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Happy 70th Birthday, Steve Marron! 
Wishing you a wonderful celebration 
and many more joyful years ahead!



Steve Marron has been an outstanding mentor and 
collaborator to me!

Ying Yuan 2011

Yang Yu 2017

Liuqing Yang 2019

5 joint papers (2 AOAS,

1 JRSSB, 2 Sinica)+
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Object Oriented Data Analysis

”Oddly, we are in a period where there has never been such a wealth of new statistical
problems and sources of data. The danger is that if we define the boundaries of our field in
terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”

- Leo Breiman -



Object Oriented Data Analysis



Objects are everywhere

Language Translation in Natural Language Processing

Deep learning enhances real-time, accurate translation of languages, as seen in tools like Google Translate. The following 
picture shows the translation of a webpage from English to Chinese.



Objects are everywhere

Disease Detection in Healthcare and 
Medicine 



OODA/ Deep Learning Explosion

Downloaded from the NSF website and the medium.com



Deep Applications and Math/Stat
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Case Studies for OODA

“If our goal as a field is to use data to solve problems, then we need to move away 
from exclusive dependence on data models and adopt a more diverse set of tools.” 

- Leo Breiman -
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Steve Marron’s Contributions

to SAMSI and My research

UNC Biostatistics BIG-KP | https://bigkp.org/

Statistical and Applied Mathematical Sciences Institute (SAMSI)

SAMSI  summer workshop on  Neuroimaging Data Analysis (NDA)         2013 
Program Leader for SAMSI full-year program on Challenges in Computational Neuroscience (CCNS) with five 
workshops, one short course, and two regular courses                      2015-2016 
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Steve Marron’s Contributions

to SAMSI and My research

UNC Biostatistics BIG-KP | https://bigkp.org/

My three SAMSI postdoctoral fellows

Zhengwu Zhang (UNC) Yize Zhao (Yale) Benjamin Risk (Emory)



Regression Models for Manifold-value Data

Case Study I

1. Cornea, E., Zhu, H.T., Kim, P. and Ibrahim, J. G. Intrinsic regression model for data in Riemannian 

symmetric space. JRSS, Series B, 79, 463-482, 2017.

2. Shi, XY, Zhu, HT, Ibrahim, J.G., F. Liang, Styner M. Intrinsic regression models for median representation

of subcortical structures. Journal of American Statistical Association, 107, 12-23, 2012.

3. Yuan, Y., Zhu, H.T., Lin, W. L., and Marron, J. S. Local polynomial regression for symmetric positive
definitive matrices. JRSS, Series B, 74, 697-719, 2012.



Intrinsic Regression Models

Semiparametric and Nonparametric Regression for 

Manifold-valued Response from Cross-sectional, 

Longitudinal and Family-based Neuroimaging Studies 
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Intrinsic Regression Models



Intrinsic Regression 

Models

Rotated Residuals at the common tangent space

Geodesic:    g (t;q,b ) = c(t;q,b )· p

connecting base point: pÎM     and    m(x;q,b )

Intrinsic Regression Models



Real Data Analysis

Right internal capsule 48=18(m)+30(f)



PSC: Population Structural Connectome Analysis

Case Study II

1. Z. Zhang, M. Descoteaux, J. Zhang, G. Girard, M. Chamberland, D. Dunson, A. Srivastava, and H.

Zhu. (2018). Mapping Population based Structural Connectomes. NeuroImage, 172， 130-145.

2. Wang, X. F. (2021). Statistical Learning Methods for Diffusion Magnetic Resonance Imaging. Ph.D.

Dissertation.
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Brain Imaging Genetics Paradigm

• Step 2. Fiber tracking (incorporate anatomical info):

➢ Extract the connectome using dMRI and T1 image

➢ Use tractography algorithm proposed in Girard et al. 2015 

• Step1. Construct HARDI:

• Step 3. Final output:

1. More than a million streamlines

2. Each streamline has hundreds 

3D points

3. Each subject takes > 3 GBs



➢ Represent the streamlines through basis and coefficients

Efficient Representation of Streamlines

➢ Basis can be learnt from data to increase its representing power 

Step 1.  Generate atlas for streamlines connecting each pair of regions 

Step 2.  Alignment using the Elastic Shapes Analysis framework (Srivastava et al. 2012)

▪ rotation

▪ translation

▪ scaling

▪ re-parameterization

Alignment

*K-means clustering may be used if these streamlines have different shapes

Srivastava, A. and Klassen, E. P. (2017) Functional and Shape Data Analysis. 

Springer. 

Square-root velocity function (SRVF) and Fisher-Rao metric
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Population Structural Connectome

BIG-KP | https://bigkp.org/



Brain Function-based Structural Connectome Atlas

…
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Brain Function-based Structural Connectome Atlas

UNC Biostatistics BIG-S2 Lab | med.unc.edu/bigs2/Xifeng Wang| UNC Biostatistics 

Stage 2:

Creation of  Fiber Skeleton

Stage 3:

Sparse Representation

Stage 1:

Whole-brain Structural Connectome



LESA: Longitudinal Elastic Shape Analysis

Case Study III

Zhang, Z. W., Yuexuan Wu, Di Xiong, Joseph G. Ibrahim, Anuj Srivastava, and Hongtu Zhu. LESA: 

Longitudinal elastic shape analysis of brain subcortical structures (with discussion). Journal of the American 

Statistical Association, Application and Case Studies. 



Figure 1: An example of three 

different representations of 

lateral ventricle and 

hippocampus across four time 

points for a randomly selected 

subject.

Shape Changes of Brain Subcortical Structures

(Q1) How to measure developmental changes in the shape of subcortical 

regions? 

(Q2) How to quantify the effect of disease or other covariates on subcortical 

shape changes?



Longitudinal Elastic Shape Analysis 

Figure 2: A schematic overview of LESA. 



Longitudinal Shape Data Analysis

Figure 4: Trajectory fitting results of LESA from the 
observed sparse data in ADNIGO2



Data Integration via D-CCA

Case Study IV

1. H. Shu, & H. Zhu (2025). D-CDLF: Decomposition of Common and Distinctive Latent Factors

for Multi-view High-dimensional Data. Draft note available on arXiv:2407.00730v2
2. H. Shu, & H. Zhu (2025). Comments on: Data integration via analysis of subspaces (DIVAS), Test.
3. H. Shu, Z. Qu, & H. Zhu (2022). D-GCCA: Decomposition-based generalized canonical correlation

analysis for multi-view high-dimensional data. Journal of Machine Learning Research. 23(169):1–64.
4. H. Shu, X. Wang, & H. Zhu (2020). D-CCA: A decomposition-based canonical correlation

analysis for high-dimensional datasets. Journal of the American Statistical Association,115(529): 292-306.
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Low-rank Plus Noise Models

UNC Biostatistics BIG-KP | https://bigkp.org/



Steve’s Contributions



Drawback

=0
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