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Happy 70th Birthday, Steve Marron!
Wishing you a wonderful celebration
and many more joyful years ahead!




Steve Marron has been an outstanding mentor and
collaborator to me!
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Object Oriented Data Analysis

“Oddly, we are in a period where there has never been such a wealth of new statistical

problems and sources of data. The danger is that if we define the boundaries of our field in

terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”
- Leo Breiman -



— Object Oriented Data Analysis —
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—  Objects are everywhere —

Language Translation in Natural Language Processing

Deep learning enhances real-time, accurate translation of languages, as seen in tools like Google Translate. The following
picture shows the translation of a webpage from English to Chinese.

Meta

New Tools to Support Independent
Research

November 21, 2023

Facebook Al is introducing M2M-100, the first multilingual machine
translation (MMT) model that can translate between any pair of 100
languages without relying on English data. It’s open sourced here

+ When translating, say, Chinese to French, most English-centric multilingual
models train on Chinese to English and English to French, because English
training data is the most widely available. Our model directly trains on
Chinese to French data to better preserve meaning. It outperforms English-
centric systems by 10 points on the widely used BLEU metric for evaluating
machine translations. * R—EFEERE Facebook Al ZERIEH 2 A TIFEER.
RBHZAUEN 100 FESHREMNSHA MMT 5B IEENREL

M2M-100 is trained on a total of 2,200 language directions — or 10x more 270 74 ; {HiH, UMBYEAMRR M — T
than previous best, English-centric multilingual models. Deploying M2M- Meta
100 will improve the quality of translations for billions of people, especially

Meta and Christian Louboutin File
those that speak low-resource languages. Joint Lawsuit Against Counterfeiter
+ This milestone is a culmination of years of Facebook Al's foundational work November.16,2023

in machine translation. Today, we’re sharing details on how we built a more
diverse MMT training data set and model for 100 languages. We're also

nd setup to help other researchers
reproduce and further advance multilingual models.




—  Objects are everywhere —

LR

Disease Detection in Healthcare and
Medicine




— OODA/ Deep Learning Explosion —

Select Awards by year
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David Demis John M.
Baker Hassabis Jumper

“for computational “for protein structure prediction”
protein design”

John J. Hopfield Geoffrey E. Hinton

"for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Downloaded from the NSF website and the medium.com



— Deep Applications and Math/Stat +—
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Case Studies for O0DA

“If our goal as a field is to use data to solve problems, then we need to move away
from exclusive dependence on data models and adopt a more diverse set of tools.”
- Leo Breiman -



Steve Marron’s Contributions
to SAMSI and My research

NSF Duke NCSU UNC

Statistical and Applied Mathematical Sciences Institute (SAMSI)

SAMSI summer workshop on Neuroimaging Data Analysis (NDA) 2013
Program Leader for SAMSI full-year program on Challenges in Computational Neuroscience (CCNS) with five
workshops, one short course, and two regular courses 2015-2016



Steve Marron’s Contributions
to SAMSI and My research

My three SAMSI postdoctoral fellows
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Zhengwu Zhang (UNC) Yize Zhao (Yale) Benjamin Risk (Emory)



S (Gase Study|
Regression Models for Manifold-value Data

. Cornea, E., Zhu, H.T., Kim, P. and Ibrahim, J. G. Intrinsic regression model for data in Riemannian
symmetric space. JRSS, Series B, 79, 463-482, 2017.

. Shi, XY, Zhu, HT, Ibrahim, J.G., F. Liang, Styner M. Intrinsic regression models for median representation
of subcortical structures. Journal of American Statistical Association, 107, 12-23, 2012.

. Yuan, Y., Zhu, H.T., Lin, W. L., and Marron, J. S. Local polynomial regression for symmetric positive
definitive matrices. JRSS, Series B, 74, 697-719, 2012.




— Intrinsic Regression Models —

Semiparametric and Nonparametric Regression for
Manifold-valued Response from Cross-sectional,
Longitudinal and Family-based Neuroimaging Studies
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— Intrinsic Regression Models —

Conditional Mean

Riemannian logarithm maps

g(xﬂ q9 IB) — LOg,u(x q,3) (Y) D u(x,q, ﬂ)M
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Conditional Moment Model
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— Intrinsic Regression Models —

Rotated Residuals at the common tangent space

Geodesic:  y(4;9,0)=c(t;q,p)Up
connecting base pomt: p[IM and  u(x;q, )




— Real Data Analysis —
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S CaseStuayll
PSC: Population Structural Connectome Analysis

1. Z. Zhang, M. Descoteaux, J. Zhang, G. Girard, M. Chamberland, D. Dunson, A. Srivastava, and H.
Zhu. (2018). Mapping Population based Structural Connectomes. Neurolmage, 172, 130-145.

2. Wang, X. F. (2021). Statistical Learning Methods for Diffusion Magnetic Resonance Imaging. Ph.D.
Dissertation.



— Brain Imaging Genetics Paradigm —

» Extract the connectome using dMRI and T1 image

» Use tractography algorithm proposed in Girard et al. 2015

« Step1. Construct HARDI
« Step 2. Fiber tracking (incorporate anatomical info):
« Step 3. Final output:

. More than a million streamlines

. Each streamline has hundreds
3D points

Each subject takes > 3 GBs

) DiDi



— Efficient Representation of Streamlines —

> Represent the streamlines through basis and coefficients

> Basis can be learnt from data to increase its representing power

Step 1. Generate atlas for streamlines connecting each pair of regions

Step 2. Alignment using the Elastic Shapes Analysis framework (Srivastava et al. 2012)

= scaling
» re-parameterizatio

K-means clustering may be used if these streamlines have different shapes

Square-root velocity function (SRVF) and Fisher-Rao metric

Srivastava, A. and Klassen, E. P. (2017) Functional and Shape Data Analysis.
Springer.
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- _—Brain Function-based Structural Connectome Atlas,—
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UNC Biostatistics BIG-KP | https://bigkp.org/



—Brain Function-based Structural Connectome Atlas—
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S Case Stuaylil
LESA: Longitudinal Elastic Shape Analysis

Zhang, Z. W., Yuexuan Wu, Di Xiong, Joseph G. Ibrahim, Anuj Srivastava, and Hongtu Zhu. LESA:
Longitudinal elastic shape analysis of brain subcortical structures (with discussion). Journal of the American
Statistical Association, Application and Case Studies.



—{ Shape Changes of Brain Subcortical Structures|—
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Figure 1: An example of three
different representations of
lateral ventricle and
hippocampus across four time
points for a randomly selected
subject.
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(a) Lateral Ventricle (b) Hippocampus

(Q1) How to measure developmental changes in the shape of subcortical
regions?

(Q2) How to quantify the effect of disease or other covariates on subcortical
shape changes?



| Elastic Shape Analysis
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—| Longitudinal Shape Data Analysis | —

70 Age

Age 80 90/ 60

Figure 4: Trajectory fitting results of LESA from the
observed sparse data in ADNIGO2

(i) Left ventricle (ii) Left hippocampus




S Gase Study IV
Data integration via D-CCA

1. H. Shu, & H. Zhu (2025). D-CDLF: Decomposition of Common and Distinctive Latent Factors

for Multi-view High-dimensional Data. Draft note available on arXiv:2407.00730v2

2. H. Shu, & H. Zhu (2025). Comments on: Data integration via analysis of subspaces (DIVAS), Test.

3. H. Shu, Z. Qu, & H. Zhu (2022). D-GCCA: Decomposition-based generalized canonical correlation
analysis for multi-view high-dimensional data. Journal of Machine Learning Research. 23(169):1-64.

4. H. Shu, X. Wang, & H. Zhu (2020). D-CCA: A decomposition-based canonical correlation

analysis for high-dimensional datasets. Journal of the American Statistical Association,115(529): 292-306.



Low-rank Plus Noise Models

Y, . "Low-rank plus noise" modgl:

Objects
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Steve's Contributions

Assume the columns of Y, = Xy + Er = C¢ + Dy + E; € RPX"

are n i.i.d. samples of mean-zero y, = x; +e;r = cx +di + ex € RP*.

Existing methods: different in defining the common & distinctive latent factors.

JIVE R.JIVE AJIVE

Lock et al. (2013) . O’Connell & Lock (2016) Feng et al. (2018)

OnPLS DISCO-SCA COBE
Lofstedt & Trygg (2011) | Schouteden et al. (2014) Zhou et al. (2016)

SLIDE D-GCCA DIVAS
Gaynanova & Li (2019) Shu et al. (2022) | Prothero et al. (2024)




Drawback

Assume the columns of Y, = Xy + Ex = C¢ + D + E; € R

are n i.i.d. samples of mean-zero y, = x; + ex = cx + di + e € RP-.

In the (L?, E) space of mean-zero real-valued random variables, x L y < cov(x,y)=0

Drawback: Fail to well consider the orthogonality (i.e., uncorrelatedness) among
the common latent factors (CLFs) and distinctive latent factors (DLFs).

@ Some only consider the orthogonality between CLFs and DLFs
(OnPLS, DISCO-SCA, COBE, JIVE, AJIVE, DIVAS).

@ Some only consider the orthogonality btwn DLFs from different data views
(D-GCCA).

@ Some consider both the two types of orthogonality,
but either sacrifice unexplained signal as noise (R.JIVE)
or offer an asymmetrical decomp. for identically distributed signals (SLIDE).
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