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ABSTRACT
Many modern tech companies, such as Google, Uber, and Didi, use online experiments (also known as A/B
testing) to evaluate new policies against existing ones. While most studies concentrate on average treatment
effects, situations with skewed and heavy-tailed outcome distributions may benefit from alternative criteria,
such as quantiles. However, assessing dynamic quantile treatment effects (QTE) remains a challenge, partic-
ularly when dealing with data from ride-sourcing platforms that involve sequential decision-making across
time and space. In this article, we establish a formal framework to calculate QTE conditional on characteristics
independent of the treatment. Under specific model assumptions, we demonstrate that the dynamic
conditional QTE (CQTE) equals the sum of individual CQTEs across time, even though the conditional
quantile of cumulative rewards may not necessarily equate to the sum of conditional quantiles of individual
rewards. This crucial insight significantly streamlines the estimation and inference processes for our target
causal estimand. We then introduce two varying coefficient decision process (VCDP) models and devise an
innovative method to test the dynamic CQTE. Moreover, we expand our approach to accommodate data
from spatiotemporal dependent experiments and examine both conditional quantile direct and indirect
effects. To showcase the practical utility of our method, we apply it to three real-world datasets from a
ride-sourcing platform. Theoretical findings and comprehensive simulation studies further substantiate our
proposal. Supplementary materials for this article are available online Code implementing the proposed
method is also available at: https://github.com/BIG-S2/CQSTVCM.
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1. Introduction

Online experiments, often referred to as A/B testing in computer
science literature, are widely used by technology companies
(e.g., Google, Netflix, Microsoft) to assess the effectiveness of
new products or policies in comparison to existing ones. These
companies have developed in-house A/B testing platforms for
evaluating treatment effects and providing valuable experimen-
tal insights. Take ridesourcing platforms like Uber, Lyft, and Didi
as examples. These platforms operate within intricate spatiotem-
poral ecosystems, dynamically matching passengers with drivers
(see, for instance, Wang and Yang 2019; Qin et al. 2020). They
implement online experiments to explore various order dispatch
policies and customer recommendation initiatives. These prod-
ucts hold the potential to enhance passenger engagement and
satisfaction, diminish pickup waiting times, and boost driver
earnings, ultimately leading to a more efficient and user-friendly
transportation system.

In this study, we address the fundamental question of how
to evaluate the difference between the quantile return of a new
product (treatment) and that of an existing one. Although the
average treatment effect (ATE) is widely used in the literature
to quantify the difference between two policies (Imbens and
Rubin 2015; Kong, Yang, and Wang 2022), it only considers
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the average effect and does not account for variability around
the expectation. In applications with skewed and heavy-tailed
outcome distributions, decision-makers are more interested in
the quantile treatment effect (QTE), which offers a more com-
prehensive characterization of distributional effects beyond the
mean and is robust to heavy-tailed errors (see e.g., Abadie,
Angrist, and Imbens 2002; Chernozhukov and Hansen 2006).
For example, in ridesourcing platforms, policymakers may want
to determine which policy more effectively raises the lower
tail of driver income. Furthermore, developing valid inferen-
tial tools for QTE can reveal how treatment effects differ by
quantile and provide valuable information about the entire
distribution.

Addressing the problem mentioned earlier presents two sig-
nificant challenges. The first challenge involves efficiently infer-
ring the dynamic QTE (quantile treatment effect), which is
defined as the difference between the quantiles of cumulative
outcomes under the new and old policies, in long horizon set-
tings with weak signals. In contrast to single-stage decision-
making, policy makers for ridesourcing platforms assign treat-
ments sequentially over time and across various locations. Exist-
ing estimators, such as those based on (augmented) inverse
probability weighting (see e.g., Wang et al. 2018, sec. 4), are

© 2024 American Statistical Association

https://doi.org/10.1080/01621459.2024.2314316
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2314316&domain=pdf&date_stamp=2024-03-07
https://github.com/BIG-S2/CQSTVCM
mailto:htzhu@email.unc.edu
http://www.tandfonline.com/r/JASA


2 T. LI ET AL.

subject to the curse of horizon, as described by Liu et al.
(2018). This means their variances increase exponentially with
respect to the horizon (i.e., the number of decision stages). Such
approaches are inadequate in our context, where the horizon
typically spans 24 or 48 stages and most policies improve key
metrics by only 0.5% to 2% (Qin, Zhu, and Ye 2022). Further-
more, unlike the average cumulative outcome, which can be
broken down into the sum of individual outcome expectations,
the quantile of cumulative outcomes generally does not equal
the sum of individual quantiles. This makes estimating our
causal effect extremely challenging. Existing efficient evaluation
methods designed for mean return, such as those proposed
by Kallus and Uehara (2022) cannot be easily adapted to our
situation.

The second challenge arises from handling the interference
effect caused by temporal and spatial proximities in spatiotem-
poral dependent experiments. This interference effect results in
a treatment applied at one location influencing not only its own
outcome, but also the outcomes at other locations. The current
treatment is likely to affect both present and future outcomes.
Neglecting these effects would produce a biased QTE estimator.
As far as we are aware, there is no existing test capable of
concurrently addressing both challenges.

1.1. Related Work

A/B testing has been extensively researched in the literature, as
evidenced by the works of Yang et al. (2017) and Zhou et al.
(2020), among other references. In contrast to most existing
A/B testing methods that focus on the Average Treatment Effect
(ATE), Quantile Treatment Effects (QTE) have received less
attention. Among the few available studies, Liu et al. (2019)
proposed a scalable method to test QTE and construct associ-
ated confidence intervals. Moreover, Wang and Zhang (2021)
developed a nonparametric method to estimate QTEs at a con-
tinuous range of quantile locations, including point-wise con-
fidence intervals. More broadly, the estimation and inference of
(conditional) QTEs have been considered in the causal inference
literature, as seen in the works of Chernozhukov and Hansen
(2006), Firpo (2007), and Blanco et al. (2020). However, these
methods predominantly address single-stage decision-making.
To the best of our knowledge, this article represents the first
attempt to explore QTE in temporally and/or spatially depen-
dent experiments.

Our article is closely related to the rapidly expanding body
of literature on off-policy evaluation in sequential decision-
making. The majority of existing studies primarily concentrate
on inferring the expected return under a fixed target policy or
a data-dependent estimated optimal policy (Zhang et al. 2013;
Shi, Lu, and Song 2020; Kallus and Uehara 2022). In recent years,
several papers have explored policy evaluation beyond averages
(Wang et al. 2018; Kallus, Mao, and Uehara 2019; Qi, Pang,
and Liu 2022). These works propose using (augmented) inverse
probability weighted estimators to evaluate specific robust met-
rics under a given target policy. As noted previously, these meth-
ods are subject to the curse of horizon and become less effective
in long-horizon settings. Most notably, policy evaluation in
spatiotemporal dependent experiments remains unexplored in
the aforementioned studies.

Analysis of temporal and spatial interference has received
much attention recently. For example, Tchetgen and Vander-
Weele (2012), Hudgens and Halloran (2008), and Liu and
Hudgens (2014) considered partial interference, where inter-
ference is possible between individuals within the same group
(or through social interactions) but not between groups. This
implies that potential outcomes are influenced not only by
the treatment of the subject under consideration but also by
the treatments of other subjects within the same group. Our
focus differs from these studies as we delve into the realm of
interference that extends across both time and space. However,
similar to the above literature, we employ the partial interference
assumption to handle the spatial interference as well. Recent
proposals have investigated causal inference with temporal or
spatial interference, including studies by Savje, Aronow, and
Hudgens (2021) and Hu, Li, and Wager (2022), among others.
However, these methods primarily focus on the average effect.
Furthermore, our article is closely related to the literature on
distributional reinforcement learning (see e.g., Zhou, Wang, and
Feng 2020). Despite this connection, these studies primarily
concentrate on the policy learning problem, and the uncer-
tainty quantification of a target policy’s quantile value remains
unexplored.

Lastly, our article is connected to a line of research on
quantitative analysis of ridesharing across various fields such
as economics, operations research, statistics, and computer sci-
ence (see e.g., Shi et al. 2022; Zhao et al. 2022). Neverthe-
less, quantile policy evaluation has not been examined in these
papers.

1.2. Contributions

Our proposal offers three valuable contributions to existing liter-
ature. First, we present a framework for deducing dynamic con-
ditional Quantile Treatment Effects (QTE), defined as dynamic
QTE dependent on market features, irrespective of treatment
history. While unconditional QTE may be of interest, as pre-
viously noted, it assumes a highly complex form in long hori-
zon settings and is extremely challenging to identify when the
signal is weak. In contrast, we demonstrate that under cer-
tain modeling assumptions, the proposed dynamic conditional
QTE (CQTE) is equal to the sum of individual CQTE at each
spatiotemporal unit, even though the conditional quantile of
cumulative rewards does not necessarily equate to the sum of
conditional quantiles of individual rewards. This finding sig-
nificantly streamlines the estimation and inference processes
for our causal estimand, making our proposal easily imple-
mentable in practice. Additionally, the estimated CQTE can
exhibit a smaller variance compared to that of the unconditional
counterpart.

Second, we introduce an innovative framework to test
dynamic CQTE while accounting for the interference effect.
We propose two Varying Coefficient Decision Process (VCDP)
models, enabling the application of classical quantile regres-
sion (Koenker and Hallock 2001) for parameter estimation and
subsequent inference. We then develop a two-step method for
estimating CQTE, along with a bootstrap-assisted procedure
for testing CQTE. We further extend our proposal to analyze
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spatiotemporally dependent data and to test Conditional Quan-
tile Direct Effects (CQDE) and Conditional Quantile Indirect
Effects (CQIE).

Third, we thoroughly examine the theoretical and finite sam-
ple properties of our methods. Theoretically, we prove the con-
sistency of our proposed test procedure, allowing the horizon to
diverge with the sample size. Notably, classical weak convergence
theorems (Van Der Vaart and Wellner 1996) necessitate a fixed
horizon and are not directly applicable. Empirically, we apply
our proposed method to real datasets obtained from a leading
ridesourcing platform to assess the dynamic quantile treatment
effects of new policies.

1.3. Organization of the Article

Section 2 describes data from online experiments. Section 3
covers temporally dependent experiments, and estimation and
inference procedures. Section 4 extends the proposal to spa-
tiotemporally dependent data. Section 5 decomposes CQTE into
CQDE and CQIE. Section 6 evaluates ridesourcing dispatching
and repositioning policies, and Section 7 assesses the finite sam-
ple performance using real-data-based simulations. Additional
simulation studies, theoretical properties and their proofs are
presented in the supplementary material.

2. Data Description

The purpose of this article is to analyze three real datasets
collected from Didi Chuxing, one of the world’s leading ride-
sharing companies. One dataset was collected during a time-
dependent A/B experiment conducted in a city from December
10, 2021 to December 23, 2021. The goal of this experiment
was to evaluate the performance of a newly designed order dis-
patching policy, which aimed to increase the number of fulfilled
ride requests and boost drivers’ total revenue. To protect privacy,
we will not disclose the city name and the specific policy used.
During the experiment, each day was divided into 24 equally
spaced nonoverlapping time intervals. The new policy (B) and
the old policy (A) were alternated and assigned to these intervals
every day. On each day, we randomly selected the treatment
sequence from AB. . .AB and BA. . .BA with equal probability.
Therefore, we switched between A and B within and between
days, ensuring that each policy was used with equal probability
at each time interval, meeting the positivity assumption. For

more details, see Section 3.1. It is worth noting that such an
alternating-time-interval design, also known as the switchback
design, is commonly used in industries to reduce the variance
of treatment effect estimators (Hu and Wager 2022; Shi et al.
2022; Xiong, Chin, and Taylor 2023). Further information can be
found in the article by Lyft on experimentation in a ride-sharing
marketplace (Chamandy 2016).

The second dataset comes from a spatiotemporal-dependent
experiment conducted in another city between February 19,
2020, and March 13, 2020. Each day is divided into 48 nonover-
lapping, equal time intervals, and the city is partitioned into
12 distinct, nonoverlapping regions. On the first day of the
experiment, the initial policy in each region is independently
set to either the new or old policy with a 50% probability. The
temporal alternation design for time-dependent experiments is
then applied in each region.

In addition to the two datasets from A/B experiments men-
tioned earlier, we also analyze a third dataset collected from an
A/A experiment. In this case, the two policies being compared
are identical, and the treatment effect is zero. The experiment
took place in a specific city from July 13, 2021 to September 17,
2021. This analysis serves as a sanity check to examine the size
property of the proposed test. We expect that our test will not
reject the null hypothesis when applied to this dataset, as the true
effect is zero.

The ridesharing system dynamically connects passengers and
drivers in real-time. All three datasets include the number of call
orders and the total online time of drivers for each time interval.
These metrics represent the supply and demand in this two-
sided market. The platform’s outcomes include the drivers’ total
income, the answer rate (the proportion of call orders responded
to), and the completion rate (the proportion of call orders com-
pleted) for each time interval. In our study, we are interested
in determining whether the new policy improves drivers’ total
income at various quantile levels.

The datasets exhibit four distinct characteristics. First, the
horizon duration is typically much longer (e.g., 24 or 48) than
the experiment duration, while the treatment effect is usually
weak (e.g., 0.5%–2%). Second, both demand and supply are
spatiotemporal networks that interact across time and location,
as observed in panels (a) and (b) of Figure 1, which display
the number of call orders and drivers’ online time. Third, the
outcome of interest follows a nonnormal and heavy-tailed dis-
tribution, illustrated in panels (c) and (d) of Figure 1. Finally,

Figure 1. Scaled request (a), drivers’ online time (b), and drivers’ total income (c) in the temporal dependent A/B experiment and the estimated density of drivers’ total
income (d) in the spatial temporal dependent A/B experiment.
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Figure 2. This example illustrates the temporal interference effect in ridesharing, where assigning different drivers to pick up a passenger significantly impacts future ride
requests. (a) A city with 10 regions has a passenger in region 6 needing a ride, with three drivers in region 3 and one in region 10. Two actions are possible: assigning a driver
from region 3 or region 10. (b) Assigning a driver from region 3 might result in an unmatched future request due to the driver in region 10 being too far from region 1. (c)
Assigning the driver in region 10 could lead to all future ride requests being matched, preserving all three drivers in region 3.

there are interference effects over time and space, demonstrated
in Figure 2, with temporal interference effects occurring when
past actions impact future outcomes.

We focus on answering three key questions in these datasets:
(Q1) How can we quantify treatment effects across various

quantile levels for the time-dependent A/B experiment data in
order to gain a comprehensive understanding of the new policy’s
effects within the city?

(Q2) How to evaluate the quantile treatment effects for the
above spatiatemporal dependent experiment data?

(Q3) How to determine whether or not to replace the old
policy with the new one?

These questions drive the methodological development out-
lined in Sections 3 and 4.

3. Testing CQTE in Temporal Dependent Experiments

In this section, we explicitly state the test hypotheses for our
first research question (Q1) and explore the primary challenge
encountered in experiments exhibiting temporal dependence.
Subsequently, we detail the key technical assumptions that
enable the cumulative quantile treatment effect (CQTE) to be
equivalent to the sum of individual CQTEs. Finally, to address
the third research question (Q3), we present the proposed esti-
mation and testing strategies for our investigation.

3.1. CQTE, Test Hypotheses and Assumptions

We consider the temporal alternation design with a sequence
of treatments over time. Specifically, we divide each day into m
nonoverlapping intervals. The platform can implement either
one of the two policies at each time interval. For any t ≥ 1,
let At denote the policy implemented at the tth time interval
where At = 1 represents exposure to the new policy and At = 0
represents exposure to the old policy. Let St and Yt denote the
state (e.g., the supply and demand) and the outcome at time t,
respectively.

First, to formulate our problem, we adopt a potential out-
come framework (Rubin 2005). Specifically, we define āt =
(a1, . . . , at)� ∈ {0, 1}t as the treatment history up to time
t. We also define S∗

t (āt−1) and Y∗
t (āt) as the counterfactual

state and counterfactual outcome, respectively, that would have

occurred had the platform followed the treatment history āt .
Our primary interest lies in quantifying the difference between
the τ th quantile of the cumulative outcomes under the new
policy and that under the old policy, denoted as the quantile
treatment effect (QTE):

QTE = Qτ

( m∑
t=1

Y∗
t (1t)

)
− Qτ

( m∑
t=1

Y∗
t (0t)

)
,

where 1t and 0t are vectors of 1s and 0s of length t, respectively,
and Qτ (·) denotes the quantile function at the τ th level.

However, learning such an unconditional dynamic QTE from
our experimental dataset is highly challenging. Remember that
in our A/B experiment, the old and new policies are assigned
alternately over the m time intervals. Nevertheless, the target
policy we aim to evaluate corresponds to the global policy, which
allocates the new or old policy globally throughout each day.
This leads to an off-policy setting where the target policy differs
from the behavior policy that generates the data. Existing off-
policy quantile evaluation methods based on inverse probability
weighting, such as those presented by Wang et al. (2018), are
inefficient in our setting with a moderately large m. Off-policy
evaluation (OPE) methods, including Shi et al. (2020), Liao,
Klasnja, and Murphy (2021), and Kallus and Uehara (2022), are
semiparametrically efficient1 in long-horizon settings. Despite
this, these methods primarily focus on the mean return, making
it difficult to adapt them for quantile evaluation due to the
nonlinear quantile function Qτ . To illustrate, note that there
is no guarantee that Qτ (

∑m
t=1 Y∗

t (1t)) − Qτ (
∑m

t=1 Y∗
t (0t)) =∑m

t=1

[
Qτ (Y∗

t (1t)) − Qτ (Y∗
t (0t))

]
in general. This observation

motivates us to seek an alternative definition for QTE.
Second, let Et represent the set of features (e.g., extreme

weather events) that have an impact on the outcomes up to time
t, but are not influenced by the treatment history. This means
that for any treatment history āt , the potential outcome of these
features remains the same, that is, E∗

t (āt) = Et . By definition,
S1 is an element of Et , which ensures that Et is non-empty for

1Shi et al. (2020) and Liao, Klasnja, and Murphy (2021) proposed to use the
direct method based on linear sieves or kernels. However, the resulting
estimators are semiparametrically efficient as well.
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any t. We introduce CQTE as follows:

CQTEτ = Qτ (

m∑
t=1

Y∗
t (1t)|Em) − Qτ (

m∑
t=1

Y∗
t (0t)|Em). (1)

The CQTE is a reasonable measure because the set of condi-
tioning variables remains consistent under both new and old
policies. When m = 1, this definition reduces to the one
used in single-stage decision-making, as discussed in previous
literature, such as Chernozhukov and Hansen (2006).

Conditioning has several benefits. First, it offers a more con-
venient way to estimate the dynamic Quantile Treatment Effect
(QTE) by aggregating individual QTEs over time. This approach
simplifies the estimation process and reduces computational
complexity. Second, conditioning can also help to reduce the
variance of the resulting QTE estimator by removing the need
to account for variability in the relevant characteristics. By con-
ditioning on certain variables, researchers can effectively control
for confounding factors and produce more accurate estimates of
treatment effects.

Third, we introduce the concept of Summed Conditional
Quantile Treatment Effects (SCQTE), which represents the sum
of individual Conditional Quantile Treatment Effects (CQTE)
over time. The SCQTE is defined as follows:

SCQTEτ =
m∑

t=1
Qτ (Y∗

t (1t)|Et) −
m∑

t=1
Qτ (Y∗

t (0t)|Et).

Compared to CQTE, SCQTE is easier to learn from observed
data. For example, one can fit a quantile regression model at
each stage, estimate individual CQTE values, and then sum
these estimators together. Although the quantile function is
not additive, we demonstrate in the following proposition that
SCQTE is equal to CQTE under specific modeling assumptions.
Even in scenarios where the underlying assumptions may not
strictly hold, focusing on SCQTE still offers valuable insights. It
describes the average of the marginal quantile treatment effect
across all time intervals, which assesses how the distribution
of outcomes changes in response to the treatment at each time
point.

Proposition 1. Suppose that for any time point t, Y∗
t (āt) follows

the structural quantile model Y∗
t (āt) = φt(Et , āt , U) for a

specific deterministic function φt and a uniformly distributed
random variable U d∼ Unif(0, 1), which is independent of
{Et}t . Furthermore, assume that φt(Et , 1t , τ) and φt(Et , 0t , τ) are
nondecreasing functions of τ for any Et . Under these conditions,
we find that CQTEτ = SCQTEτ .

Proposition 1 establishes the equivalence between CQTE and
SCQTE and serves as a fundamental building block for our
proposal. It allows us to focus on SCQTE, which is a sim-
plified version of CQTE. This simplification greatly facilitates
the estimation and inference procedures that follow, which rely
on fitting a quantile regression model at each time point to
learn the SCQTE. For more details, see Sections 3.2 and 3.3.
Moreover, the proposed model in Proposition 1 is related to the
structural quantile model in the quantile regression literature
(Chernozhukov and Hansen 2005, 2006). These models assume

that, conditional on the covariate X = x, the potential outcome
Y∗(a) = q(a, x, U) for a = 0, 1 and U ∼ U(0, 1), where
q(d, x, τ) is strictly increasing in τ . The uniformly distributed
variable U serves as a rank variable that characterizes the het-
erogeneity of the outcome across different quantile levels. More
discussion on the rank invariance assumption can be found in
Section E of the supplementary material. Under the nondecreas-
ing constraint, the τ th conditional quantile of Y∗(a)|X = x can
be shown to equal q(a, x, τ). The discussion on this assumption
can be found in Section F. Proposition 1 motivates us to focus
on testing the following hypotheses for each quantile level τ :

H0 : CQTEτ ≤ 0 versus H1 : CQTEτ > 0. (2)

These hypotheses test whether the treatment effect at the τ th
quantile is nonnegative or positive, respectively.

In this study, we use the consistency assumption (CA),
sequential ignorability assumption (SRA), and positivity
assumption (PA) to identify the causal estimand. Similar
assumptions are frequently used in the dynamic treatment
regime literature for learning optimal dynamic treatment
policies (Gill and Robins 2001). The consistency assumption
(CA) states that the potential state and outcome, given the
observed data history, should align with the actual observed
state and outcome. The sequential ignorability assumption
(SRA) demands that the action be conditionally independent
of all potential variables, given the past data history. In our
application, the SRA is inherently satisfied as the policy is
assigned according to the alternating-time-interval design,
independent of data history. The positivity assumption (PA)
necessitates that the probability of {At = 1}, given the current
state, must be strictly confined between zero and one for any
t ≥ 12. Under the alternating-time-interval design, the PA can
be easily satisfied if the treatment in the initial time interval
is randomized. It is essential to note that the CA, SRA, and
PA enable the consistent estimation of the potential outcome
distribution using the observed data.

3.2. VCDP Models

Suppose that the experiment is conducted over n consecutive
days. Let (Si,j, Ai,j, Yi,j) be the state-treatment-outcome triplet
measured at the jth time interval of the ith day for i = 1, . . . , n
and j = 1, . . . , m. We assume that these triplets are independent
across different days, but may be dependent within each day over
time.

We begin by introducing two varying coefficient decision
process models, one for the outcome and the other for the state.
The first model characterizes the conditional quantile of the
outcome and is given by

Yi,t = β0(t, Ui) + S�
i,tβ(t, Ui) + Ai,tγ (t, Ui)

= Z�
i,tθ(t, Ui), (3)

2Our positivity assumption is weaker than the standard positivity assumption
which requires the probability of {At = 1} given the observed data history
to be strictly confined between zero and one. Such a relaxation is facilitated
by the Markov assumption, which allows us to model the current outcome
and future state solely based on the current state-action pair, as elaborated
in (7) and (8)
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where Zi,t = (1, S�
i,t , Ai,t)� ∈ Rd+2, θ(t, Ui) = (β0(t, Ui),

β(t, Ui)�, γ (t, Ui))� ∈ Rd+2 is a vector of time-varying coef-
ficients, and Ui ∼ U(0, 1) is the rank variable. Model (3)
extends the idea of using rank variables to represent unobserved
heterogeneity across different quantiles in a single-stage study to
sequential decision making.

The second model characterizes the conditional mean of the
observed state variables,

Si,t+1 = φ0(t) + �(t)Si,t + Ai,t�(t) + Ei(t + 1)

= 	(t)Zi,t + Ei(t + 1), (4)

where φ0(t) and �(t) are d-dimensional vectors, �(t) is a
d × d matrix of autoregressive coefficients, and 	(t) =
[φ0(t) �(t) �(t)] is a d × (d + 2) coefficient matrix. The
term Ei(t + 1) is a random error term whose conditional mean
given Zi,t equals zero. In addition, {Ei(t)}t are independent over
time. It can be checked by testing the autocorrelation of the
residuals, such as the well-known Ljung-Box test. Therefore, the
conditional expectation of Si,t+1 given Zi,t is: E(Si,t+1|Zi,t) =
	(t)Zi,t .

It is worth noting that models (3) and (4) belong to the
class of varying-coefficient regression models. The existing lit-
erature on this topic mainly focuses on estimating the relation-
ships between scalar predictors and scalar responses (Sherwood
and Wang 2016), or between scalar predictors and functional
responses (Zhang et al. 2022), or between longitudinal predic-
tors and responses (Wang, Zhu, and Zhou 2009). However, to the
best of our knowledge, none of these works have used varying-
coefficient regression models for policy evaluation in sequential
decision making.

While we assume the residual process {Ei(t)} is independent
over time, it is worthwhile to note that the state process {Si,t} is
correlated and dependent. Specifically, this state process adheres
to a martingale sequence that satisfies the Markov property.
In the absence of this independence assumption, the Markov
assumption would be violated. It is well-known that efficient
policy evaluation is extremely challenging in non-Markovian
environments (see e.g., Uehara et al. 2022). Moreover, models
(3) and (4) are valid when the potential outcomes satisfy similar
assumptions in the quantile varying coefficient models. Please
refer to eqs. (S2) and (S3) in the supplementary material for
more details.

If the residual Ei(t + 1) is independent of the treatment
history and Ui, we can define Et as {S1, E(1), . . . , E(t)}. Under
this condition, the assumptions in Proposition 1 are satisfied.
Hence, under the proposed VCDP models, CQTE is equivalent
to SCQTE. Next, we introduce the following function:

φt(Et , āt , U) = β0(t, U) + atγ (t, U)

+β(t, U)�
( t−1∑

k=1

{ t−1∏
l=k+1

�(l)[φ0(k) + ak�(k)]
})

+
t−1∏
l=1

�(l)S1 +
t∑

k=2
[

t−1∏
l=k

�(l)E(k)].

The subsequent proposition offers a closed-form formula for
CQTE.

Proposition 2. Assuming that CA and eqs. (S2) and (S3) in the
supplementary material hold, U is independent of {Et}t , and
φt(Et , 1t , τ) and φt(Et , 0t , τ) are nondecreasing in τ for any Et ,
then we have

CQTEτ = SCQTEτ (5)

=
m∑

t=1
γ (t, τ)+

m∑
t=2

β(t, τ)�
⎧⎨⎩

t−1∑
k=1

⎡⎣ t−1∏
l=k+1

�(l)

⎤⎦�(k)

⎫⎬⎭ ,

where the product
∏t−1

l=k+1 �(l) = 1 when t − 1 < k + 1.

Proposition 2 enables us to estimate CQTE through SCQTE
under certain assumptions. Among these, the monotonicity
assumption can be satisfied under various conditions. For exam-
ple, it holds when β0(t, τ), γ (t, τ), and all elements in β(t, τ) are
strictly increasing in τ , and φ0(t), all elements in �(t), and �(t)
are positive. Additionally, when �(t) = 0 and φ0(t) = 0 for any
t, it suffices to require γ (t, τ) and β0(t, τ) to be strictly increasing
in τ .

To evaluate policy value, we need to estimate the model
parameters β , γ , �, and �. Notice that under the conditions of
Proposition 2, we have that:

Yi,t = β0(t, τ) + S�
i,tβ(t, τ) + Ai,tγ (t, τ) + ei(t, τ)

= Z�
i,tθ(t, τ) + ei(t, τ), (6)

where ei(t, τ) is the error term, defined as Z�
i,t[θ(t, U)− θ(t, τ)],

and its conditional τ th quantile given Zi,t equals zero. Therefore,
we can employ ordinary quantile regression to learn β and
γ . Meanwhile, since the residuals Ei(t)s are independent over
time, ordinary least-squares regression is applicable to the state
regression model to estimate � and �. We detail our estimating
procedure in the next section.

3.3. Estimation and Inference Procedures

In this section, we outline the procedures for estimating and
testing CQTE based on the results in Proposition 2. We first
estimate the regression coefficients in models (6) and (4). We
then plug these estimates into (5) to estimate CQTE. Finally, we
develop a bootstrap-assisted procedure to test CQTE.

Let S(ν)
i,t+1, φ(ν)

0 (t), and �(ν)(t) denote the νth entries of Si,t+1,
φ0(t), and �(t), respectively. Let �(ν)(t) and 	(ν)(t) denote the
νth rows of �(t) and 	(t), respectively. It follows from (4) that:

S(ν)
i,t+1 = φ

(ν)
0 (t) + S�

i,t�
(ν)(t) + Ai,t�

(ν)(t) + E(ν)
i (t + 1)

= Z�
i,t	

(ν)(t) + E(ν)
i (t + 1).

We propose a two-step procedure to estimate θ(t, τ) and
	(t). In the first step, we minimize the following functions:

θ̂ (t, τ) = arg min
∑

i
ρτ (Yi,t − Z�

i,tθ(t, τ)),

for t = 1, . . . , m, (7)
	̂(ν)(t) = arg min

∑
i

[S(ν)
i,t+1 − Z�

i,t	
(ν)(t)]2,

for ν = 1, . . . , d; t = 1, . . . , m − 1. (8)
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These one-step estimates can be computed easily but suffer from
large variances as they rely solely on observations at time t.
In contrast, the true coefficient θ(t, τ) and 	(t) are expected
to possess smoothness across time t. To fully use the informa-
tion across time, we employ the kernel smoothing technique to
reduce the variances of these initial estimators, achieve smooth-
ness, and identify weak signals (Zhu, Fan, and Kong 2014).
Specifically, for a given kernel function K(·), the second-step
estimators θ̃ (t, τ) and 	̃

(ν)
τ (t) are defined as

θ̃ (t, τ) =
m∑

j=1
ωj,h(t)θ̂(j, τ), for t = 1, . . . , m, (9)

	̃(ν)(t) =
m∑

j=1
ωj,h(t)	̂(ν)(j), for ν = 1, . . . , d,

t = 1, . . . , m, (10)

where ωj,h(t) = K((j − t)/(mh))/
∑m

k=1 K((k − t)/(mh)) is the
weight function and h denotes the kernel bandwidth. Among
various kernel functions, we adopt the widely used Gaussian
kernel K(t) = exp(−t2). Essentially, the estimates 	̃(ν)(t) and
θ̃ (t, τ) are calculated as weighted averages of the one-step esti-
mates {θ̂ (j, τ), j = 1, . . . , m}, with the weights being modulated
by the kernel function. This methodology facilitates a more
stable and continuous estimation, which is especially valuable
in the presence of weak signals or when assessing parameters
that are expected to be consistent over time. Given θ̃ (t, τ) and
	̃

(ν)
τ (t), we can compute the following CQTE estimator:

ĈQTEτ =
m∑

t=1
γ̃ (t, τ) (11)

+
m∑

t=2
β̃(t, τ)�

⎧⎨⎩
t−1∑
k=1

⎡⎣ t−1∏
l=k+1

�̃(l)

⎤⎦ �̃(k)

⎫⎬⎭ .

To test (2), we use the test statistic Tτ , which is set to ĈQTEτ .
Under the null hypothesis, Tτ is expected to be negative or
close to zero. Therefore, we reject the null hypothesis for a large
value of ĈQTEτ . However, deriving the limiting distribution of
Tτ for large m is complicated due to the complex dependence
of ĈQTEτ on the estimated model parameters. To address this
issue, we use the bootstrap method to simulate the distribution
of ĈQTEτ under the null hypothesis. Specifically, we modify the
bootstrap method proposed by Horowitz and Krishnamurthy
(2018) and adapt it to our setting as follows. Horowitz and Krish-
namurthy (2018) proposed to resample the estimated residuals
to infer the conditional quantile function in a nonparametric
quantile regression model. In our case, to handle the dependence
over time, we resample the entire error process (see Step 3 for
details).

The bootstrap method for ĈQTEτ is implemented as fol-
lows:

• Step 1. Compute the estimators θ̃ (t, τ) and 	̃(t) in (9) and
(10).

• Step 2. Estimate the residuals by êi(t, τ) = Yi,t − Z�
i,t θ̃ (t, τ)

for t = 1, . . . , m and Êi(t + 1) = Si,t+1 − 	̃(t)Zi,t for t =
1, . . . , m − 1.

• Step 3. For i = 1, . . . , n, define the random vectors
êi(τ ) = (̂ei(1, τ), . . . , êi(m, τ)) and Êi = (̂Ei(2), . . . , Êi(m)).
For each bootstrap iteration indexed by b, we sample the
entire residual process with replacement. Specifically, we
generate a bootstrap sample consisting of n error processes
{eb

1(τ ), . . . , eb
n(τ )}, by resampling n random vectors from

the original set {̂e1(τ ), . . . , ên(τ )} with replacement. Simi-
larly, we construct another bootstrap sample of n error pro-
cesses {Eb

1, . . . , Eb
n}, by resampling n random vectors from

{̂E1, . . . , Ên} with replacement. Next, we generate pseudo
outcomes {̂Sb

i,t}i,t and {Ŷb
i,t}i,t as follows,

Ŝb
i,t+1 = 	̃(t)̂Zb

i,t + Eb
i (t + 1) and

Ŷb
i,t = Ẑb�

i,t θ̃ (t, τ) + eb
i (t, τ). (12)

• Step 4. For each b, compute the bootstrap estimates θ̃b(t, τ)

and 	̃b(t) according to (7)–(10) using the pseudo outcomes
{(̂Sb

i,t , Ŷb
i,t) : i, t}.

• Step 5. For each b, compute the bootstrapped statistic Tb
τ =

ĈQTE
b
τ .

• Step 6. Repeat Steps 3–5 B times. Given a significance level
α, reject H0 (see (2)) if the statistic Tτ exceeds the upper αth
empirical quantile of {Tb

τ − Tτ }B
b=1.

In the supplementary material, we present Theorem S1,
which rigorously establishes the consistency of the aforemen-
tioned bootstrap method. It’s worth noting that the bootstrap
consistency theory elaborated in Horowitz and Krishnamurthy
(2018) isn’t readily applicable to our context, where m can
increase along with the sample size.

In practice, we may select the bandwidth h by using K-
fold cross-validation. To satisfy the o(n−1/4) order condi-
tion, following a similar spirit to Seo and Linton (2007)
and Porter and Yu (2015), we choose h among Hn =
[C1(log n)n−1/2, C2(log n)n−1/2] for some positive constants C1
and C2. For each potential bandwidth parameter, the cross-
validation criterion is computed as the sum of the prediction
errors after leaving out one of the K folds; smaller errors are
preferred. Specifically, we randomly split the full sample into
K subsets, denoted by {Dj : j = 1, . . . , K}. For j = 1, . . . , K
and i ∈ Dj, let Ŝ(−Dj)

i,t+1 (h) and Ŷ(−Dj)
i,t (h) represent the estimated

mean for Si,t+1 and the estimated quantile for Yi,t , respectively.
These estimates are computed using bandwidth h based on the
dataset that excludes the observations in Dj. We then select the
optimal bandwidths hθ for θ̃ and h	 for 	̃ by minimizing the
following objective functions:

CVθ (h) =
K∑

j=1

∑
i∈Dj

m∑
t=1

ρτ (Yi,t − Ŷ(−Dj)
i,t (h)),

CV	(h) =
K∑

j=1

∑
i∈Dj

m−1∑
t=1

(Si,t+1 − Ŝ(−Dj)
i,t+1 (h))2.

We set K = 2 in our simulation studies and real data analysis.
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4. Extension to Spatiotemporal Dependent
Experiments

In this section, we aim to address (Q2) and expand upon
the method proposed in Section 3 to analyze data from
spatiotemporal dependent experiments involving multiple
nonoverlapping regions receiving distinct treatments in a
sequential manner over time. Let r represent the number of
these nonoverlapping regions. As previously discussed, these
experiments are not only subject to temporal interference
effects but also exhibit spatial interference, whereby the policy
implemented in one location may influence the outcomes in
other locations.

4.1. Test Hypotheses

For the ιth region, we use āt,ι = (ā1,ι, . . . , āt,ι)� to denote its
treatment history up to time t. Let āt,[1:r] = (āt,1, . . . , āt,r)�
represent the treatment history across all regions. Similarly,
define S∗

t,ι(āt−1,[1:r]) and Y∗
t,ι(āt,[1:r]) as the potential observation

and outcome for the ιth region, respectively. The set of potential
observations at time t is denoted as S∗

t,[1:r](āt−1,[1:r]).
In the spatiotemporal context, our focus is on the cumulative

quantile treatment effects, aggregated over all regions. We define
CQTE and SCQTE at the τ th quantile level as

CQTEτ st = Qτ

( r∑
ι=1

m∑
t=1

Y∗
t,ι(1t,[1:r])|Em,[1:r]

)

−Qτ

( r∑
ι=1

m∑
t=1

Y∗
t,ι(0t,[1:r])|Em,[1:r]

)
,

SCQTEτ st =
r∑

ι=1

m∑
t=1

Qτ

(
Y∗

t,ι(1t,[1:r])|Et,[1:r]
)

−
r∑

ι=1

m∑
t=1

Qτ

(
Y∗

t,ι(0t,[1:r])|Et,[1:r]
)

,

respectively, where Et,[1:r] denotes the set of characteristics inde-
pendent of the treatment history up to time t across all regions.
For a given quantile level τ , our goal is to test whether a new
policy outperforms the old one as follows:

H0 : CQTEτ st ≤ 0 versus H1 : CQTEτ st > 0. (13)

Compared to the testing problem in (2)–(3) focuses on global
treatment effects aggregated over time and regions. We assume
the consistency assumption holds. Similar to Section 3, under
the spatial alternating-time-interval design, one can show
that the sequential ignorability assumption and the positivity
assumption are automatically satisfied, ensuring that CQTE is
identifiable from the observed data.

4.2. Spatiotemporal VCDP Models

Suppose that the experiment last for n days, and each day is
divided into m time intervals. For i = 1, . . . , n, t = 1, . . . , m, and
ι = 1, . . . , r, let (Si,t,ι, Ai,t,ι, Yi,t,ι) represent the state-treatment-
outcome triplet measured from the ιth region at the tth time

interval of the ith day. For each ι, Nι denotes the neighboring
regions of ι. To model the quantiles of Yt,ι and St,ι, we extend the
two VCDP models in Section 3 to two spatialtemporal VCDP
(STVCDP) models in this section.

The first STVCDP model describes the quantile structure of
the outcome,

Yi,t,ι = β0(t, ι, Ui) + S�
i,t,ιβ(t, ι, Ui) + Ai,t,ιγ1(t, ι, Ui)

+ Āi,t,Nιγ2(t, ι, Ui) (14)

= Z�
i,t,ιθ(t, ι, Ui),

where Āi,t,Nι denotes the average of {Ai,t,k}k∈Nι
, Zi,t,ι =

(1, S�
i,t,ι, Ai,t,ι, Āi,t,Nι )

�, and θ(t, ι, Ui) = (β0(t, ι, Ui), β(t, ι, Ui)�,
γ1(t, ι, Ui), γ2(t, ι, Ui))�. Model (14) is based on two key
assumptions. First, it is assumed that the effect of treatments
in other regions on the conditional quantile of Yi,t,ι is limited
to those of its neighboring regions, as long as each experimen-
tal region is large enough. This is because drivers can only
travel between neighboring regions in one time unit, meaning
that treatments in non-neighboring regions are not expected
to impact Yi,t,ι. Second, it is assumed that the influence of
treatments in neighboring regions on the conditional quantile
of Yi,t,ι is only through the mean of the treatments. This is a
common mean-field assumption used to model spillover effects
(e.g., Hudgens and Halloran 2008; Shi et al. 2022). Following a
similar spirit to Shi et al. (2022), the mean-field assumption can
be tested using observed data by investigating the conditional
independence between Yi,t,ι and treatments from the neighbor-
ing regions given {Si,t,ι, Ai,t,ι, Āi,t,Nι}. Our proposed method is
readily extensible to contexts where the effects of treatments in
neighboring regions are influenced solely through their quan-
tiles. Specifically, the term Āi,t,N ι in (14) and (15) below can be
replaced with the quantiles of the treatments {Ai,t,k}k∈N ι. The
theoretical results remain largely unchanged and can be estab-
lished in a similar manner, as they are derived on the framework
of conditional quantile regression. In particular, variations in
some of the predictors do not impact the theoretical validity of
our approach.

The second STVCDP model models the conditional distri-
bution of the next state given the current state-action pair as
follows:

Si,t+1,ι = φ0(t, ι) + �(t, ι)Si,t,ι + Ai,t,ι�1(t, ι)

+ Āi,t,Nι�2(t, ι) + Ei(t + 1, ι)

= 	(t, ι)Zi,t,ι + Ei(t + 1, ι),

(15)

where 	(t, ι) = [φ0(t, ι), �(t, ι), �1(t, ι), �2(t, ι)] ∈ Rd×(d+3)

and �(t, ι) is a d × d matrix of autoregressive coefficients. The
conditional mean of each entry in the error process Ei(t, ι) given
Zi,t,ι is zero. The error process is required to be independent over
time, although it may be dependent across different locations.
The varying coefficients are required to be smooth over the
entire spatial domain, which will help to reduce the variances
of the model estimators and improve the accuracy of the CQTE
estimator. The models (14) and (15) hold under the assump-
tion that the potential outcomes satisfy the quantile varying
coefficient models, as described in the supplementary material
(models (S4) and (S5)).
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The following proposition provides a closed-form expression
for CQTEτ st and proves that CQTEτ st = SCQTEτ st . Let

φt,ι(Et,ι, āt,[1:r], U)

= β0(t, ι, U) + at,ιγ1(t, ι, U) + āt,Nιγ2(t, ι, U)

+ β(t, ι, U)�
( t−1∑

k=1

{ t−1∏
l=k+1

�(l, ι)[φ0(k, ι)

+ak,ι�1(k, ι) + ak,Nι
�2(k, ι)]

})
+

t−1∏
l=1

�(l, ι)S1,ι +
t∑

k=2
[

t−1∏
l=k

�(l, ι)E(k, ι)],

where Et,ι = {S1,ι, E(2, ι), . . . , E(t, ι)} and the product∏t−1
l=k+1 �(j, ι) = 1 when t − 1 < k + 1.

Proposition 3. Suppose that CA and the conditions in eqs.
(S4) and (S5) of the supplementary material hold, and that
U is independent of the collection of error processes {Et,ι}t,ι.
Furthermore, assume that the functions φt,ι(Et,ι, 1t,[1:r], τ) and
φt,ι(Et,ι, 0t,[1:r], τ) are nondecreasing in τ for any Et,ι. Then, we
have

CQTEτ st = SCQTEτ st

=
r∑

ι=1

m∑
t=1

{γ1(t, ι, τ) + γ2(t, ι, τ)}

+
r∑

ι=1

m∑
t=2

β(t, ι, τ)�
⎧⎨⎩

t−1∑
k=1

⎡⎣ t−1∏
j=k+1

�(j, ι)

⎤⎦ [�1(k, ι)

+�2(k, ι)]
}

.

Proposition 3 provides a foundation for constructing a plug-
in estimator for CQTEτ st . This forms the basis of the proposed
inference procedure, which we discuss in more detail in the next
section. Additionally, from models (14) and (15), we can obtain
the expression

Yi,t,ι = β0(t, ι, τ) + S�
i,t,ιβ(t, ι, τ) + Ai,t,ιγ1(t, ι, τ)

+ Āi,t,Nιγ2(t, ι, τ) + ei(t, ι, τ),

where ei(t, ι, τ) is the residual term, defined as Z�
i,t,ι[θ(t, ι, U) −

θ(t, ι, τ)], and its conditional τ th quantile given Zi,t,ι is equal to
zero. It is worth mentioning that these models can be further
extended to incorporate the effects of states from neighboring
regions on the immediate outcome by including another mean-
field term �2(t, ι)S̄i,t,Nι , where S̄i,t,Nι = ∑

ι′∈Nι
Si,t,ι′/Nι. In this

case, the closed-form expression for CQTEτ st can be similarly
derived.

4.3. Estimation and Inference Procedures

In this section, we outline the estimation and testing procedures
for CQTEτ st .

First, we calculate raw estimators of the unknown coefficients
in the two STVCDP models. For each region ι, we employ stan-
dard quantile regression and linear regression as shown in (7)

and (8) to the data subsets {(Zi,t,ι, Yi,t,ι)}i,t and {(Zi,t,ι, Si,t+1,ι)}i,t
to obtain the initial estimators θ̂ (t, ι, τ) and 	̂(t, ι) for θ(t, ι, τ)

and 	(t, ι), respectively. Next, we apply kernel smoothing tech-
niques as illustrated in (9) and (10) to refine these initial estima-
tors over time. We denote the resulting estimators as θ̃0(t, ι, τ)

and 	̃0(t, ι).
Second, we further refine these raw estimators by employ-

ing kernel smoothing to borrow information across space.
Specifically, we define θ̃ (t, ι, τ) = ∑r

�=1 κ�,h(ι)θ̃
0(t, �, τ) and

	̃(ν)(t, ι) = ∑r
�=1 κ�,hst (ι)	̃

0(ν)(t, �), where 	̃0(ν)(t, ι) is the
νth column of 	̃0(t, ι) and κ�,hst (ι) is a normalized kernel func-
tion with bandwidth parameter hst . The kernel function κ�,hst (ι)

is given by

κ�,hst (ι) = K((uι − u�)/hst)K((vι − v�)/hst)∑r
j=1 K((uι − uj)/hst)K((vι − vj)/hst)

,

where (uι, vι) represents the longitude and latitude of region ι.
Consequently, regions with smaller spatial distances contribute
more significantly.

Third, we estimate CQTEτ st by substituting the refined esti-
mators θ̃τ st(t, ι) and 	̃st(t, ι) and use the resulting estimator
ĈQTEτ st as the test statistic Tτ st . Finally, we introduce a boot-
strap method to test (13). During each iteration, we resample
the estimated error processes to obtain the bootstrap estimates
θ̃b
τ st(t, ι) and 	̃b

st(t, ι), and the bootstrapped statistic Tb
τ st =

ĈQTE
b
τ st . We reject H0 in (13) if Tτ st exceeds the upper αth

empirical quantile of {Tb
τ st −Tτ st}B

b=1. As this approach is highly
similar to the one presented in Section 3.3, we omit further
details for brevity.

Similar to the bandwidth selection method used in temporal-
dependent experiments, we employ the K-fold cross-validation
to simultaneously optimize the two bandwidths for both kernel
smoothing procedures. Detailed formulations can be found in
Section C of the supplementary material.

5. Direct and Indirect Effects

Recall that Proposition 2 provides the closed-form expression of
CQTEτ , which is

m∑
t=1

γ (t, τ) +
m∑

t=2
β(t, τ)�

⎧⎨⎩
t−1∑
k=1

⎡⎣ t−1∏
l=k+1

�(l)

⎤⎦�(k)

⎫⎬⎭ .

Consequently, we can divide the quantile treatment effect into
two components. Specifically, the first term

∑m
t=1 γ (t, τ) of

CQTEτ represents the direct effect of the treatment on the
immediate outcome, expressed as

CQDEτ = Qτ

( m∑
t=1

Y∗
t (1t)|Em

)
− Qτ

( m∑
t=1

Y∗
t (0, 1t−1)|Em

)
.

Observe that for each t, the two potential outcomes Y∗
t (1t)

and Y∗
t (0, 1t−1) differ in the treatment received at time t,

but they share the same treatment history. The second term∑m
t=2 β(t, τ)�

{∑t−1
k=1

[∏t−1
l=k+1 �(l)

]
�(k)

}
quantifies the car-

ryover effects of past treatments on the current outcome, defined
as

CQIEτ = Qτ

( m∑
t=1

Y∗
t (0, 1t−1)|Em

)
− Qτ

( m∑
t=1

Y∗
t (0t)|Em

)
.
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Similar decompositions have been considered in Li and Wager
(2022) and Shi et al. (2022).

The corresponding testing hypotheses are given by

HD
0 : CQDEτ ≤ 0 versus HD

1 : CQDEτ > 0, (16)
HI

0 : CQIEτ ≤ 0 versus HI
1 : CQIEτ > 0. (17)

Testing these hypotheses not only enables us to determine
whether the new policy is significantly better than the old one
or not, but also helps us understand how the new (or the old)
policy outperforms the other.

To test (16) and (17), we use the two-step estimators in (9) and
(10) to construct the plug-in estimators ĈQDEτ and ĈQIEτ for
CQDE and CQIE, respectively. Next, we employ the bootstrap
method in Section 3.3 to approximate the limiting distributions
of ĈQDEτ and ĈQIEτ under the null hypotheses. We note that
although ĈQDEτ has a tractable limiting distribution and is
asymptotically normal, estimating its asymptotic variance with-
out using bootstrap remains challenging.

Finally, we can similarly define the direct effect and indirect
effect in the spatiotemporal design as follows,

CQDEτ st =
r∑

ι=1

m∑
t=1

{γ1(t, ι, τ) + γ2(t, ι, τ)},

CQIEτ st =
r∑

ι=1

m∑
t=2

β(t, ι, τ)�

×
⎡⎣ t−1∑

k=1

⎛⎝ t−1∏
j=k+1

�(j, ι)

⎞⎠ {�1(k, ι) + �2(k, ι)}
⎤⎦ .

The estimation and inference procedures can be derived
similarly.

6. Real Data Analysis

To address (Q1)–(Q3), we apply the proposed test procedures to
the three real datasets obtained from Didi Chuxing introduced
in Section 2.

First, we examine the dataset from a temporally dependent
A/B experiment conducted from December 10, 2021 to Decem-
ber 23, 2021. As detailed in Section 2, two order dispatch policies
are tested in alternating 1-hr time intervals. The new policy,
in comparison to the old one, is designed to fulfill more call
orders and elevate drivers’ total income. As for the choices of the
observation variables, our recommended approach is to care-
fully select state variables that effectively capture the demand
and supply dynamics of the ridesharing platform while exerting

a substantial influence on the outcome of interest. To bolster
the selection process, we advocate subjecting potential state
variables to the Ljung-Box test. State variables that pass this
test tend to be more fitting; their residuals reflect a temporal
independence congruent with our modeling prerequisites. We
set drivers’ total income as the outcome, and the observation
variables include the number of call orders and drivers’ total
online time. To address question (Q1), we apply model (3) to
elucidate the correlation structure between supply and demand
and model (4) to elucidate the temporal interference effects.
For question (Q3), we use the testing procedure described in
Section 3.3 for these temporally dependent experiments. As a
means to validate the proposed test, we also apply our proce-
dure to the A/A dataset outlined in Section 2, where a single
order dispatch strategy is employed. We anticipate that our
test will not reject the null hypothesis when applied to this
dataset.

In Figure 3, we display the estimated residuals of the outcome
over time for τ ∈ {0.1, 0.5, 0.9} of the A/B experiment. As can
be seen from Figure 3, some residuals are significantly larger
than others, suggesting that the outcome likely originates from
heavy-tailed distributions. This reinforces the use of quantile
treatment effects for policy evaluation. We further investigate
the correlations of Ei(t) in real-world data scenarios. For the
temporally A/B experiment, involving observation variables
such as the number of call orders and drivers’ total online time,
we apply the Ljung-Box test to assess the correlations of the
two residual processes. The resulting p-values for the residuals
of the number of call orders and drivers’ total online time are
0.083 and 0.162, respectively, indicating no/weak autocorrela-
tions over time. Table 1 presents the p-values of the proposed

Table 1. p-values of the proposed test for CQDEτ and CQIEτ , as well as p-values of
direct effect and indirect effect for average effects for both datasets from the A/A
experiment and A/B experiment, using the time-alternation design.

p-values for AA p-values for AB

τ CQDEτ CQIEτ CQDEτ CQIEτ

0.1 0.286 0.084 0.208 0.076
0.2 0.522 0.096 0.080 0.060
0.3 0.530 0.098 0.002 0.068
0.4 0.568 0.122 0.010 0.086
0.5 0.536 0.116 2e-4 0.072
0.6 0.464 0.100 0.002 0.068
0.7 0.548 0.102 7e-4 0.092
0.8 0.606 0.108 2e-4 0.068
0.9 0.322 0.102 7e-5 0.100
Average effect 0.800 0.220 0.046 0.956

Figure 3. Estimated residuals of drivers’ total income at quantile levels 0.1, 0.5, and 0.9 in the temporal dependent A/B experiment.
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Figure 4. Estimates of CQDEτ and CQIEτ and their p-values across quantile levels for the A/B experiment under the temporal design.

Figure 5. Estimates of CQDEτ st and CQIEτ st and p-values for the spatiotemporal data across quantiles.

test for CQTEτ , CQDEτ , and CQIEτ , respectively. Further-
more, Figure 4 illustrates the estimated treatment effects and the
p−values across various quantiles for the A/B experiment. As
expected, the proposed test does not reject the null hypothe-
sis at any quantile level when applied to the A/A experiment.
However, when applied to the A/B experiment, the new policy
demonstrates significant quantile direct effects on the business
outcome at most quantile levels. In contrast, the indirect effects
are not significant. For comparison, we also report the p-values
for testing the average direct and indirect effects in Table 1. These
p-values are calculated by replacing the quantile function in the
proposed test procedure with the mean function. Similar to the
proposed test, in the A/A experiment, both the direct effect and
the indirect effect are not significant. For the A/B experiment,
the direct effect is significant at 5% significance level and the
indirect effect is not significant. To the contrary, the proposed
quantile-based test suggests that the direct effect is significant
only at higher quantile levels (when τ ≥ 0.2). This highlights the
strengths of our test. Namely, it enables us to evaluate treatment
effects across different quantiles, thereby providing a richer and
more comprehensive understanding than a sole focus on the
average effect would allow.

Second, we analyze the dataset from the spatiotemporal
dependent experiment as described in Section 2. Recall that in
this experiment, the city is divided into 12 regions. Policies are
implemented based on alternating 30-min time intervals within
each region. We concentrate on a data subset collected from
7 a.m. to midnight each day, as there are relatively few order
requests from midnight to 7 a.m. The drivers’ total income and
the number of call orders are designated as the outcome and state
variable, respectively. We fit the spatiotemporal VCDP models
(14) and (15) to address (Q2), and apply the testing procedure
from Section 4.3 to address (Q3) for this spatiotemporal depen-
dent experiment. Our aim is to determine whether the new
policy has significant treatment effects on drivers’ total income
across various quantile levels.

Table 2. p-values and estimators of CQDEτ st and CQIEτ st for the spatiotemporal
data, as well as p-values of direct effect and indirect effect for average effects.

τ p-valueCQDEτ st p-valueCQIEτ st
̂CQDEτ st ̂CQIEτ st

0.1 0.290 0.024 1.566 14.153
0.2 0.072 0.036 3.403 15.002
0.3 0.026 0.020 4.022 16.032
0.4 0.032 0.016 3.678 16.939
0.5 0.010 0.022 5.482 17.725
0.6 0.004 0.020 5.902 18.559
0.7 0.004 0.022 7.139 19.535
0.8 0.006 0.014 5.746 20.473
0.9 7e-4 0.008 8.414 21.320
Average effect 0.001 0.040 5.525 16.496

Before we fit the models, we conduct the conditional
independence test the conditional independence between
Yi,t,ι and treatments from the neighboring regions given
{Si,t,ι, Ai,t,ι, Āi,t,Nι} in each region, leading to 12 p-values. The
minimal p-value of the 12 regions is 0.144, indicating that the
mean-filed assumption holds for this dataset. For each quantile
level, we implement the proposed estimation and testing pro-
cedures on the data. The p-values are generated through the
bootstrap procedure outlined in Section 4, using 500 bootstrap
samples. The estimation and testing results for CQDEτ st and
CQIEτ st are summarized in Table 2 and Figure 5. The treatment
effects are significant at most quantile levels, and both the esti-
mated direct and indirect effects are positive across all quantiles.
Generally, these effects escalate with the quantile level. However,
the new policy doesn’t seem to boost the lower quantile of the
outcome (e.g., τ = 0.1). These results underline the heteroge-
neous effects of the new policy across different quantile levels.
Furthermore, we calculate the p-values for testing the average
direct and indirect effects and report them in Table 2. While
both average effects are found to be statistically significant, our
proposed quantile-based test reveals that the direct effect is
significant only when τ > 0.1. Additionally, while the mean of
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Figure 6. Empirical rejection rates of the proposed test for CQTEτ . TI equals 1 for the top panels and 3 for the bottom panels. The quantile level τ = 0.2, 0.5, and 0.8, from
left to right plots.

the estimated quantile effects—aggregated across various quan-
tile levels—closely approximates the ATE, these effects exhibit
variability around ATE across different quantiles. Once again,
these findings underscore the merits of our proposed quantile-
based approach, which facilitates a more nuanced and com-
prehensive understanding of treatment effects across various
quantile levels.

Finally, we display the scaled outcomes, and residuals for the
representative region 5 over time, with τ ∈ {0.1, 0.5, 0.9}, in
Figure S4 of the supplementary material. It is evident that there
may be several outliers in the data. This observation further
supports the use of quantiles as the evaluation metric. Similar
patterns are observed for other regions as well.

7. Real Data based Simulations

In this section, we evaluate the finite sample performance of
the proposed estimation and testing procedures through sim-
ulations. Simulation experiments are conducted based on the
real dataset collected from the A/A experiment described in
Section 2. Recall that 1 hr is defined as a time unit, and drivers’
total income within each time unit is set as the outcome of
interest. The observation variables correspond to the number
of call orders and drivers’ total online time. These variables
characterize the demand and supply of the ridesharing platform
and have a substantial impact on the outcome.

Example 1. In this example, we investigate the finite sample
performance of the proposed test CQTE, CQDE and CQIE,
respectively. For a given quantile level τ , we fit the proposed
VCDP models (3) and (4) to the data by setting γ (t, τ) = �(t) =
0, since the two policies being compared are essentially the same.
This enables us to obtain the estimated model parameters β̃0τ (t),
β̃τ (t), φ̃0(t), and �̃(t) and the estimated error processes ẽi(t, τ)

and Ẽi(t) for 1 ≤ t ≤ 24 and 1 ≤ i ≤ 68. To simulate data, we set
γ̃ (t, τ) = δQτ (Yt) and �̃(t) = δE(St) for some constant δ ≥ 0,

where Qτ (Yt) and E(St) denote the (elementwise) empirical τ th
quantile of {Yit}i and empirical mean of {Sit}i, respectively. The
constant δ controls the strength of CQTE, no CQTE exists if
δ = 0, and the new policy is better if δ > 0.

We employ the bootstrap method for data generation. Specif-
ically, in each simulation run, we randomly sample n initial
observations and n error processes with replacement. Then,
we generate n days of data according to the proposed VCDP
models:

Ỹi,t = β̃0(t, τ) + S̃�
i,tβ̃(t, τ) + Ai,tγ̃ (t, τ) + ẽi(t, τ),

S̃i,t+1 = φ̃0(t) + �̃(t)̃Si,t + Ai,t�̃(t) + Ẽi(t + 1),

based on these samples and the estimated model parameters.
The treatments Ai,t are generated according to the temporal
alternation design. Specifically, we first implement one policy
for TI time units, then switch to the other policy for another TI
time units, and alternate between the two policies. We consider
a wide range of simulation settings by setting τ ∈ {0.2, 0.5, 0.8},
n ∈ {20, 40}, TI ∈ {1, 3}, and δ ∈ {0, 0.01, 0.025, 0.05, 0.075, 0.1}.
For each scenario, we generate 500 simulation runs to compute
the empirical Type-I error rate and power. The significance level
is fixed at 5% throughout the simulation.

Figure 6 presents the empirical rejection rates of the proposed
test for CQTE (refer also to Table S1 in the supplementary
material). The Type-I error is around the nominal level in all
cases. The empirical power generally increases with the sample
size and approaches 1 as the signal strength δ increases to 0.1.
Furthermore, the empirical power increases with the quantile
level τ , which is expected since γ̃ (τ , t) is set to be proportional
to Qτ (Yt), whose values increase with the quantile level. These
results validate our theoretical assertions. We also report the
empirical rejection rates of the proposed test for CQDE and
CQIE in Figures S1 and S2 of the supplementary material,
respectively. The results are very similar to those of CQTE. It is
worth noting that the power for CQDE is generally larger than
that of CQTE, whereas the power for CQIE is generally smaller
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Figure 7. Empirical rejection rates of the proposed test and the NoInterference method for CQTEτ and the test for ATE when n = 40. TI equals 1 for the top panels and 3
for the bottom panels. The quantile level τ = 0.2, 0.5, and 0.8, from left to right plots.

than that for CQTE. This is because the test statistics of CQIE
have larger variances than those of CQDE.

Example 2. In this example, following a suggestion from one
of the reviewers, we compare the proposed CQTE test with
two baseline methods. The first method, denoted as “NoInt-
erference”, ignores temporal interference and treats each time
interval as independent. The second method is designed to test
the average treatment effect (ATE), which is commonly used in
ridesharing platforms. We conduct the ATE test by replacing the
quantile function in the proposed test procedure with the mean
function.

The data settings are similar to those in Example 1, with the
exception that we scale both the outcome and observation vari-
ables by their standard deviation. Additionally, we fix γ̃ (t, τ) =
0 and generate data from the following heterogeneous VCDP
model,

Ỹi,t = β̃0(t, τ) + S̃�
i,tβ̃(t, τ) + Ai,tγ̃ (t, τ) + 0.2(̃S(1)

i,t )2̃ei(t, τ),

S̃i,t+1 = φ̃0(t) + �̃(t)̃Si,t + Ai,t�̃(t) + 0.2(̃S(1)
i,t )2Ẽi(t + 1),

where S(1)
i,t represents the first observational covariate.

Consequently, the error processes at each time point are
heteroscedastic.

Figure 7 displays the empirical rejection rates of the proposed
CQTE test and the NoInterference method for CQTE, as well
as the test for ATE when n = 40. The results for n = 20 can
be found in the supplementary material and exhibit a similar
pattern to the n = 40 results. Notably, the NoInterference
method fails to detect the treatment effect in all scenarios, as
expected, since the treatment has no direct effect but exhibits an
indirect effect on the outcome. In contrast, both the proposed
CQTE test and the ATE test not only maintain Type-I error
control but also effectively identify causal effects. It’s important
to note that heteroscedastic errors can impact the estimation of
β̃(t, τ) and subsequently affect the indirect effect. Since β̃(t, τ)

behaves differently across various quantile levels, the magnitude

of this influence varies accordingly. Specifically, for the lower
quantile level τ = 0.2, the ATE test exhibits higher statistical
power compared to the proposed method. However, for quantile
levels τ = 0.5 and τ = 0.8, the CQTE test demonstrates supe-
rior power when contrasted with the ATE test. This difference
in power is primarily due to the influence of heteroscedastic
errors on estimation and tests based on linear regression. In
contrast, the proposed test, which relies on quantile regression,
proves to be robust even in the presence of such heteroscedas-
tic errors. These results highlight the value of the proposed
test in detecting treatment effects when compared to baseline
methods.

Additionally, we conduct another simulation study in Exam-
ple S2 of the supplementary material where the causal effect
exists but ATE=0. In this case, the test for ATE fails to capture the
treatment effect, while the proposed method not only captures
distributional treatment effects but also unveils distinct treat-
ment effects at different quantile levels.

8. Discussion

As we did not impose any constraints, our proposed estima-
tion procedure may not guarantee monotonicity with respect
to the quantile location. In the existing literature, three preva-
lent approaches are employed to mitigate the issue of cross-
ing quantile curves in quantile estimation methods, the post-
processing approach that involves sorting or monotonically rear-
ranging the original functions (e.g., Chernozhukov, Fernández-
Val, and Galichon 2010), the stepwise procedure that iteratively
adds an extra set of non-crossing constraints to the quantile
model (e.g., Andriyana and Gijbels 2017), and the simultane-
ous estimation approach that estimates all quantiles concur-
rently while incorporating non-crossing constraints (e.g., Bon-
dell, Reich, and Wang 2010). To address the crossing issue in
our proposed method, we could consider adapting these existing
strategies. For example, inspired by Bondell, Reich, and Wang
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(2010), we could impose a non-crossing restriction such that
z�θ(t, τj) ≥ z�θ(t, τj−1), j = 2, . . . , q for any z and any
desired quantile levels τ1 < · · · < τq when estimating the
model parameters via (7). These extensions are worthy of further
investigation.

Supplementary Materials

The supplementary materials contain the code, additional simulation
results, theoretical results and the corresponding proofs.
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