependent alternation design to randomize these policies. In each region, we in-
dependently randomize the initial policy (either A or B) and then apply the temporal alternation 
design. As discussed in Section 1, one major challenge for policy evaluation is that the spatial prox-
imities will induce spatio-temporal interference among locations across time. In the example of 
ride-sharing platforms, for many call orders, their pickup locations and destinations belong to dif-
ferent regions. Therefore, applying an order dispatch policy at one region will change the distribu-
tion of drivers of its neighbouring areas as well, so the order dispatch policy at one location could 
influence outcomes of those neighbouring areas, inducing interference among spatial units. 

Secondly, to quantify the spatio-temporal interference, we allow the potential outcome of each 
region to depend on polices applied to its neighbouring areas as well. Specifically, for the ιth region, 
let a̅τ,ι = (a̅1,ι, . . . , a̅τ,ι)

⊤ denote its treatment history up to time τ and Nι denote the neighbouring 
regions of ι. Let a̅τ,[1:r] = (a̅τ,1, . . . , a̅τ,r)

⊤ denote the treatment history associated with all regions. 
Similarly, let S∗τ,ι(a̅τ−1,[1:r]) and Y∗τ,[1:r](a̅τ,[1:r]) denote the potential state and outcome associated 
with the ιth region, respectively. Let S∗τ,[1:r](a̅τ−1,[1:r]) denote the set of potential states at time τ. 

Similarly, we introduce CA and SRA in the spatio-temporal case as follows. 

• CA. S∗τ+1,ι(A̅τ,[1:r]) = Sτ+1,ι and Y∗τ,ι(A̅τ,[1:r]) = Yτ,ι for any τ ≥ 1 and 1 ≤ ι ≤ r, where A̅τ,[1:r] de-
notes the set of observed treatment history up to time τ. 

• SRA. Aτ,[1:r], the set of observed policies at time τ, is conditionally independent of all potential 
variables given Sτ,[1:r] and {(Sj,[1:r], Aj,[1:r], Yj,[1:r])}j<τ.  
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SRA automatically holds under the spatio-temporal alternation design, in which the policy assign-
ment mechanism is conditionally independent of the data given the policies assigned at the initial 
time point. 

Thirdly, we are interested in the overall treatment effects. Define ATE as the difference between 
the new and old policies aggregated over different regions. 

Definition 2 ATE is defined as the difference between two value functions given by 

ATEst =
􏽘r

ι=1

􏽘m

τ=1

E{Y∗τ,ι(1τ,[1:r]) − Y∗τ,ι(0τ,[1:r])}.

Let Rτ,ι denote the conditional mean function of Y∗τ,ι(a̅τ,[1:r]) given the past policies and potential 
states. Similarly, we can decompose ATE as the sum of DE and IE, which are, respectively, given by 

DEst =
􏽘r

ι=1

􏽘m

τ=1

E{Rτ,ι
(
1τ,[1:r], S∗τ,ι(0τ−1,[1:r]), 0τ−1,[1:r], . . . , S1

􏼁

− Rτ,ι
(
0τ,[1:r], S∗τ,ι(0τ−1,[1:r]), 0τ−1,[1:r], . . . , S1

􏼁
},

IEst =
􏽘r

ι=1

􏽘m

τ=1

E{Rτ,ι
(
1τ,[1:r], S∗τ,ι(1τ−1,[1:r]), 1τ−1,[1:r], . . . , S1

􏼁

− Rτ,ι
(
1τ,[1:r], S∗τ,ι(0τ−1,[1:r]), 0τ−1,[1:r], . . . , S1

􏼁
}.

We aim to test the following hypotheses: 

HDE
0 : DEst ≤ 0 v.s HDE

1 : DEst > 0, (16) 

HIE
0 : IEst ≤ 0 v.s HIE

1 : IEst > 0. (17)  

3.2 Spatio-temporal VCDP models 
We introduce the spatio-temporal VCDP (STVCDP) models to model Yτ,ι and Sτ,ι, respectively. 
Suppose that the experiment is conducted across r regions over n days. Let (Si,τ,ι, Ai,τ,ι, Yi,τ,ι) denote 
the state-policy-outcome triplet measured from the ιth region at the τth time interval of the ith day 
for i = 1, . . . , n, τ = 1, . . . , m, and ι = 1, . . . , r. The STVCDP model is given as follows, 

Yi,τ,ι = f1,τ,ι
(
Si,τ,ι, Ai,τ,ι, A̅i,τ,Nι

􏼁
+ ei,τ,ι,

Si,τ+1,ι = f2,τ,ι
(
Si,τ,ι, Ai,τ,ι, A̅i,τ,Nι

􏼁
+ ϵi,τ,ι, 

where A̅i,τ,Nι denotes the average of {Ai,τ,k}k∈Nι , and {ei,τ,ι, ϵi,τ,ι} are the random noises. In parallel to 
Assumption 1, we impose the following noise assumption for the STVCDP model. 

Assumption 2 (i) The outcome noise ei,τ,ι = ηI
i,τ,ι + ηII

i,τ,ι + ηIII
i,τ,ι + εi,τ,ι can be decomposed 

into four mutually independent processes: {ηI
i,τ,ι}, {ηII

i,τ,ι}, {ηIII
i,τ,ι}, and {εi,τ,ι}. 

(ii) The {ηI
i,τ,ι}, {ηII

i,τ,ι}, and {ηIII
i,τ,ι} are i.i.d. copies of some zero-mean random 

processes with covariance functions ΣηI (τ1, ι1, τ2, ι2), ΣηII (τ1, ι1, τ2)I(ι1 = ι2), 
and ΣηIII (τ1, ι1, ι2)I(τ1 = τ2), respectively. These covariance functions have 
bounded and continuously differentiable second-order derivatives. (iii) The 
measurement errors {εi,τ,ι}i,τ,ι and the state noises {ϵi,τ,ι}i,τ,ι are independent 
over different location/time combinations, have zero means, and satisfy 
Var(εi,τ,ι) = σ2

ε (τ, ι) and Cov(ϵi,τ,ι) = Σϵ,τ,ι. 

We make three remarks. Firstly, as per the STVCDP model, the outcome in the ιth region is in-
fluenced solely by the current actions Ai,τ,ι and those from its neighbouring areas. This assumption  
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is often valid in various applications, such as ride-sharing platforms. For instance, the policy in one 
location may impact other locations only through its effect on the distribution of drivers. Within each 
time unit, a driver can travel at most from one location to its neighbouring ones. Consequently, out-
comes in one location are independent of policies applied to non-adjacent locations. 

Secondly, in our spatial interference model, we adopt the mean field approximation. Under this 
approach, the outcome Yτ,ι and next state Sτ+1,ι in a given region depend on the treatments of 
neighbouring regions {Aτ,k}k∈Nι only through their average A̅τ,Nι. The mean field approximation 
is a commonly used technique in multi-agent reinforcement learning for policy learning and evalu-
ation. It’s worth noting that studies, such as Shi et al. (2022a), have shown that the average effect 
A̅τ,Nι effectively summarizes the impact of {Aτ,k}k∈Nι. This approach aligns with assumptions fre-
quently made in the causal inference literature dealing with spatial interference (Hudgens & 
Halloran, 2008; Liu et al., 2016; Perez-Heydrich et al., 2014; Sävje et al., 2021; Sobel, 2006;  
Sobel & Lindquist, 2014; Zigler et al., 2012). 

Thirdly, besides the average effect, alternative low-dimensional summary statistics of {Aij : j ∈ Nι} 
can be considered, such as 

􏽐
j∈N ι

θιjAij and θιI{
􏽐

j∈Nι
Aij>0} (Hu et al., 2022). The resulting estimation 

and inference procedures can be similarly derived. 
Similar to model (6), we allow general function approximation for f1 and f2. To save space, we 

focus on linear STVCDP models (L-STVCDP) in the rest of this section. Meanwhile, the proposed 
estimation procedure can be extended to handle neural network STVCDP models, as in Section  
2.4. The proposed L-STVCDP model is given as follows, 

Yi,τ,ι = β0(τ, ι) + S⊤
i,τ,ιβ(τ, ι) + Ai,τ,ιγ1(τ, ι) + A̅i,τ,N ι γ2(τ, ι) + ei,τ,ι,

Si,τ+1,ι = ϕ0(τ, ι) + Φ(τ, ι)Si,τ,ι + Ai,τ,ιΓ1(τ, ι) + A̅i,τ,N ι Γ2(τ, ι) + ϵi,τ,ι,
(18) 

where Zi,τ,ι = (1, S⊤
i,τ,ι, Ai,τ,ι, A̅i,τ,N ι )

⊤. 
Similar to (7), we can show that DEst and IEst are equal to the following, 

DEst =
􏽘r

ι=1

􏽘m

τ=1

{γ1(τ, ι) + γ2(τ, ι)},

IEst =
􏽘r

ι=1

􏽘m

τ=1

β(τ, ι)⊤
􏽘τ−1

k=1

Φ(τ − 1, ι) . . . Φ(k + 1, ι)
( 􏼁

{Γ1(k, ι) + Γ2(k, ι)}

􏼢 􏼣

,

(19) 

where the product Φ(τ − 1, ι) . . . Φ(k + 1, ι) = 1 when τ − 1 < k + 1. These two identities form the 
basis of our test procedure. 

3.3 Estimation and testing procedures for DE and IE 
We first describe our estimation and testing procedures for DE under the spatio-temporal alterna-
tion design and present the pseudocode in online supplementary material, Algorithms S.1 of 
Section S.1 of the supplementary document to save space. 

Step 1 of online supplementary material, Algorithm S.1 is to independently apply Steps 1 and 2 
of Algorithm 1 detailed in Section 2.3 to the data subset {(Zi,τ,ι, Yi,τ,ι)}i,τ for each region ι in order to 

compute a smoothed estimator 􏽥θ0
st(ι) = {􏽥θ0

st(1, ι)⊤, . . . ,􏽥θ0
st(m, ι)⊤}⊤ for {θ(1, ι)⊤, . . . , θ(m, ι)⊤}⊤. 

Step 2 of online supplementary material, Algorithm S.1 is to employ kernel smoothing again 
to spatially smooth each component of 􏽥θ0

st(ι) across all ι ∈ {1, . . . , r}. Specifically, we compute 
􏽥θst(ι) = {􏽥θst(1, ι)⊤, . . . ,􏽥θst(m, ι)⊤}⊤ as the resulting refined estimator, given by 􏽥θst(τ, ι) = 
􏽐r

ℓ=1 κℓ,hst
(ι)􏽥θ0

st(τ, ℓ), where κℓ,hst
(·) defined in (online supplementary material, S.2) is a normal-

ized kernel function with bandwidth parameter hst. 
We remark that we employ kernel smoothing twice in order to estimate the varying coefficients. 

In the first step, we temporally smooth the least square estimator to compute 􏽥θ0
st(ι). In the second 

step, we further spatially smooth 􏽥θ0
st(ι) to compute 􏽥θst(ι). Therefore, the estimator 􏽥θst(ι) has smaller  
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variance than 􏽥θ0
st(ι), since we borrow information across neighbouring regions to improve the es-

timation efficiency. To elaborate this point, the random effect in (18) can be decomposed into three 
parts: ηI

i,τ,ι + ηII
i,τ,ι + ηIII

i,τ,ι. Temporally smoothing the varying coefficient estimator removes the ran-
dom fluctuations caused by ηIII

i,τ,ι and the measurement error. Spatially smoothing the estimator fur-
ther removes the random fluctuations caused by ηII

i,τ,ι. This in turn implies that the proposed test 
under the spatio-temporal design is more powerful than the one developed in Section 2 under 
the temporal design. Such an observation is consistent with our numerical findings in Section 5.2. 

Steps 3 and 4 of online supplementary material, Algorithm S.1 are to estimate the covariance ma-
trix of (􏽥θst(1), . . . ,􏽥θst(r))

⊤, denoted by 􏽥Vθ,st. These two steps are very similar to Steps 3 and 4 of 
Algorithm 1. Specifically, we first estimate the measurement errors and random effects based on 
the estimated varying coefficients. We next use the sandwich formula to compute the estimated co-
variance matrix for the initial least-square estimator. Then the estimated covariance matrix for 􏽥θ0

st(ι) 
can be derived accordingly. We use 􏽥Vθ,st to denote the corresponding covariance matrix estimator. 

Step 5 of online supplementary material, Algorithm S.1 is to compute the Wald-type test statistic 
and its standard error estimator. Specifically, let 􏽥γ1(τ, ι) and 􏽥γ2(τ, ι) be the last two elements of 
􏽥θst(τ, ι), we have 􏽣DEst =

􏽐r
ι=1
􏽐m

τ=1 {􏽥γ1(τ, ι) +􏽥γ2(τ, ι)}. We will show in Theorem 6 that 􏽣DEst is 

asymptotically normal. In addition, its standard error 􏽢se(􏽣DEst) can be derived based on 􏽥Vθ,st. 

This yields our Wald-type test statistic Tst = 􏽣DEst/􏽢se(􏽣DEst). We reject the null hypothesis if Tst ex-
ceeds the upper αth quantile of a standard normal distribution. 

We next describe our estimation and testing procedures for IE. The method is very similar to 
the one discussed in Section 2.4. We sketch an outline of the algorithm to save space. Details are 
presented in online supplementary material, S.2 of Section S.1 of the supplementary document. 
Specifically, we first plug in the set of smoothed estimators {􏽥Θst(τ, ι)}τ,ι and {􏽥θst(τ, ι)}τ,ι for 

{Θ(τ, ι)}τ,ι and {θ(τ, ι)}τ,ι to compute 􏽢IEst, the plug-in estimator of IEst. We next estimate the meas-
urement errors and random effects and then apply the parametric bootstrap method to compute 
the bootstrap statistics {􏽢IEb

st}b. Finally, we reject HIE
0 if 􏽢IEst exceeds the upper αth empirical 

quantile of {􏽢IEb
st − 􏽢IE}b. 

To conclude this section, we remark that in Sections 2 and 3, we focus on testing one-sided hy-
potheses for the direct and indirect effects. However, the proposed method can be easily extended 
to test two-sided hypotheses as well. 

4 Theoretical analysis 
In this section, we systematically investigate the asymptotic properties of the proposed estimators 
and test statistics in L-TVCDP and derive the convergence rates of our causal estimands in 
NN-TVCDP. We also explore the benefits of employing the swtichback design and study the the-
oretical properties of our estimator in the spatio-temporal dependent experiments. 

Firstly, we impose the following regularity assumptions for the temporal dependent experi-
ments using L-TVCDP. 

Assumption 3 The kernel function K(·) is a symmetric probability density function on 
[ − 1, 1] and is Lipschitz continuous. 

Assumption 4 The covariate Zis are i.i.d.; for 1 ≤ τ ≤ m, E(Z⊤
i,τZi,τ) ∈ Mp×p is invertible; 

all components of θ(t) have bounded and continuous second derivatives 
with respect to t. 

Assumption 5 There exists 0 < q < 1 such that the absolute values of eigenvalues of 
Φ(τ) are smaller than q, and there exist some constants MΓ and Mβ 
such that ‖Γ(τ)‖∞ ≤ MΓ and ‖β(τ)‖∞ ≤ Mβ. {β(τ)}2≤τ≤m, {Φ(l)}2≤l≤m−1, 
and {Γ(k)}1≤k≤m−1 must not be all zero. Θ(τ) has a continuous second- 
order partial derivative.  
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Assumption 3 is mild as the kernel K(·) is user-specified. Assumption 4 has been commonly used 
in the literature on varying coefficient models (see e.g. Zhu et al., 2014). Assumption 5 ensures that 
the time series is stationary, since Φ(τ) is the autoregressive coefficient. It is commonly imposed in 
the literature on time series analysis (Shumway & Stoffer, 2010). 

Before presenting the theoretical properties of the proposed method for L-TVCDP, we intro-
duce some notation. For 1 ≤ τ1, τ2 ≤ m, define Σy and Ση to be the m × m matrices 
{Σy(τ1, τ2)}τ1,τ2 

and {Ση(τ1, τ2)}τ1,τ2
, respectively. We define 

Vθ̂ = (EZ⊤
i Zi)

−1E(Z⊤
i ΣyZi)(EZ⊤

i Zi)
−1 and Vθ̃ = (EZ⊤

i Zi)
−1E(Z⊤

i ΣηZi)(EZ⊤
i Zi)

−1 

as the asymptotic covariance matrices of 􏽢θ and 􏽥θ, respectively. Let Vθ̂(τ, τ) and Vθ̃(τ, τ) denote the 

submatrices of Vθ̂ and Vθ̃ that correspond to the asymptotic covariance matrix of 􏽢θ and 􏽥θ, respect-

ively. We first compare the mean squared error (MSE) of the OLS estimator 􏽢θ(τ) against that of the 
smoothed estimator 􏽥θ(τ) based on L-TVCDP. 

Proposition 2 Suppose λmin(Vθ̂(τ, τ)) and λmin(Vθ̃(τ, τ)) are uniformly bounded away from 
zero for any τ. Under Assumptions 3 and 4, we have 

􏽘m

τ=1

MSE(􏽢θ(τ)) ≍ n−1trace(V θ̂),

􏽘m

τ=1

MSE(􏽢θ(τ)) ≍ n−1trace(V θ̃) + O(mh4 + m−1).

Proposition 2 has an important implication. Both trace (Vθ̂) and trace (Vθ̃) are of the order of 
magnitude O(m). When m ≪

��
n
√

or h4 ≫ n−1, the squared bias of 􏽥θ may dominate its variance. 
Hence, the OLS estimator 􏽢θ may achieve a smaller MSE. When m ≍

��
n
√

and h4 = O(n−1m), the 
two MSEs are of the same order of magnitude and it remains unclear which one is smaller. 
When m ≫

��
n
√

and h4 = o(n−1), the variance of 􏽥θ dominates its squared bias. Moreover, Σy − Ση 

is strictly positive definite, so is Vθ̂ − Vθ̃. As a result, 􏽥θ achieves a smaller MSE. In our applications, 
m is moderately large and the condition m ≫

��
n
√

is likely to be satisfied. With properly chosen band-
width, we expected the smoothed estimator achieves a smaller MSE. 

Secondly, we present the limiting distributions of 􏽢θ(τ) and 􏽥θ(τ) and prove the validity of our test 
for DE based on L-TVCDP. 

Theorem 1 Suppose λmin(Vθ̂(τ, τ)) and λmin(Vθ̃(τ, τ)) are uniformly bounded away from 
zero for any τ. Under Assumptions 1, 3, and 4, for any (d + 2)-dimensional 
vectors an,1, an,2, with unit ℓ2 norm,  

(i) 
��
n
√

a⊤
n,1{􏽢θ(τ) − θ(τ)}

􏼮 ����������������
a⊤

n,1Vθ̂(τ, τ)an,1

􏽱
→
d

N(0, 1) as n→∞ for any τ;  

(ii) Suppose m→∞, h→ 0, and hm→∞ as n→∞. Then 
��
n
√

a⊤
n,2{􏽥θ(τ) − 

θ(τ)}
􏼮 ����������������

a⊤
n,2Vθ̃(τ, τ)an,2

􏽱
→
d

N(bn, 1) as n→∞ for any τ, where the bias 

bn = O(
��
n
√

h2 +
��
n
√

m−1).  
(iii) Suppose h = o(n−1/4), m ≫

��
n
√

and the sum of all elements in m−2V γ̃ is 
bounded away from zero where V γ̃ denotes the submatrix of Vθ̃ which 

corresponds to the asymptotic covariance matrix of 􏽥θ. Then for the hy-
potheses (2), under HDE

0 , P(􏽣DE/􏽢se(􏽣DE) > zα) = α + o(1); under HDE
1 , 

P(􏽣DE/􏽢se(􏽣DE) > zα)→ 1, where zα denotes the upper αth quantile of a 
standard normal distribution.  
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Theorem 1 has several important implications. First, the bias of the smoothed estimator 􏽥θ decays 
with m. In cases where m is fixed, the kernel smoothing step is not preferred as it will result in an 
asymptotically biased estimator. Second, each 􏽥θ(τ) converges at a rate of Op(n−1/2) under the assump-
tion that λmin(Vθ̃(τ, τ)) is bounded away from zero. The rate Op(n−1/2m−1/2) cannot be achieved des-
pite that we have a total of nm observations, since the random errors {eτ}τ are not independent. We also 
remark that in the extreme case where {eτ}τ are independent, we can set h ∝ (nm)−1/5 and 􏽥θ(τ) attains 
the classical nonparametric convergence rate Op((nm)−2/5). Third, since Vθ̂ − Vθ̃ is strictly positive, this 
similarly implies that the smoothed estimator is more efficient when bn = o(1), or equivalently, h = 
o(n−1/4) and m ≫

��
n
√

. Finally, in the proof of Theorem 1, we show that the covariance estimator 
􏽥Vθ is consistent. This together with asymptotic distribution of 􏽥θ yields the consistency of our test in (iii). 

Thirdly, we present the validity of the proposed parametric bootstrap procedure for IE under the 
temporal alternation design based on L-TVCDP. 

Theorem 2 Suppose that there is some constant 0 < c1 ≤ 1 such that c1 ≤ E‖ετ,S‖
2 and 

Ee2
τ ≤ c−1

1 for all 1 ≤ τ ≤ m. Suppose that h = o(n−1/4), m ≍ nc2 for some 
1/2 ≤ c2 < 3/2 and mh→∞. Then under the assumptions in Theorem 1 
and Assumption 5, with probability approaching 1, we have 

sup
z
|P(􏽢IE − IE ≤ z) − P(􏽢IEb − 􏽢IE ≤ z|Data)| ≤ C(

��
n
√

h2 +
��
n
√

m−1 + n−1/8), 

where C is some positive constant. 

We have several remarks. The derivation of Theorem 2 is non-trivial when m diverges with n. 
Specifically, since 􏽢IE is a very complicated function of the estimated varying coefficients (see equa-
tion (14)), its limiting distribution is not well-defined. To prove Theorem 2, we derive a nonasymp-
totic error bound on the difference between the distribution of 􏽢IE and that of the bootstrap 
statistics conditional on the data. As a result, it ensures that the type I error can be well-controlled 
and the power approaches one. Please refer to the proof of Theorem 2 in the supplementary 
document for details. Finally, we require m to diverge with n at certain rate. In settings with a small 
or fixed m, one can apply the proposed bootstrap procedure to the unsmoothed estimator 􏽢θ. The 
resulting test procedure remains valid regardless of whether m is fixed or not. 

Fourthly, we illustrate the advantage of employing the switchback design in the presence of tem-
poral random effects. As commented in Section 1, the switchback design assigns different treat-
ments at adjacent time points Ai,1 = 1 − Ai,2 = Ai,3 = · · · = Ai,2t−1 = 1 − Ai,2t, whereas the 
alternating-day design assigns fixed treatment Ai,1 = Ai,2 = Ai,3 = · · · = Ai,2t−1 = Ai,2t within each 
day for any i and t. In the switchback design, the random effects at adjacent time points can cancel 
with each other when estimating the causal effect, yielding a more efficient estimator. To elaborate 
this point, we compare the mean square errors of the proposed estimators under the switchback 
design against those under an alternating-day design where the new and old policies are daily 
switched back and forth. To simplify the analysis, we focus on the case where the state is one- 
dimensional and assume the treatment effect estimators are constructed based on the unsmoothed 
OLS estimators (see online supplementary material, Section S.12.3 for details). Let MSE(􏽣DEsb) 
and MSE(􏽣DEad) denote the mean squared errors of DE estimators under the switchback design 
and the alternating-day design, respectively. 

Theorem 3 Suppose that the state is one-dimensional, Ση(τ1, τ2) is nonnegative for any τ1 

and τ2 and Assumptions 1 and 4 hold. When {Φ(τ)}τ and {Γ(τ)}τ are of the same 
signs, respectively, i.e. for any τ1, τ2, Φ(τ1)Φ(τ2) ≥ 0 and Γ(τ1)Γ(τ2) ≥ 0, then 
as n→∞, we have 

nMSE(􏽣DEsb) ≤ nMSE(􏽣DEad) + o(1), 

where the equality holds only when Ση(j, k) = 0 for any j, k such that 
|j − k| = 1, 3, 5, . . ..  
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To ensure that DE achieves a much smaller MSE under the switchback design, we only require 
that the random effects are non-negatively correlated and that the correlation Σ(j, k) is nonzero for 
some j − k = 1, 3, 5, . . .. These conditions are automatically satisfied when the random effects are 
positively correlated. We next provide a close-formed expression for the ratio of the two MSEs 
under an AR(1) noise structure and the constraint that Γ(1) = Γ(2) = · · · = Γ(m − 1) = 0. 

Corollary 1 Suppose that for any 1 ≤ τ1, τ2 ≤ m, Σe(τ1, τ2) = cρ|τ1−τ2| for some 
constant c > 0. Then under assumptions of Theorem 3, when 
Γ(1) = Γ(2) = · · · = Γ(m − 1) = 0, we have as n, m→∞, 

MSE(􏽣DEsb)

MSE(􏽣DEad)
=

(1 − ρ)2

(1 + ρ)2 + o(1).

It can be seen from Corollary 1 that the larger the ρ, the smaller the variance ratio. In particular, 
when ρ = 0.5, MSE of DE under the switchback design is approximately 9 times smaller than that 
under the alternating-day design. We next consider IE. 

Theorem 4 Suppose m = 2. Under Assumptions 1 and 4, we have 

n{MSE(􏽢IEad) − MSE(􏽢IEsb)} = o(1).

Theorem 4 suggests that the IE estimators under the two designs have comparable MSEs. This 
together with Theorem 3 underscores the superiority of the switchback design, particularly when 
m = 2. However, as m exceeds 2, determining the closed-form expression for MSE(􏽢IE) becomes 
exceedingly complex, making it challenging to directly compare the two designs. Addressing 
this complexity and extending the comparison for cases where m > 2 is a task we reserve for future 
research. 

Fifth, we establish the convergence rates of the estimated DE and IE for NN-VCDP. 

Theorem 5 Suppose that fετS is Lipschitz, meaning that for any τ, there exists a constant 
Lf > 0 such that |fετS (x) − fετS (y)| ≤ Lf‖x − y‖2, where ‖ · ‖2 represents the 
Frobenius norm. Additionally, assume that the NN-based learners satisfy 

E{􏽢Ga(τ, Sτ) − Ga(τ, Sτ)}
2 ≤ Δ2

1(n, m) and E{􏽢ga(τ, Sa1
τ ) − ga(τ, Sa1

τ )}2 ≤ Δ2
2(n, m), 

where a ∈ {0, 1} and Δ1(n, m) and Δ2(n, m) are specific functions. The density 

estimator should fulfil ∫x |fετS (x) −􏽢fετS (x)|dx = Op(Δ3(n, m)) for some 
function Δ3. Both ga and 􏽢ga must be uniformly bounded. Moreover, the ratio 
of the density function of the potential state Sa

τ to the density of the observed 
state Sτ must be bounded by 

��
ω
√

for any τ and a. Then, as min (n, m)→∞, 
we obtain the following convergence results: 

􏽣DE − DE = Op m
��
ω
√

Δ2(n, m) + m2Δ1(n, m) + m2Lf
��
ω
√

Δ3(n, m) +
m
��
n
√

����������
log (nm)

􏽰
􏼒 􏼓

,

􏽢IE − IE = Op m
��
ω
√

Δ2(n, m) + m2Δ1(n, m) + m2Lf
��
ω
√

Δ3(n, m) +
m
��
n
√

����������
log (nm)

􏽰
􏼒 􏼓

.

Since the convergence rates of NN-based learners have been widely studied in the literature (see 
e.g. Schmidt-Hieber, 2020; Shen et al., 2019, 2022; Yan & Yao, 2023), these results can be used to 
establish the convergence rates of 􏽢Ga and 􏽢ga. 

Finally, we impose the following regularity assumptions for the proposed tests in spatio- 
temporal dependent experiments based on L-STVCDP.  
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Assumption 6 For any τ, ι, E(Z⊤
i,τ,ιZi,τ,ι) is invertible; θ(τ, ι), ΣηI (τ1, τ2, ι1, ι2), ΣηII (τ1, ι1, τ2), 

and ΣηIII (τ1, ι1, ι2) have bounded and continuous second-order derivatives. 

Assumption 7 There exists q < 1 such that the absolute values of eigenvalues of Φ(τ, ι) are 
smaller than q. In addition, there exist MΓ and Mβ < ∞ such that ‖Γ1(τ, ι) + 
Γ2(τ, ι)‖∞ ≤ MΓ and ‖β(τ, ι)‖∞ ≤ Mβ. Θ(τ, ι) has a bounded and continuous 
second-order derivative. 

With these assumptions, we present the asymptotic properties of our DE and IE estimators 
and their associated test statistics for the spatio-temporal dependent experiments based on 
L-STVCDP. Define 

Vθ̃st
(τ1, ι1, τ2, ι2) = {EZi,τ1,ι1 Zi,τ1,ι⊤1

}−1E{Zi,τ2,ι2 Z⊤
i,τ1,ι1 ΣηI (τ1, ι1, τ2, ι2)}{EZi,τ2,ι2 Z⊤

i,τ2,ι2 }−1 

as the asymptotic covariance between 
��
n
√

􏽥θst(τ1, ι1) and 
��
n
√

􏽥θst(τ2, ι2). 

Theorem 6 Suppose λmin(Vθ̃st
) is bounded away from zero. Under Assumptions 2, 3, and 6, 

for any set of (d + 2)-dimensional vectors {Bτ,ι}τ,ι, we have as n, m, r→∞, 
h, hst → 0, and mh, rhst →∞ that  

(i) For any set of (d + 2)-dimensional vectors {Bτ,ι}τ,ι with 
􏽐

τ1,τ2,ι1,ι2 

B⊤
τ1,ι1Vθ̃st

(τ1, ι1, τ2, ι2)Bτ2,ι2 ≥ c
􏽐

τ,ι ‖Bτ,ι‖
2
2 for some constant c > 0, we 

have 

��
n
√ 􏽘

τ,ι
[B⊤

τ,ι{􏽥θst(τ, ι) − θst(τ, ι)}]
􏼮 ��������������������������������������􏽘

τ1,τ2,ι1,ι2
B⊤

τ1,ι1V θ̃st
(τ1, ι1, τ2, ι2)Bτ2,ι2

􏽳

→
d

N(bn,st, 1),  

where the bias bn,st = O(
��
n
√

h2 +
��
n
√

h2
st +

��
n
√

m−1 +
��
n
√

r−1).  
(ii) Suppose h, hst = o(n−1/4) and m, r ≫

��
n
√

. Then for the hypotheses (16), 
P(􏽤DEst/􏽢se(􏽤DEst) > zα) = α + o(1) under HDE

0 and P(􏽤DEst/􏽢se(􏽤DEst) > 
zα)→ 1 under HDE

1 . 

Theorem 7 Suppose that there are some constants 0 < c1 ≤ 1 such that c1 ≤ Eε2
τ,ι,S, Ee2

τ,ι ≤ 
c−1

1 for all 1 ≤ τ ≤ m, 1 ≤ ι ≤ r, and that h, hst = o(n−1/4), m, r ≫
��
n
√

and mr ≍ nc2 for some constant c2 < 3/2. Then under Assumptions of 
Theorem 6 and Assumption 7, with probability approaching 1, 

sup
z
|P(􏽢IEst − IEst ≤ z) − P(􏽢IEb

st − 􏽢IEst ≤ z|Data)|

≤ C(
��
n
√

h2 +
��
n
√

h2
st +

��
n
√

m−1 +
��
n
√

r−1 + n−1/8), (20) 

where C is some positive constant. 

Theorem 6 establishes the limiting distribution of the proposed DE estimator for the spatio- 
temporal dependent experiments. Similar to Proposition 2, we can show that the smoothed estima-
tor is more efficient when m, r ≫

��
n
√

and h4, h4
st = o(n−1). In addition, Theorem 7 allows both m 

and r to be either fixed, or diverge with n, and is thus applicable to a wide range of applications. 

5 Real data-based simulations 
5.1 Temporal alternation design 
In this section, we conduct Monte Carlo simulations to examine the finite sample properties of the 
proposed test statistics based on L-TVCDP and L-STVCDP models. To generate data under the 
temporal alternation design, we design two simulation environments based on two real datasets  
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obtained from Didi Chuxing. The first dataset is collected from a given city A from 5 December 
2018 to 13 December 2019. Thirty-minutes is defined as one time unit. The second dataset is 
from another city B, from 17 May 2019 to 25 June 2019. One-hour is defined as one time unit. 
Both contain data for 40 days. Due to privacy, we only present scaled metrics in this article.  
Figure 1 depicts the trend of some business metrics over time across 40 different days. These met-
rics include drivers’ total income, the number of requests and drivers’ total online time. Among 
them, the first quantity is our outcome of interest and the last two are considered as the state var-
iables to characterize the demand and supply networks. As expected, these quantities show a simi-
lar pattern, achieving the largest values at peak time. 

We next discuss how to generate synthetic data based on the real datasets. The main idea is to fit 
the proposed L-TVCDP models to the real dataset and apply the parametric bootstrap to simulate 
the data. Let 􏽥β0(τ), 􏽥β(τ), 􏽥ϕ0(τ), and 􏽥Φ(τ) denote the smoothed estimators for β0(τ), β(τ), ϕ0(τ), and 
Φ(τ), respectively. We set 􏽥γ(τ) and 􏽥Γ(τ) to (δ/100) × (

􏽐
i,τ Yi,τ/nm) and (δ/100) × (

􏽐
i,τ Si,τ/nm), re-

spectively. As such, the parameter δ controls the degree of the treatment effects. Specifically, the 
null holds if δ = 0 and the alternative holds if δ > 0. It corresponds to the increase relative to the 
outcome (state). We next generate the policies according to the temporal alternation design and 
simulate the responses and states based on the fitted model. Let TI denote the time span we imple-
ment each policy under the alternation design. For instance, if TI =3, then we first implements one 
policy for 3 hr, then switch to the other for another 3 hr and then switch back and forth between the 
two policies. We consider three choices of n ∈ {8, 14, 20}, fives choices of δ ∈ {0, 0.25, 0.5, 0.75, 1} 
and three choices of TI ∈ {1, 3, 6}. This corresponds to a total of 45 cases. The bandwidth is set 
h = Cn−1/3, where C is selected by the fivefold cross-validation method. 

In Figure 2, we depict the empirical rejection probabilities of the proposed test for DE, aggre-
gated over 400 simulations, for all combinations. It can be seen that our test controls the type I 
error and its power increases as δ increases. In addition, the empirical rejection rates decreases as 
TI increases. This phenomenon suggests that the more frequently we switch back and forth be-
tween the two policies, the more powerful the resulting test. It is due to the positive correlation 
between adjacent observations. To elaborate, consider the extreme case where we switch policies 
at each time. The policies assigned at any two adjacent time points are different. As such, the 
random effect cancels with each other, yielding an efficient estimator. We conduct some add-
itional simulations using the numbers of answered requests and finished requests of cities A 
and B as responses (see online supplementary material, Figure S.2 in the supplement). Results 
are very similar and are reported in online supplementary material, Figures S.3 and S.4 in the 

Figure 1. Business metrics from City A (the first row) and City B (the second row) across 40 days, including drivers’ 
total income, the numbers of requests and drivers’ total online time. The values are scaled to preserve privacy.   
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supplementary document. See also online supplementary material, Tables S.1 and S.2 in the 
supplementary document. 

To infer IE, we set the outcome to drivers’ total online income. The empirical rejection prob-
abilities of the proposed test for IE are reported in Figure 3. Results are aggregated over 400 
simulations. Similarly, the proposed test is consistent. Its power increases with the sample 
size and δ. In addition, its power under TI =1 is much larger than those under TI =3 or 6. 
This suggests that we shall switch back and forth between the two policies as frequently as pos-
sible to maximize the power property of the test (see also online supplementary material, Tables 
S.3–S.4 in Supplementary document). 

5.2 Spatio-temporal alternation design 
To generate data under the spatio-temporal alternation design, we create a simulation environ-
ment based on the real dataset from city A. We divide the city into 10 non-overlapping regions. 
We plot these variables associated with 3 particular regions, over the first 10 days in Figure 4. 
It can be seen that although the daily trends differ across regions, the state and the response are 
highly correlated. 

Figure 2. Simulation results for L-TVCDP: empirical rejection rates (expressed as percentages) of the proposed test 
for DE under different combinations of (n, δ, TI) and types of outcomes. Synthetic data are simulated based on the 
real dataset from city A (the first row) and city B (the second row).  

Figure 3. Simulation results for L-TVCDP: empirical rejection rates (expressed as percentages) of the proposed test 
for IE under different combinations of (n, δ, TI). Synthetic data are simulated based on the real dataset from city A 
(the first row) and city B (the second row).   
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We fit the proposed models in (18) to the real dataset to estimate the varying coefficients and the 
variances of the random errors. Then, we manually set the treatment effects 􏽢γ(τ, ι) and 􏽢Γ(τ, ι) to 
(δ1/100) × (

􏽐n
i=1
􏽐m

τ=1 Yi,τ,ι/nm) and (δ2/100) × (
􏽐n

i=1
􏽐m

τ=1 Si,τ,ι/nm) for some constants δ1 

and δ2 > 0. We consider both the temporal and spatio-temporal alternation designs, and simulate 
the data via parametric bootstrap. 

We also consider three choices of n ∈ {8, 14, 20}, three choices of TI ∈ {1, 3, 6}, and three 
choices of δ1, δ2 ∈ {0, 0.5, 1}. This yields a total of 81 combinations under each design. The re-
jection probabilities of the proposed tests for DE and IE tests are reported in Figures 5 and 6 
(see also online supplementary material, Tables S.5 and S.6 in the supplementary document). It 
can be seen that the type I error rates of the proposed test are close to the nominal level under 
both designs. More importantly, the power under spatio-temporal alternation design is higher 
than that of temporal alternation design in all cases. The reason is twofold. First, under the 
spatio-temporal design, we independently randomize the initial policy for each region, and ad-
jacent regions may receive different policies. Observations across adjacent areas are likely to 
be positively correlated. As such, the variance of the estimated treatment effects will be smaller 
than that under the temporal design where all regions receive the same policy at each time. 
Second, we employ kernel smoothing twice when computing 􏽤DEst and 􏽢IEst, as discussed in 
Section 3. This results in a more efficient estimator. In addition, compared with the results 
in online supplementary material, Tables S.1 and S.3, it can be seen that the test that focuses 
on the entire city has better power property than the one that considers a particular region in 
general. Finally, the power decreases with TI and increases with n, δ1, and δ2. 

Figure 4. Number of call requests and drivers’ total income across different regions and days. The values are scaled 
for privacy concerns.  

Figure 5. Simulation results for L-STVCDP: the empirical rejection probabilities of the proposed test for DE under 
the temporal alternation design (left panel) and the spatio-temporal alternation design (right panel).   
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6 Real data analysis 
In this section, we apply the proposed tests based on L-TVCDP and L-STVCDP to a number of 
real datasets from Didi Chuxing to examine the treatment effects of some newly developed or-
der dispatch and vehicle reposition policies. Due to privacy, we do not publicize the names of 
these policies. 

We first consider four datasets collected from four online experiments under the temporal alter-
nation design. All the experiments last for 14 days. Policies are executed based on alternating half- 
hourly time intervals. We denote the cities, in which these experiments take place, as C1, C2, C3, 
and C4 and their corresponding policies as S1, S2, S3, and S4, respectively. For each policy, we are 
interested in its effect on three key business metrics, including drivers’ total income, the answer 
rate, and the completion rate. Similar to Section 5.1, we use the number of call orders and drivers’ 
total online time to construct the time-varying state variables. 

All the new policies are compared with some baseline policies in order to evaluate whether they 
improve some business outcomes. Specifically, in city C1, policy S1 is proposed to reduce the an-
swer time (the time period between the time when an order is requested and the time when the or-
der is responded by the driver). This in turn meets more call orders requests. Both policy S2 in city 
C2 and policy S3 in city C3 are designed to guide drivers to regions with more orders in order to 
reduce drivers’ idle time ratio. Policies S2 and S3 are designed to assign more drivers to areas with 
more orders. This in turn reduces drivers’ downtime and increase their income. Policy S4 aims to 
balance drivers’ downtime and their average pickup distance. 

We also apply our test to another four datasets collected from four A/A experiments which com-
pare the standard policy against itself. These A/A experiments are conducted two weeks before the 
A/B experiments. Each lasts for 14 days and 30 min is defined as one time unit. We remark that the 
A/A experiment is employed as a sanity check for the validity of the proposed test. We expect our 
test will not reject the null when applied to these datasets, since the sole standard policy is used. 

We fit the proposed L-TVCDP models to each of the eight datasets. In Figures 7 and 8, we plot 
the predicted outcomes against the observed values and plot the corresponding residuals over 
time for policy S1. Results for policies S2–S4 are represented in online supplementary material, 
Figure S.5 in the supplementary article. It can be seen that the predicted outcomes are very close 
to the observed values, suggesting that the proposed model fits the data well. P-values of the 
proposed tests are reported in Tables 1 and 2. As expected, the proposed test does not reject 
the null hypothesis when applied to all datasets from A/A experiments. When applied to the 
data from A/B experiments, it can be seen that the new policy S1 directly improves the answer 
rate, and the completion rate, while increasing drivers’ total income in city C1. It also signifi-
cantly increases drivers’ income in the long run. Policy S2 has significant direct and indirect ef-
fects on drivers’ income as expected. Policy S4 significantly increases the immediate answer rate, 
while improving the overall passenger satisfaction. However, policy S3 is not significantly better 
than the standard policy. 

Figure 6. Simulation results for L-STVCDP: the empirical rejection probabilities of the proposed test test for IE under 
the temporal alternation design (left panel) and the spatio-temporal alternation design (right panel).   
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We further apply the proposed test to two real datasets collected from an A/A and A/B experi-
ment under the spatio-temporal alternation design, conducted in city C5. This city is partitioned 
into 17 regions. Within each region, more than 90% orders are answered by drivers in the 
same region. Similar to the temporal alternation design, both experiments last for 14 days and 
30-min is set as one time unit. We take the number of requests as the state variables and drivers’ 
total income as the outcome, as in Section 5.2. In Figures 9 and 10, we plot the fitted drivers’ total 
income and the fitted number of requests against their observed values, and plot the corresponding 
residuals over time. We only present results associated with 2 regions in the city for space 

Figure 7. Plots of the fitted drivers’ total income against the observed values as well as the corresponding residuals. 
Data are collected from an A/A or A/B experiment under the temporal alternation design.  

Figure 8. Plots of the fitted number of orders ( 􏽢e1) and drivers’ online time ( 􏽢e2) against their observed values, as well 
as the corresponding residuals. Data are collected from an A/A or A/B experiment under the temporal alternation 
design.   

22                                                                                                                                                        Luo et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad136/7511800 by U
niv of N

orth C
arolina at C

hapel H
ill H

ealth Sci Lib user on 30 January 2024



Table 2. One-sided p-values of the proposed test for IE, when applied to eight datasets collected from the A/A or A/B 
experiment based on the temporal alternation design  

S1 S2 S3 S4  

AA AB AA AB AA AB AA AB  

p-value  0.334  0.001  0.341  0.003  0.254  0.589  0.427  0.168 

Note. Drivers’ total income is set to be the outcome of interest.  

Table 1. One-sided p-values of the proposed test for DE, when applied to eight datasets collected from the A/A or A/B 
experiment based on the temporal alternation design, with DTI, ART, and CRT corresponding to drivers’ total income, 
the answer rate, and the completion rate, respectively  

AA AB  

DTI(%) ART(%) CRT(%) DTI(%) ART(%) CRT(%)  

S1  0.527  0.435  0.442  0.000  0.000  0.003 

S2  0.232  0.126  0.209  0.000  0.763  0.661 

S3  0.378  0.379  0.567  0.700  0.637  0.839 

S4  0.348  0.507  0.292  0.198  0.000  0.133  

Figure 9. Plots of the fitted drivers’ income against the observed values, as well as the corresponding residuals. 
Data are collected from an A/A or A/B experiment under the spatio-temporal alternation design.  

Figure 10. Plots of the fitted number of orders against the observed values, as well as the corresponding residuals. 
Data are collected from an A/A or A/B experiment under the spatio-temporal alternation design.   
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economy. The fitted values and residuals associated with other regions are similar and we do not 
present them to save space. It can be seen that the proposed models fit these datasets well. In add-
ition, we report the p-values of the proposed test in Table 3. It can be seen that the new policy sig-
nificantly increases drivers’ income. When applied to the dataset from the A/A experiment, it fails 
to reject either null hypothesis. 

7 Discussion 
In this study, driven by the need for policy evaluation in technological companies, we thoroughly 
examine AB testing for temporal and/or spatial dependent experiments, particularly in scenarios 
characterized by weak signals, (spatio)-temporal random effects, and intricate interference struc-
tures. Our approach offers two key benefits. Firstly, it accommodates the switchback design, 
which can significantly enhance testing power. As explained earlier, by applying diverse treat-
ments to neighbouring time points, we can potentially offset the impact of random effects at these 
times, resulting in more efficient estimations of treatment effects. Secondly, we break down the 
ATE into its DE and IE components. We then advocate for testing these effects separately. This 
separation aids decision-makers in gaining a clearer understanding of how different policies func-
tion and in devising more effective strategies and designs. Further details can be found in online 
supplementary material, Section S.12.4 of the supplementary document. 

There are several intriguing avenues for future research. Firstly, considering Assumptions 1 
and 2, it’s worth exploring scenarios where errors in the state regression model are not necessarily 
independent over time. This can be achieved by incorporating random effects into the state regres-
sion model, allowing for correlated errors over time. However, this introduces dependencies be-
tween these random effects, which in turn affects the conditional independence of past and 
future features. Consequently, the Markov assumption is violated, and applying existing OPE 
methods and our proposal from Section 2 directly would result in biased policy value estimations. 
In online supplementary material, Section S.12.1 of the supplementary document, we present two 
approaches to mitigate this endogeneity bias. Secondly, we can delve into situations involving a 
large number of state variables. However, in ride-sharing platforms, it’s reasonable to assume 
that the dimension of state variables is fixed. This typically involves a two-dimensional market fea-
ture, encompassing the number of call orders and the number of available drivers. We outline po-
tential extensions to high-dimensional settings in online supplementary material, Section S.12.2 of 
the supplementary document. Thirdly, while the interference structure examined in this work is 
general, it remains relatively simple. It would be intriguing to explore more complex structural in-
terferences across both space and time. Lastly, addressing statistical inference for deep neural net-
works remains an open challenge. This could represent a significant step toward incorporating 
deep learning into causal inference, offering promising directions for future research. 
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