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Genetic Architecture of Human Organs 
and Associated Diseases

“The best thing about being a statistician is that you get to play in everyone's backyard.”
- John Tukey -
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Brain Imaging for Brain Disorders

BIG-KP | https://bigkp.org/

Capture the brain structure and function changes associated 

with major brain-related disorders and normal development

Alzheimer’s disease (AD) is 

associated with brain shrinkage 

Normal AD

Normal AD
Neuropsychiatric

disorders
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Genetics of Brain Disorders

BIG-KP | https://bigkp.org/

Most major brain disorders (like AD) are heritable complex traits/diseases

Complex traits/diseases

(many genes, 

environmental factors, 

complex functional 

mechanism)

Many genes contribute to 

the risk of AD

(polygenic genetic architecture)

(small but nonzero contribution)
Genetic signals are non-spare

and weak:

Need large sample size to 

detect weak signals

Together 50%-70% of AD risk

75%-90% of ADHD risk

60%-85% of Schizophrenia risk
~80% of Autism Spectrum Disorder (ASD) risk
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Brain Imaging Genetics Paradigm

UNC Biostatistics

Neuroimaging: an important component to help understand the 

complex biological pathways of brain disorders 

Genes Brain 
disorders

molecules, brain cells, structure/function→

BIG-KP | https://bigkp.org/

Uncover the profile of brain 
abnormalities in each clinical outcome 

to study how disorders develop

Changes in neural interactions, 
altered brain structure/function

Biological 

causes

Molecular function and 

cell metabolism

Social and psychological influences

Gene expression at RNA 

and protein levels

Changes in neuron structure

and function
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“Big Data” Imaging Cohorts

ADNI 
(Age [55,92])

RADC 
(Age > 65)

UK Biobank
(n ~ 100k [Ongoing], 

Age [40,69]))

“Big data” Brain imaging datasets become available in recent few years
Systematically collect publicly available individual-level data for > 120k individuals

Build the largest database in this field   

ABCD
(n ~ 10k, 

Age [9,11])

PNC 
(Age [14,29])

PING 
(Age [3,21])

HCP
(Age [22,35])

BIG-KP | https://bigkp.org/

BCP
(Age [0,5])

UNC Biostatistics

IMAGEN 
(Age [14,22])

NACC
(Age [36+])

HCP-D 
(Age [5,22])

HBCD
(Age [0,10])

HCP-A
(Age [36+])
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For a heterogeneous, clinically defined disorder,  the endophenotype (or imaging traits) 

is ‘closer to the underlying biology,’  

▪ Be reproducible and heritable. 

▪ Being informative about disorder risk. 

▪ Providing mechanistic connections linking genetic variation to clinical measures.

▪ Some imaging traits (or brain circuits) may be treatable (e.g., ECT, TMS). 

▪ Increasing the power of genetic search for polygenic genetic architecture. 

Why Imaging Traits? 

BIG-KP | https://bigkp.org/UNC Biostatistics
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Brain Imaging Modality Examples

UNC Biostatistics

White matter microstructure
(Structural connectivity, 

diffusion MRI)

BIG-KP | https://bigkp.org/

Functional networks
(Functional connectivity, 

functional MRI)

Harmonize tools/pipelines to consistently generate the 
full spectrum of neuroimaging features 

Cortical and subcortical structures
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APOE-associations across functional networks

Two observations: 1) Enriched in the secondary visual and default mode networks;
2) Stronger connections in fMRI than in structural MRI.
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It's just a beginning

UNC Biostatistics BIG-KP | https://bigkp.org/

Hundreds of associated genetic variants for 2100+ neuroimaging traits across six 

modalities: (grey matter volume, white matter microstructure, resting-state functional 

connectivity+rfMRI, task fMRI, shape, heart )  

Genetics discovery in human brain by big data integration
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Brain Imaging Genetics Knowledge Portal 

UNC Biostatistics BIG-KP | https://bigkp.org/

bigkp.org

Aim to build the best knowledge 

database of neuroimaging genetics

Searchable database for 

2000+ neuroimaging traits 

across four imaging modalities: 

(grey matter volume, white 

matter microstructure, resting-

state and task functional 

activity/connectivity)  
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(B)IG: Reproducibility and Heritability

BIG-KP | https://bigkp.org/



The UK Biobank Study

2006-now

UK Biobank has collected and continues to collect 

extensive environmental, lifestyle, and genetic data 

on half a million participants.

•Imaging: Brain, heart and full body MR imaging, plus full 

body DEXA scan of the bones and joints and an ultrasound of 

the carotid arteries. The goal is to image 100,000 participants, 

and to invite participants back for a repeat scan some years 

later.

•Genetics: Genotyping, whole exome sequencing & whole 

genome sequencing for all participants.

•Health linkages: Linkage to a wide range of electronic 

health-related records, including death, cancer, 

hospital admissions and primary care records.

•Biomarkers: Data on more than 30 key biochemistry 

markers from all participants, taken from samples collected at 

recruitment and the first repeat assessment.

•Activity monitor: Physical activity data over a 7-day period 

collected via a wrist-worn activity monitor for 100,000 

participants plus a seasonal follow-up on a subset.

•Online questionnaires: Data on a range of exposures and 

health outcomes that are difficult to assess via routine health 

records, including diet, food preferences, work history, pain, 

cognitive function, digestive health and mental health.

•Repeat baseline assessments: A full baseline assessment 

is undertaken during the imaging assessment of 100,000 

participants.

•Samples: Blood & urine was collected from all participants, 

and saliva for 100,000.

https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078
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Multiorgan Dysfunction Syndromes

UNC Biostatistics

Imaging: help understand the complex interplay between brain and other 

human organs and their underlying genetic overlaps

BIG-KP | https://bigkp.org/

Many diseases (e.g., microvascular 

disease, high blood pressure) are 

multisystem disorders

Possible causal factors of brain structure changes, 

resulting in brain disorders like

stroke, dementia and cognitive impairment
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(A) (B)The Brain-Heart Axis

BIG-KP | https://bigkp.org/

The brain-heart axis refers to the bidirectional communication between the brain and the heart, playing a 

crucial role in regulating physiological functions and maintaining overall health.

Neural Regulation:
• Autonomic Nervous System (ANS): regulate heart 

rate, blood pressure, and cardiac output.

• Vagus Nerve: reduce heart rate and promoting relaxation.

Endocrine Pathways:
• Hypothalamic-Pituitary-Adrenal (HPA) Axis:
Influences heart function through the release of hormones，
affecting blood pressure and cardiovascular health.

• Catecholamines: Adrenaline and noradrenaline released 

during stress increase heart rate and cardiac output.

Blood Flow and Oxygen Supply:
• Cerebral Perfusion: The heart ensures a 

continuous supply of oxygenated blood to the 

brain, essential for cognitive functions and 

neural health.

•Cerebral Autoregulation: Mechanisms 

that maintain stable blood flow to the brain 

despite changes in systemic blood pressure.
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(A) (B)The Brain-Heart Axis

BIG-KP | https://bigkp.org/

Disease Interactions:

• Cardiovascular Diseases: Conditions like atrial

fibrillation and heart failure are linked to brain diseases such as

stroke, dementia, and cognitive impairment due to reduced

cerebral perfusion.

• Mental Disorders: Mental illnesses, including

schizophrenia, bipolar disorder, epilepsy, and depression,

increase the risk of CVD.

Acute Mental Stress:

• Impact on Cardiovascular Health: Acute stress can

cause vascular inflammation and increase the risk of

atherosclerosis due to stress-induced leukocyte migration.

. 

Research Significance:

•Integrated Treatment Approaches: Lead
to better treatments for neurocardiological
disorders.

•Comprehensive Studies: A need for larger
studies to provide a complete picture of the
structural and functional links between heart
and brain health.
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Heart health

(measured by CMR)

Left ventricle

Right ventricle 

Left atrium 

Right atrium 

Ascending aorta 

Descending aorta

Structural MRI

Diffusion MRI 

Resting functional MRI

Task functional MRI

Brain health

(measured by brain MRI)

Overview



Overview



Phenotypic Heart-Brain Connections

4 cardiac chambers (the left ventricle 

(LV), right ventricle (RV), left atrium 

(LA), and right atrium (RA)); and 2 

aortic sections (the ascending aorta 

(AAo) and descending aorta (DAo)) 



SNP heritability of 82 CMR traits

4 cardiac chambers (the left ventricle 

(LV), right ventricle (RV), left atrium 

(LA), and right atrium (RA)); and 2 

aortic sections (the ascending aorta 

(AAo) and descending aorta (DAo)) 



Genetics of CMR traits in the UKB

Ideogram of 80 genomic regions 

associated with CMR traits

LV end-systolic volume (LVESV)



Selected genetic loci  

Maximum area of 

ascending aorta 

Volume of 

cerebrospinal fluid 

(CSF) Brain MRI

Heart MRI



Genetic Correlations



MR: Causal heart-brain relationships



Cardiovascular risk factors
(For example, smoking, high blood 

pressure, high cholesterol, and unhealthy 
diet, Cox et al. (19), PMID: 30854560)

Shared genetic and genomic 
factors

(For example, shared risk loci, 
Broce et al. (2), PMID: 30413934)

Heart health
(measured by CMR)

Brain health
(measured by brain MRI)

Stroke (Gardener et al. (1), 
PMID: 26481296)

Alzheimer's Disease (Broce et al. (2), 
PMID: 30413934)

Cognitive impairment (Abete et al. (4), 
PMID: 25107566)

Schizophrenia (Jindal et al. (14), 
PMID: 16327872)

Bipolar disorder (Nielsen et al. (15), 
PMID: 33128044)

Depression (Tawakol et al. (16), 
PMID: 28088338)

Epilepsy (Verrier et al. (17), 
PMID: 32109857)

Aging and specific disease processes
(For example, diabetes, 

Jensen et al. (20), 
PMID: 31522551)

Mental health disorders and
negative psychological factors

(For example, mental stress, Hinterdobler
et al. (18),  PMID: 34279021)

Mental health issues-induced behavioral and 
biological processes 

(For example, smoking initiation and 
dysregulation of the autonomic nervous 

system, Levine et al. (11), PMID: 33486973)

Coronary artery disease (Krantz et al. 
(12), PMID: 24677165)

Atrial fibrillation (Kwok et al. (6), 
PMID: 21383328)

Heart failure (Vogels et al. (9), 
PMID: 17174152)

Myocardial infarction (Levine et al. 
(11), PMID: 33486973)

Ventricular arrhythmias (Abisse et al.
(13), PMID: 21920534)

Left ventricular hypertrophy 
(Papadopoulos et al. (3), 

PMID: 32635685)

Cardiovascular disease/dysfunction
(For example, chronic systemic hypoperfusion, 

Moroni et al. (5), PMID: 29946567) 

Potential heart-brain relationships
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(A) (B)The Brain-Eye  Axis

BIG-KP | https://bigkp.org/

The brain-eye axis refers to the complex and interconnected relationship between the brain and the 
eyes, essential for visual perception, processing, and overall neurological function.

Anatomical Connections:

• Optic Nerve:   The optic nerve transmits visual information 

from the retina to the brain’s visual centers. 

• Retina as a Brain Extension: The retina contains 

photoreceptor cells that detect light and initiate vision. 

Visual Processing:

• Primary Visual Cortex (V1) in the occipital lobe. V1 
processes visual information received from the eyes.

• Higher Visual Areas: For object recognition, spatial 
awareness, and motion detection.

Eye Movements and Brain Function:

• Oculomotor Control: Eye movements are 
controlled by cranial nerves (III, IV, VI). Attention 
and Cognition:  The brain coordinates eye 

movements. 

Feedback Loops:

• Top-Down Control: The brain modulates visual 
processing based on contextual information, 
attention, and experience.

• Autonomic Regulation: The brain regulates the 
pupil and lens to control how much light enters the 
eye and focuses on objects at different distances.
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(A) (B)The Brain-Eye Axis

BIG-KP | https://bigkp.org/

Health and Disease

Neurodegenerative Diseases: Changes in the retina and 

optic nerve can be early indicators of neurological diseases 

like Alzheimer's, Parkinson’s, and multiple sclerosis.

Visual Disturbances: Conditions like glaucoma, optic 

neuritis, and retinal degeneration affect both vision and brain 

function, showing how interdependent the brain and eyes are.

Stroke and Vision: Strokes that affect the brain’s visual 

pathways can lead to visual field defects and other 

disturbances.

Clinical Relevance

Diagnostics: Eye health and retinal imaging 

can serve as non-invasive markers for 

detecting brain health, especially in diseases 

like Alzheimer's and multiple sclerosis.

Neuro-Ophthalmology: This field bridges 

neurology and ophthalmology, focusing on 

conditions that affect both the brain and 

eyes, such as optic neuropathies and visual 

processing disorders.
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Eye as a window to the brain?

Retinal optical coherence 
tomography (OCT)

Fundus 

photography
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Phenotypic Eye-Brain Connections
Both OCT and fundus imaging traits are associated with regional brain volumes, 

cortical thickness, and white matter microstructures.

White matter traits
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Examples of shared genetic influence between eye and brain disorders

Genetic Eye-Brain Connections

Schizophreni
a

Glioma/GB
M



Foundation Models for Medical Imaging 
Analysis

”Oddly, we are in a period where there has never been such a wealth of new statistical
problems and sources of data. The danger is that if we define the boundaries of our field in
terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”

- Leo Breiman -
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Image Processing Analysis Methods

➢ Image Enhancement

❖ Image Segmentation

➢ Image Reconstruction

❖ Image Registration

UNC Biostatistics BIG-KP | https://bigkp.org/

Engineering Machine 
Learning

MathematicsStatistics

Deconvolution

Structural Learning



Structural Learning

❖ Organ parcellation

❖ Localization of pathology

❖ Surgical planning

❖ Image-guided interventions

❖ Computer-aided diagnosis

❖ Quantification of organ change 

➢ Organ atlas 

➢ Localization of pathology

➢ Automated image segmentation 

➢ Multimodal fusion

➢ Population analysis

➢ Quantification of organ changes

Image Segmentation Image Registration



Medical Image Foundation Model (MIFM)

Spectrum of foundation models in medical image analysis

Shaoting Zhang and Dimitris Metaxas. On the challenges and perspectives of foundation models for medical image analysis. Medical Image Analysis, 2023.

1) Medical foundation models have immense potential in solving a wide range of 

downstream tasks

2) Help to accelerate the development of accurate and robust models, reduce the 

dependence on large amounts of labeled data



Segmentation Annotation U-Nets

AI for Image Segmentation

R. Azad et al., “Medical Image Segmentation Review: 
The success of U-Net.” arXiv, Nov. 27, 2022.

Minaee, Shervin, et al. "Image segmentation using 

deep learning: A survey." IEEE PAMI 44.7 (2021): 3523-3542.

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick: 

Interactive Image Segmentation with Simple Vision Transformers. 

ICCV.,  22290-22300. 2023.



MIFM for Segmentation

Jun Ma, …, Bo Wang. Segment Anything in Medical Images. Nature Communications, 2024.

MedSAM: Segment Anything in Medical Images

1) Developed on a large-scale medical image 

dataset with 1,570,263 image-mask pairs, 

covering 10 imaging modalities and over 30 

cancer types.

2) Evaluation on 86 internal validation tasks and 60 

external validation tasks, demonstrating better 

accuracy and robustness than modality-wise 

specialist models. 

3) Delivering accurate and efficient segmentation 

across a wide spectrum of tasks.



Superfast Spherical Surface Registration

Zhao F, Wu Z, Wang F, Lin W, Xia S, Shen D, Wang L, Li G. S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Trans Med Imaging 2021; 40(8): 
1964-1976. 

Subject surface Atlas surfaceDeformation field Moved subject surface



MIFM for Registration

1) Great performance across multiple 

datasets which is Not feasible for current 

learning-based registration methods

2) Zero-shot capabilities for new registration 

tasks suitable for different anatomical 

regions, and modalities

3) A strong initialization for finetuning on 

out-of-distribution registration tasks

uniGradICON：A Foundation Model for Medical Image Registration

D
a
ta

s
e
ts

Example uniGradICON Registrations

Lin Tian, …, Marc Niethammer. uniGradICON: A Foundation Model for Medical Image Registration. MICCAI, 2024.



Cross-Modality Image Synthesis

Synthetic PET

Synthetic MRI
3232

Residual Net Block 

(RNB)

Real PET
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CBSS 

workflow

Stage1: BFSC Stage2: CBSS

CBSS: Connectome-based Spatial Statistics 
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CBSS: Reproducibility and QC

UNC School of Medicine

ICCs of FA along fibers

Mean ICC=0.74

Mean ICC=0.76

5723 fibers
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Downstream analysis: Heritability

UNC School of Medicine

Mean 

= 0.33

LiteratureOur results 

Reproducibility Heritability
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Downstream analysis: APOE Assoc.

UNC School of Medicine

Mean 

= 0.33

-0.015

-0.030

• CBA (connectome-based 

analysis)

For each fiber extract the mean FA

• Structural connectivities (FA) of 

fibers within visual network and 

between visual and subcortical 

networks are negatively affected.

Linear models:

Fiber-Mean FA~ APOE4 + Age + Sex+ Age*Sex+ site + education + top 10 genetic PCs



Evaluating and Sharing Pipelines

https://github.com/data-processing-pipeline 

➢ Good datasets for comprehensive  

evaluation. There is no publicly available, 

high-quality imaging  datasets with 

detailed annotation information that cover 

a large spectrum of segmentation tasks  

in health care.

➢ How to quantify the uncertainty and 

generalizarability of brain atlas as well as 

segmentation and registration tools?

➢ How to develop foundational models for 

various segmentation and registration 

tasks?

More good data processing pipeline papers



Highly Efficient Imaging Genetic Methods

“Statistical methods become truly impactful when they are not just about fitting models, but about 

driving discovery—by making complex imaging data interpretable, reproducible, and

applicable in clinical practice.

- chatGPT-
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Brain Imaging Genetics Data Analysis

UNC Biostatistics

Identify and replicate novel genetic factors associated 

with brain structure and function

Analyze the genetic links among brain structure, brain function, 

cognition, and major brain disorders.

Integrate external genetics/genomics data (e.g., the GTEx, Hi-C 

chromatin interactions) to uncover new biological insights 

Perform out-of-sample risk prediction for brain disorders using 

genetics, genomics, and imaging data  

1) Output high-quality novel clinical findings

2) Identify, model, and address important statistical problems 

3) Share our summary-level data/results to the research community  

BIG-KP | https://bigkp.org/

Predictive model

Association tests

Data integration

Causal inference/

Mediation analysis 



Heritability estimation of brain 
imaging phenotypes

Integrating imaging and 
genomics for outcome prediction

Imaging genomics associations
• Fundamentals
• Meta-analysis
• Multivariate regression
• Bi-multivariate correlation

(a) Learning Problems in Brain 
Imaging Genomics

(c) Statistical & 
Machine 
Learning 

Considerations

Increasing power
• Quantitative traits
• Multiple comparison
• Meta/mega analysis
• Multivariate models

Overfitting control
• Dimensionality reduction
• Regularization
• Knowledge-guided learning
• Outcome-guided learning

Other topics
• Biological interpretation
• Scalability
• Biased sampling
• Interaction

Clinical outcome
• Diagnosis
• Progression
• Impairment score

Brain imaging
• Voxels, ROIs, spatial correlation
• Multimodal, longitudinal studies 
• Prior knowledge, brain network

Genomics
• SNPs, LD blocks
• Genes, pathways, networks
• Polygenic risk scores (PRSs)

(b) Biomedical 
Application 

Considerations

MRI AV45 PET FDG PET

Genetic variation

A
B

2

3
1

D

4 C

End

Begin

SMCNormal

Diagnosis

ADMCI

Cognitive Condition

Brain Imaging Genetics: Learning Problems

(Shen & Thompson Proc. of the IEEE 2020)
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Imaging-derived phenotypes (IDPs)

• Parcellating the human brain based on predefined atlases; 

aggregating voxels within each ROI (e.g., taking average)

• Restricted by atlas

• Removed local variations

• Conducting independent component analysis (ICA); extracting 

components as phenotypes

• Extracting features from deep learning models (e.g., Autoencoder)

• Difficult to interpret the connection between the human brain and 

genetic markers

Missing localized genetic architecture 
in brain structure and function



MORE THAN JOURNEY     didiglobal.com

Neuroimaging Genetic Knowledge Portals

• 5000+ full 

• summary statistics
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• 73,886 published studies

• 97,102 full summary statistics

As of 2024-09-13

UNC Biostatistics BIG-KP | https://bigkp.org/

WGS/WES

10,000-1M

Computational and Statistical Challenges
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Resources Challenges

UNC Biostatistics BIG-KP | https://bigkp.org/

10000x50$=0.5M$;  0.1Mx50$=5M$; 1Mx50$=50M$
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Challenges in Voxel-level GWAS

• Computationally intractable

• High dimensionality of both imaging (104~106) and genetic data (108)

• Difficult to share summary statistics

• The data volume can be 100 times larger than the current size of GWAS catalog

• Multiple comparison in hypothesis testing across voxels

• Voxels are highly correlated

• Noises in imaging data

• Reducing statistical power and reliability

• Intensifying challenges in identifying genetic architectures underlying brain 

structures and functions
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Current Solutions & Limitations

• Considering multiple genetic markers simultaneously

• Screening candidate markers

• Using rank-reduction or Bayesian techniques

Cannot generate whole-genome summary statistics 

needed for secondary analyses

• Voxel/local heritability

• Genetic correlation between voxels and with other phenotypes

• Colocalization analysis

• Mendelian randomization
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Highly efficient imaging genetics (HEIG)

• Using functional PCA (or other DR methods) to derive low-dimensional 

representations (LDRs)

• Dimension reduction by 2-3 orders of magnitude

• Removing white noise while preserving majority of imaging signals



MORE THAN JOURNEY     didiglobal.com

Highly efficient imaging genetics (HEIG)

• Conducting GWAS on LDRs and 

reconstructing voxel-level summary statistics

• Global and local inspection for genetic 

associations without atlas

• Reducing time and memory consumption by 

over 100 times

• Effectively protecting the type I error and 

boosting statistical power

• Using the effective number of independent 

voxels to adjust for multiple comparison
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Highly efficient imaging genetics (HEIG)

• Sharing minimal datasets with the 

community for all secondary 

analyses

• Proposing a unified estimator to 

investigate voxel heritability, genetic 

correlation between voxels, and 

cross-trait genetic correlation 

between voxels and non-imaging 

phenotypes
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Real data analysis

• UK Biobank 33,324 unrelated European subjects

• Hippocampus shape (15,000 vertices in each of left and right hemispheres)

• White matter (WM) microstructure (21 tracts, from 88 to 3,503 voxels, 32,217 in total) 

• Surface curvature (the whole brain, 59,412 vertices)

• Genetic data: 7.8 million common variants

Input data

• Hippocampus shape: 25 (0.13%) LDRs

• WM microstructure: 49 (4.1%) LDRs

• Surface curvature: 1,750 (2.9%) LDRs

• Using only 49, 1,034, and 1,750 LDRs to capture signals in 30,000, 32,217, and 59,412 

voxels/vertices, respectively

Constructing low-dimensional representations (LDRs) 
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Real data analysis

High correlation between the raw and reconstructed images using LDRs 

• Hippocampus shape: 0.93 with 25 (0.13%) LDRs 

• WM microstructure: 0.86 with 49 (4.1%) LDRs

• Surface curvature: 0.85 with 1,750 (2.9%) LDRs
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Real data analysis

• GWAS on 1,083 LDRs generated 95 GB of data, 133 times 

less than storing every voxel-variant pair (12,611 GB) 

• Identified 815 significant loci, of which 94 and 540 are novel 

for hippocampus shape and WM microstructure, respectively, 

compared to IDP-based studies

• In a replication study (n=6,168), 39% of loci can be replicated

• Consistent with GWAS on voxels (raw data), but boosting 

statistical power for significant associations

Voxel-level GWAS – hippocampus and WM microstructure
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Real data analysis

• Discovered novel loci and colocalizations 

with brain-related phenotypes including 

insomnia, major depressive disorder, and 

smoking/drinking 

• Z-score correlation = 0.98 with GWAS 

directly on voxels

Voxel-level GWAS
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Real data analysis

• GWAS on 1,750 LDRs generated 87 GB of 

data to share, 138 times less than storing 

every vertex-variant pair (12,042 GB) 

• Identified 1,431 significant loci, of which 

912 (63.7%) were replicated (n=12,431)

• Postcentral and precentral regions were 

enriched with significant vertices 

associated with at least one SNP

Voxel-level GWAS – surface curvature
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Real data analysis

• Constructed an atlas of heritability using LDR summary statistics and an LD matrix

• Identified shared genetic bases between subregions

• Highly consistent with SumHer in heritability estimates and with LDSC in genetic 

correlation estimates, despite distinct methodology

Voxel heritability and genetic correlations
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Real data analysis

• Hippocampus (presubiculum) with educational attainment (-13%, P = 0.001)

• Right anterior corona radiata with schizophrenia (-9%, P = 4.3 × 10−5)

• Genu of the corpus callosum with bipolar disorder (-16% ~ 0%, se = 2.6%)

Cross-trait genetic correlations with 14 brain-related phenotypes
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Computational efficiency

Comparing with REGENIE using 193 voxels, 33,324 subjects, and 7.8 million SNPs

• HEIG took 13 CPU hours and generated 4.1 GB of data for sharing

• REGENIE took 107 CPU hours and generated 127 GB of data of all variant-voxel pairs

Benchmarking study using the surface area data of the whole brain with 

59,412 vertices, 15,752 subjects, and 7.8 million SNPs

• HEIG took 2.8 hours to construct 1750 LDRs (4 CPUs in parallel)

• GWAS for 1750 LDRs using REGENIE took 56 hours (16 CPUs in parallel)

• Voxel-level GWAS using HEIG took 32 hours (4 CPUs in parallel)

• Generated 87 GB of data for sharing

• HEIG took 20 minutes for estimating 59,412 vertex heritability and genetic correlation
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Contributions

• Reducing time and storage consumption by 2-3 orders of magnitude

• Efficiently generating and sharing summary statistics for voxel-level analysis

• Enhancing statistical power and genetic influence by removing white noise

• Investigating genetic architectures underlying both global and local patterns in 

the human brain without predefined atlases

• Straightforward extension to other organs and high-dimensional datasets with 

strong correlation
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