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“The best thing about being a statistician is that you get to play in everyone's backyard.”
- John Tukey -




—— Brain Imaging for Brain Disorders —

Capture the brain structure and function changes associated
with major brain-related disorders and normal development
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Genetics of Brain Disorders

Most major brain disorders (like AD) are heritable complex traits/diseases

Together 50%-70% of AD risk 2
75%-90% of ADHD risk f,,«xé‘%
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— Brain Imaging Genetics Paradigm —

Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders
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— “Big Data” Imaging Cohorts —
“Big data” Brain imaging datasets become available in recent few years

Systematically collect publicly available individual-level data for > 120k individuals
Build the largest database in this field
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— Why Imaging Traits? —

For the endophenotype (or imaging traits)

= Bereproducible and heritable.

= Being informative about disorder risk.

= Providing mechanistic connections linking genetic variation to clinical measures.
= Some imaging traits (or brain circuits) may be treatable (e.g., ECT, TMS).

* Increasing the power of genetic search for polygenic genetic architecture.

A
Tau-mediated neuronal injury and dysfunction

Brain structure
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— Brain Imaging Modality Examples —
Harmonize tools/pipelines to consistently generate the

full spectrum of neuroimaging features
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White matter microstructure
(Structural connectivity,
diffusion MRI)

Functional networks
(Functional connectivity,
functional MRI)




—41 APQOE-associations across functional networks+—

observations: 1) Enriched in the secondary visual and default mode networks;
2) Stronger connections in fMRI than in structural MRI.
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It's just a beginning

Publications (2018+)

Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023). S ®
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Genetic influences on the shape of brain ventricular and subcortical structures (2022). medRxiv, : .

Common variants contribute to intrinsic human brain function networks (2022). Nature Genetics. nature genEtlc MAAAS

Genetic influences on the intrinsic and extrinsic functional organizations of the cerebral cortex (2021). medRxiv, 21261187.

Common genetic variation influencing human white matter microstructure (2021). Science,

Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits (2021). Nature Communications,

842872.
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.
cognitive and mental health traits (2019). Nature Genetics, 51(11), 1637-164/. nature genetlcs
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Molecular Psychiatry, in press.

Heritability of regional brain volumes in large-scale neuroimaging and genetic studies (2018). Cerebral Cortex, 29(7),

We make our research results publicly available by building the follgiiing.yesaices.

If you are interested in other summary-level data from our analyses or have any questions or comments, feel free to contact Bingxin Zhao (bingxin@purdue.edu)

or Hongtu Zhu (htzhu@email.unc.edu).

We build a GWAS browser using the to explore GWAS results for massive functional, structural, and diffusion neuroimaging traits. Currently, we

support GWAS results of 2104 traits trained in the UKB British cohort (n~34,000), including

1. 635 EI ) (diffusion MRI)
376 [ . (structural MRI)
191 ICA-based functional MRI traits (rs-fMRI(ICA))

Genetics discovery in human brain by big data integration




Brain Imaging Genetics Knowledge Portal
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|IG: Reproducibility and Heritability
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—

UK Biobank has collected and continues to collect
extensive environmental, lifestyle, and genetic data
on half a million participants.

ukbiobank.ac.uk
Researcher login

biobank’

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health
information from half a million UK participants. The database is regularly augmented with additional data and is globally
accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is
a major contributor to the advancement of modern medicine and treatment and has enabled several scientific
discoveries that improve human health.
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Brain, heart and full body MR imaging, plus full
body DEXA scan of the bones and joints and an ultrasound of
the carotid arteries. The goal is to image 100,000 participants,
and to invite participants back for a repeat scan some years
later.

Genotyping, whole exome sequencing & whole
genome sequencing for all participants.
Linkage to a wide range of electronic
health-related records, including death, cancer,
hospital admissions and primary care records.

Data on more than 30 key biochemistry
markers from all participants, taken from samples collected at
recruitment and the first repeat assessment.

Physical activity data over a 7-day period
collected via a wrist-worn activity monitor for 100,000
participants plus a seasonal follow-up on a subset.

Data on a range of exposures and
health outcomes that are difficult to assess via routine health
records, including diet, food preferences, work history, pain,
cognitive function, digestive health and mental health.

A full baseline assessment
is undertaken during the imaging assessment of 100,000
participants.
Blood & urine was collected from all participants,
and saliva for 100,000.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078

—  Multiorgan Dysfunction Syndromes  +—

Imaging: help understand the complex interplay between brain and other
human organs and their underlylng genetic overlaps
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Possible causal factors of brain structure changes, Many diseases (e.g., microvascular

resulting in brain disorders like disease, high blood pressure) are
stroke, dementia and cognitive impairment multisystem disorders




— The Brain-Heart AxIs —

The brain-heart axis refers to the bidirectional communication between the brain and the heart, playing a
crucial role in regulating physiological functions and maintaining overall health.

Neural Regulation:

regulate heart
rate, blood pressure, and cardiac output.

reduce heart rate and promoting relaxation.

Endocrine Pathways:

The heart ensures a

Influences heart function through the release of hormones, continuous supply of oxygenated blood to the

affecting blood pressure and cardiovascular health. brain, essential for cognitive functions and
Adrenaline and noradrenaline released neural health.

during stress increase heart rate and cardiac output. Mechanisms

that maintain stable blood flow to the brain
despite changes in systemic blood pressure.



—
Disease Interactions:

Conditions like atrial

fibrillation and heart failure are linked to brain diseases such as
stroke, dementia, and cognitive impairment due to reduced

cerebral perfusion.

Mental IlInesses, including

schizophrenia, bipolar disorder, epilepsy, and depression,
increase the risk of CVD.

Acute Mental Stress:

Acute stress can

cause vascular inflammation and increase the risk of

atherosclerosis due to stress-induced leukocyte migration.

The Brain-Heart AxIs

Research Significance:

Lead
to better treatments for neurocardiological
disorders.

A need for larger
studies to provide a complete picture of the
structural and functional links between heart
and brain health.



Overview —

RESEARCH

RESEARCH ARTICLE SUMMARY

HUMAN GENETICS

Heart-brain connections: Phenotypic and genetic

insights from magnetic resonance images

Bingxin Zhao, Tengfei Li, Zirui Fan, Yue Yang, Juan Shu, Xiaochen Yang, Xifeng Wang, Tianyou Luo,
Jiarui Tang, Di Xiong, Zhenyi Wu, Bingxuan Li, Jie Chen, Yue Shan, Chalmer Tomlinson, Ziliang Zhu,

Yun Li, Jason L. Stein, Hongtu Zhu*
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— Phenotypic Heart-Brain Connections +—
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— SNP heritability of 82 CMR traits +—
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—] Genetics of CMR traits in the UKB +—
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— Selected genetic loci —

chri1, Region: 11¢g24.3
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MR: Causal heart-brain relationships

Exposure

Category

Outcome

Method

Coefficient

WT AHA 9

L\

Bipolar disorder

VW (fixed)
VW (random)
DIVWAS
MR RAPS

Cross disorders

VW (fixed)
MW (random)

DI
GRAPPLE
MR RAPS

WT AHA 12

Cross disorders

VW (fixed)
VW (random)

GRAPPLE
MR RAPS

AAo min area

Cross disorders

VW (fixed)

Weighted Mode

DIVW

MR RAPS

WT AHA 11

Depression
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MR RAPS

Afo max area

Psychiatric diseases
(FinnGen)
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{(FinnGen)
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Potential heart-brain relationships +—

Shared genetic and genomic
factors
(For example, shared risk loci,
Broce et al. (2), PMID: 30413934)

Cardiovascular disease/dysfunction
Ly (For example, chronic systemic hypoperfusion,
| Moroni et al. (5), PMID: 29946567)

1 [

{ B -
éVR ) Mental health disorders and
T .

negative psychological factors
(For example, mental stress, Hinterdobler

et al. (18), PMID: 34279021)
(measured by CMR) (measured by brain MRI)

a

Heart health Brain health

A

Aging and specific disease processes
(For example, diabetes,
Jensen et al. (20),

PMID: 31522551)

Mental health issues-induced behavioral and
biological processes
(For example, smoking initiation and
dysregulation of the autonomic nervous
Cardiovascular risk factors system, Levine et al. (11), PMID: 33486973)

(For example, smoking, high blood
pressure, high cholesterol, and unhealthy —t—————
diet, Cox et al. (19), PMID: 30854560)




— The Brain-Eye AXis —
The brain-eye axis refers to the complex and interconnected relationship between the brain and the
eyes, essential for visual perception, processing, and overall neurological function.

Anatomical Connections: Eye Movements and Brain Function:
The optic nerve transmits visual information Eye movements are
from the retina to the brain’s visual centers. controlled by cranial nerves (lll, 1V, VI). Attention
and Cognition: The brain coordinates eye

The retina contains

photoreceptor cells that detect light and initiate vision. IOTEMIETE:

Visual Processing: Feedhack Loops

initheloccipitallobemi The brain modulates visual

. . : : rocessing based on contextual information
processes visual information received from the eyes. P g ’

attention, and experience.
For object recognition, spatial

. i The brainr lates th
awareness, and motion detection. e brain regulates the

pupil and lens to control how much light enters the
eye and focuses on objects at different distances.



— The Brain-Eye Axis —

Health and Disease

Changes in the retina and
optic nerve can be early indicators of neurological diseases
like Alzheimer's, Parkinson’s, and multiple sclerosis.

Conditions like glaucoma, optic
neuritis, and retinal degeneration affect both vision and brain

function, showing how interdependent the brain and eyes are.

Strokes that affect the brain’s visual
pathways can lead to visual field defects and other
disturbances.

Clinical Relevance

Eye health and retinal imaging
can serve as non-invasive markers for
detecting brain health, especially in diseases
like Alzheimer's and multiple sclerosis.

This field bridges
neurology and ophthalmology, focusing on
conditions that affect both the brain and
eyes, such as optic neuropathies and visual
processing disorders.
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— Phenotypic Eye-Brain Connections +—

Both OCT and fundus imaging traits are associated with regional brain volumes,
cortical thickness, and white matter microstructures.

® Cortical thickness ® Regional brain volumes ® Task fMRI traits

® DTI parameters Resting fMRI traits
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B DTl parameters and GCIPL thickness (left) C DTl parameters and overall macular thickness (left)
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— Genetic Eye-Brain Connections —
Examples of shared genetic influence between eye and brain disorders
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Foundation Models for Medical Imaging
Analysis

”Oddly, we are in a period where there has never been such a wealth of new statistical
problems and sources of data. The danger is that if we define the boundaries of our field in
terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”
- Leo Breiman -




— Image Processing Analysis Methods —

How to enhance and extract signals of interest in imaging data?

P — N

D \ &
. | 0—0
WWERY

» Image Enhancement

% Image Registration
[Z
P&
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Organ parcellation

Surgical planning
Image-guided interventions
Computer-aided diagnosis
Quantification of organ change

Structural Learning —

YV V V VYV

O oo regisvamEm.

Localization of pathology
Automated image segmentation
Multimodal fusion

Population analysis
Quantification of organ changes




— Medical Image Foundation Model (MIFM)—

Medical Image Data Model of
i ‘ Specific Task

| MRl CT  RGB
| Segmentation

X-ray  Ultrasound Fine-tuning

Classification

Pretrained Model >—l poundationy

Model N . . . . . - .

egistation 1) Medical foundation models have immense potential in solving a wide range of
Ada ation
e downstream tasks

(% Tracking 2) Help to accelerate the development of accurate and robust models, reduce the
dependence on large amounts of labeled data

Shaoting Zhang and Dimitris Metaxas. On the challenges and perspectives of foundation models for medical image analysis. Medical Image Analysis, 2023



— Al for Image Segmentation —

Segmentation Annotation

SimpleClick bemo -0 @

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick:

Interactive Image Segmentation with Simple Vision Transformers.
ICCV., 22290-22300. 2023.

U-Nets
..I:@:
..-. Iwﬂl
- -BE 1
Shared the |. MMT’E%}". rs.e;';;‘;;;o.n,l‘
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R. Azad et al., “Medical Image Segmentation Review:

The success of U-Net.” arXiv, Nov. 27, 2022.

Minaee, Shervin, et al. "Image segmentation using

deep learning: A survey." IEEE PAMI 44.7 (2021): 3523-3542.



— MIFM for Segmentation —

1) Developed on a large-scale medical image
dataset with 1,570,263 image-mask pairs,
covering 10 imaging modalities and over 30
cancer types.

2) Evaluation on 86 internal validation tasks and 60

external validation tasks, demonstrating better
accuracy and robustness than modality-wise
specialist models.

3) Delivering accurate and efficient segmentation
across a wide spectrum of tasks.

Jun Ma, ..., Bo Wang. Segment Anything in Medical Images. Nature Communications, 2024.



—iSuperfast Spherical Surface Registration +—

Subject surface Deformation field Moved subject surface Atlas surface

Zhao F, Wu Z, Wang F, Lin W, Xia S, Shen D, Wang L, Li G. S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Trans Med Imaging 2021; 40(8):
1964-1976.



— MIFM for Registration —

Example uniGradlCON Registrations

Source Source+Grid Difference

1) Great performance across multiple
datasets which is Not feasible for current
learning-based registration methods

2) Zero-shot capabilities for new registration
tasks suitable for different anatomical
regions, and modalities

Datasets

3) A strong initialization for finetuning on
out-of-distribution registration tasks

Lin Tian, ..., Marc Niethammer. uniGradlCON: A Foundation Model for Medical Image Registration. MICCAI, 2024.



— Cross-Modality Image Synthesis  +—

Real MRI

1632 128 1

1 128 64 32 16

e N
I’ 7X7 %7 Convolution .

4 N
Residual Net Block

I’ 4X4X4 Convolution (RNE)

Ii 3X3X%X3 Convolution

Ii 3X3%3 Deconvolution

@ Addition
N

) Real PET




CBSS: Connectome-based Spatial Statistics

A\
¥ ROI atlas \!,‘ .
P40 Registered Graph

TBSS Pipeline v} FA map representation

Downstream Analysis:
GWAS, lifespan, disease

Mean fiber Elastic Quality
register control

:‘g \‘.‘!' ‘ e ¥

1mm Dilated Projected FA Aligned FA  ICC/ Refined

Fibertracking  alignment S.4 Application and BFSC refinement

High-resolution HCP dataset: (two days) Other datasets: UK Biobank, ABCD (10 minutes)

Stagel: BFESC Stage?2: CBSS




CBSS: Reproducibility and QC

6090 fibers

ICCs of FA along fibers

Mean ICC=0.74

Mean ICC=0.76
5723 fibers g "



Downstream analysis: Heritability
Our results Literature

Phenotype h h2 SE Intercept Intercept SE Lambda Nean |:I1i2 Ratio Ratio SE
FC-Visual 2
FC-Somatomotor

FC-Dorsal Attention

FC-Ventral Attention

FC-Limbic

FC-Frontoparietal
FC-Default

SC-Visual
SC-Somatomotor
SC-Dorsal Attention
SC-Ventral Attention
SC-Limbic
SC-Frontoparietal
SC-Default

(SR S S S R S ]

Reproducibility




Downstream analysis: APOE Assoc.
-0.030

 CBA (connectome-based
analysis)
For each fiber extract the mean FA

» Structural connectivities (FA) of
fibers within visual network and
between visual and subcortical
networks are negatively affected.

Linear models:

Fiber-Mean FA~ APOE4 + Age + Sex+ Age*Sex+ site + education + top 10 genetic PCs



—  Evaluating and Sharing Pipelines +—

More good data processing pipeline papers  » Good datasets for comprehensive

evaluation. There is no publicly available,

high-quality imaging datasets with

detailed annotation information that cover
https://github.com/data-processing-pipeline a large spectrum of segmentation tasks

In health care.

Ko @ github.com (&)

Article

= (up ) Sign in Variability in the analysis of asingle

neurolmaging dataset by manyteans » How to quantify the uncertainty and
generalizarability of brain atlas as well as
segmentation and registration tools?

data-processing-
pipeline

() Overview [ Repositories 3

Popular repositories

» How to develop foundational models for
various segmentation and registration
tasks?
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Highly Efficient Imaging Genetic Methods

“Statistical methods become truly impactful when they are not just about fitting models, but about
driving discovery—by making complex imaging data interpretable, reproducible, and
applicable in clinical practice.
- chatGPT-




. Brain Imaging Genetics Data Analysis .

Association tests ‘ |dentify and replicate novel genetic factors associated
with brain structure and function

Causal inference/ ‘ Analyze the genetic links among brain structure, brain function,
Mediation analysis cognition, and major brain disorders.

Data integration ‘ Integrate external genetics/genomics data (e.g., the GTEx, Hi-C
chromatin interactions) to uncover new biological insights

Predictive model ‘ Perform out-of-sample risk prediction for brain disorders using
genetics, genomics, and imaging data

1) Output high-quality novel clinical findings

2) ldentify, model, and address important statistical problems
3) Share our summary-level data/results to the research community



__Imaging Genetics: Learning Problems__

(a) Learning Problems in Brain

; : Brain imagin i
Imaging Genomics §ing Genomics

* Voxels, ROIs, spatial correlation * SNPs, LD blocks
Multimodal, longitudinal studies * Genes, pathways, networks
Prior knowledge, brain network <:> * Polygenic risk scores (PRSs)

e[l 2 |7 | LT —

Fundamentals \ JUSUUE oo 8L

Meta-analysis
Multivariate regression

Bi-multivariate correlation

Heritability estimation of brain
imaging phenotypes

Genetic variation

(b) Biomedical | Clinical outcome Cognitive Condition Diagnosis
— Application E'agnos"s
. . rogr on
Integrating imaging anq ' Considerations ogressio @ o ] [ ]
genomics for outcome prediction * Impairment score © Begn @

‘Normal‘ ‘ SMC ‘

() Statistical & Increasing power Overfitting control Other topics

* Quantitative traits * Dimensionality reduction * Biological interpretation

* Multiple comparison * Regularization * Scalability

* Meta/mega analysis * Knowledge-guided learning * Biased sampling
Multivariate models * Qutcome-guided learning * Interaction

Machine
Learning
Considerations




— Imaging-derived phenotypes (IDPs) —

Parcellating the human brain based on predefined atlases;
aggregating voxels within each ROI (e.g., taking average) | (

3,‘"

Conducting independent component analysis (ICA); extracting
components as phenotypes

Extracting features from deep learning models (e.g., Autoencoder)

Missing localized genetic architecture
In brain structure and function
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Neuroimaging Genetic Knowledge Portals —
AR

PUBLICATIONS

77
9199V

WorkiNG GROUPS RESEARCH PRess ENiGMAVIS
- ProtocoLs EVenTs TRAINING

Join ENIGMA

Brain Imaging Genetics Knowledge Portal (BIG-KP)
Genetics Discoveries e
JOIN OUR MAILING LisT!

ries in Human Brain by Big Data Integration

Healthy Variation

Genomics

ENHANCING NEURO IMAGING GENETICS THROUGH META ANALYSIS
Disease

What is ENIGMA?

Algorithm Development

Collaborations

About BIG-KP

‘ e
.

This knowledge portal provides a platform for accelerating genetic discoveries in the human brain
5000+ full

summary statistics

10 11 12

13 14 15 16 17 18 19202122 X

Oxford Brain Imaging Genetics Server - BIG40

Wellcome Centre for Integrative Neuroimaging (WIN/FMRIB), Oxford, UK
Department of Statistics and Actuarial Science, Simon Fraser University, Canada

Led by Lloyd T. Elliott (SFU) and Stzephen Smith (Oxford)

Q




—  Computational and Statistical Challenges —

GLOBAL
CORE

%“ GWAS Catalog L QE

i_m The NHGRI-EBI Catalog of human genome-wide association studies

t\g E 3 Examples: Parkinson disease, rs3093017, Yao, 2937.2, HBS1L, 6:167120000-167130000, GCST90132222, PMID:35241825

Candidate Gene

Do you access GWAS Catalog data programmatically via our REST API or a third-party software
package?
If so, please give us your feedback via this short survey.

i

Genome-wide SNP
" Geneticist

Candidate ROI

+ Download L Summary statistics = Submit

Download a full copy of the GWAS Catalog in Documentation and access to full summary statistics for Submit summary statistics to GWAS Catalog.
spreadsheet format as well as current and older GWAS Catalog studies where available.
versions of the GWAS diagram in SVG format.

As of 2024-09-13

« 73,886 published studies
* 97,102 full summary statistics




— Resources Challenges —

NEWS / COMMUNITY

Neuroimaging researchers pen
statement protesting UK Biobank

data-access changes

The signatories asked the organization to grant all imaging researchers a data-
download exemption until the cloud platform can accommodate their processing




— Challenges in Voxel-level GWAS —

Computationally intractable
« High dimensionality of both imaging (10*~10°) and genetic data (10%)

Difficult to share summary statistics
« The data volume can be 100 times larger than the current size of GWAS catalog

Multiple comparison in hypothesis testing across voxels
« Voxels are highly correlated

Noises in imaging data
« Reducing statistical power and reliability
* Intensifying challenges in identifying genetic architectures underlying brain
structures and functions



— Current Solutions & Limitations

Considering multiple genetic markers simultaneously
Screening candidate markers
Using rank-reduction or Bayesian techniques

Voxel/local heritability

Genetic correlation between voxels and with other phenotypes
Colocalization analysis

Mendelian randomization



—Highly efficient imaging genetics (HEIG) —

Using functional PCA (or other DR methods) to derive low-dimensional
representations (LDRS)

Dimension reduction by 2-3 orders of magnitude

Removing white noise while preserving majority of imaging signals

LDR construction through FPCA

n x N imaging data n % r LDRs nxrLDRs

r x r Var matrix of LDRs

r x N bases
FPCA dmat
EEE—— es imate
- X
approximate

Dimension reduction by 1-3 orders of magnitude (r << N)




— Highly efficient imaging genetics (HEIG)

Conducting GWAS on LDRs and , VoxeHlevel GWAS using LORS
reconstructing voxel-level summary statistics Fx Var mrix of LORS
) ) . ' nxrLDRs d SNPs
Global and local inspection for genetic d xr GWAS results ofLORS d x Nvokehlevel GIWAS resuls

Li

associations without atlas

Reducing time and memory consumption by
over 100 times

Effectively protecting the type | error and
boosting statistical power

Using the effective number of independent
voxels to adjust for multiple comparison

recover

—
rx N bases 0(dN)

Advantages

NO atlas required Global and local inspection Time complexity Type | error Boosting statistical power
~ for genetic associations O(dnr + dNr) << O(dNn) well controlled by utiizing spatial
g Space complexity T correlation through FPCA
0(cr) << O(dN)

|

| | '

. 4 D
T




— Highly efficient imaging genetics (HEIG)

o e s Sharing datasets for secondary analyses

C

LD matrix fi f |
A minimal dataset with size O(dr + Nr + r?) shared with the community it A

rxrVarmatrix of LDRs  d x r summary statistics of LDRs rx N bases

An atlas of imaging heritability Genetic correlation between ROls Cross-trait genetic correlation

Alzheimer’s disease
Schizophrenia
Bipolar disorder
Insomnia

Educational attainment

Sharing minimal datasets with the
community for all secondary
analyses

Proposing a unified estimator to
investigate voxel heritability, genetic
correlation between voxels, and
cross-trait genetic correlation
between voxels and non-imaging
phenotypes



— Real data analysis —

UK Biobank 33,324 unrelated European subjects

Hippocampus shape (15,000 vertices in each of left and right hemispheres)

White matter (WM) microstructure (21 tracts, from 88 to 3,503 voxels, 32,217 in total)
Surface curvature (the whole brain, 59,412 vertices)

Genetic data: 7.8 million common variants

Hippocampus shape: 25 (0.13%) LDRs

WM microstructure: 49 (4.1%) LDRs

Surface curvature: 1,750 (2.9%) LDRs

Using only 49, 1,034, and 1,750 LDRs to capture signals in 30,000, 32,217, and 59,412

voxels/vertices, respectively



— Real data analysis

High correlation between the raw and reconstructed images using LDRs

* Hippocampus shape: 0.93 with 25 (0.13%) LDRs
WM microstructure: 0.86 with 49 (4.1%) LDRs
« Surface curvature: 0.85 with 1,750 (2.9%) LDRs




— Real data analysis

Voxel-level GWAS — hippocampus and WM microstructure

« GWAS on 1,083 LDRs generated 95 GB of data, 133 times
less than storing every voxel-variant pair (12,611 GB)

« ldentified 815 significant loci, of which 94 and 540 are novel
for hippocampus shape and WM microstructure, respectively,
compared to IDP-based studies

* In areplication study (n=6,168), 39% of loci can be replicated

« Consistent with GWAS on voxels (raw data), but boosting
statistical power for significant associations

rs798528, r=0.98 rs12668367, r=0.99 rs798528, r=0.95 rs12668367, r=0.96

ik
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— Real data analysis —

chr13, Region: 13g31.1

chr3, Region: 3q24

- Discovered novel loci and colocalizations ! s e [r—— e
with brain-related phenotypes including il T oo
iInsomnia, major depressive disorder, and
smoking/drinking

« Z-score correlation = 0.98 with GWAS

Y <° P . &
e T e R 2" %) . . ) Hippocampus (right) © 1536188842
o 152279829 e Foneg I A e, SRR U B

_:ﬂ;‘i—o O PRI A 5. et :‘.”,: PO o et

LTI SEIE TR Py ~ L PER LR
1scR o 1s2279829
1

directly on voxels

— SNP in GWAS panels GWAS catalog

deii S e . Lo $ oy
o oo s SRURSTL TR IT S sartiin’s T r b et e ar el 2o, e 2
o 152279829 ¢ Top SNP Brain region volumes

® r’=0.8 Cortical surface area
0.8>r2=0.6 ® Cortical thickness
®©06>rr=204 B Functional connectivity
©04>r220.2 ® White matter connectome
©02>r2=20 | = Educational attainment
P<5x10% ® Major depressive disorder
P <494 x10° Smoking/Drinking
or1.91 x 10 Insomnia

dNs doy ey
o (1) a1

Hiépocampal ‘ivail

Hippgcampal




— Real data analysis —

« GWASo0n 1,750 LDRs generated 87 GB of Left hemisphere Right hemisphere
data to share, 138 times less than storing '
every vertex-variant pair (12,042 GB)

« Identified 1,431 significant loci, of which
912 (63.7%) were replicated (n=12,431)

« Postcentral and precentral regions were Superior
enriched with significant vertices ) S, R Qf*b
< [ ’\: 28 by | " A H v' y ‘\u' b\..' 7y

associated with at least one SNP




— Real data analysis —

« Constructed an atlas of heritability using LDR summary statistics and an LD matrix

« Identified shared genetic bases between subregions

« Highly consistent with SumHer in heritability estimates and with LDSC in genetic
correlation estimates, despite distinct methodology

Hippocampus (Left) Hippocampus (Left)
r=0.93, ¢i%=0.63 r=0.91, ¢i%=0.56

L R

Hippocampal tail

BCC
Fimbria

"
AR
e

Al
\# o [ 1 ¢
s - { \ - / - /
Sy My \ 58 < > 7 3 .
. » \ > 2
» 8 014 s 2
9 47\ Y = /" b4 /
CA3 X R ; 2] i g 3 8
\ D Q At & 0 - i $ J g ‘
' v oo L
/ N )
CAl — - / ‘ sl Heritability by HEIG on raw data Genetic correlation by HEIG (90% of variance)

/ | \
PCR scc PCR SFO SFO
r=0.86, i%=0.63 r=0.87, ¢i%=0.64

CA1

raw data

Presubiculum

)

Subiculum

Heritability by SumHer on

Heritability by HEIG on raw data Genetic correlation by HEIG (80% of variance)




— Real data analysis —

Hippocampus (presubiculum) with educational attainment (-13%, P = 0.001)
Right anterior corona radiata with schizophrenia (-9%, P = 4.3 x 107°)
Genu of the corpus callosum with bipolar disorder (-16% ~ 0%, se = 2.6%)

Hippocampus - EA ACR - Schizophrenia GCC - Bipolar disorder

Anterior

Posterior




— Computational efficiency  —

Comparing with REGENIE using 193 voxels, 33,324 subjects, and 7.8 million SNPs

HEIG took 13 CPU hours and generated 4.1 GB of data for sharing
REGENIE took 107 CPU hours and generated 127 GB of data of all variant-voxel pairs

Benchmarking study using the surface area data of the whole brain with
59,412 vertices, 15,752 subjects, and 7.8 million SNPs

HEIG took 2.8 hours to construct 1750 LDRs (4 CPUs in parallel)

GWAS for 1750 LDRs using REGENIE took 56 hours (16 CPUs in parallel)
Voxel-level GWAS using HEIG took 32 hours (4 CPUs in parallel)

Generated 87 GB of data for sharing

HEIG took 20 minutes for estimating 59,412 vertex heritability and genetic correlation



— Contributions —

Reducing time and storage consumption by 2-3 orders of magnitude
Efficiently generating and sharing summary statistics for voxel-level analysis
Enhancing statistical power and genetic influence by removing white noise
Investigating genetic architectures underlying both global and local patterns in
the human brain without predefined atlases

Straightforward extension to other organs and high-dimensional datasets with

strong correlation
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