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Conditional Distributional Learning: What and Why?

Objective: Estimate the full conditional distribution P(Y | X = x), not just the mean.

Motivations.

% Risk Management: Value-at-Risk and Conditional VaR quantify tail losses.

< Decision Support: Design quantile-based policies (e.g., alarm thresholds).

< Uncertainty Quantification: Build prediction intervals with guaranteed coverage.

Benefits: Captures heteroskedasticity, multimodality, tail behavior, and complex noise structures.

Applications:

» Finance: Tail risk (VaR), portfolio optimization under distributional forecasts.

» Healthcare: Personalized survival distributions, disease progression quantiles.

» Engineering: Reliability analysis, failure time distributions, safety thresholds.

» Ride-Sharing Platforms: Supply and demand, matching, dispatching, price, and subsidies.
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Computational Challenges

Major Approaches .

» Quantile Regression: He ?QJQEX’Y[‘OT(Y - f(X)) Techniques: linear, spline-based,
deep networks with non-crossing constraints.

» Distribution Regression: Model the conditional CDF via classification or monotonic splines.

» Conditional Density Estimation: Mixture density networks & normalizing flows for flexible
parametric/nonparametric densities.

» Bayesian Nonparametrics: GP conditional density models and Dirichlet process mixtures for
adaptive tail modeling. |

Challenges

% Quantile Crossing: Enforce monotonicity
across quantiles.

% Complexity: Reduce complexity in high-
dimensional X via embeddings or sparsity.

% Scalability: Efficiently fit many quantiles or
large flows on big data.

% Calibration: Validate predictive intervals

(coverage, sharpness) on held-out data.
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Question of Interest

How to establish the theoretical properties of our Non-crossing Quantile
Network from classical non-parametric quantile regression to distributional
reinforcement learning (RL)?

Shen, G,, Dai, R., Wu, G, Luo, S., Shi, C., and Zhu, H.. (2025). Deep Distributional
Learning with Non-crossing Quantile Network. https://arxiv.org/abs/2504.08215
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Background and Problem Formulation

> Quantile Regression Wlth CrOSSing Wlthout CrOSSing
Data — 7=0.5 . - Data r— T=0.50 .
— 7=0.1 — 7=0.6 : — 7=0.1 — T7=0.6
. — T7=0.2 — T1=0.7 . — T7=0.2 — T=0.7
arg mlIlEX Y[pT(Y — f(X))} 3] — 1=03 — 1=08 s . L 3l — 1=03 — 1=08
fef ’ —_— T=0.4 — T=0.9"% e s ‘ — 1=0.4 —_— 1=09" //,/j\‘

» Distributional learning:

« Let 7= (7T1,---,7TK) be anon-decreasing
sequence of K quantile levels.

e To estimate @y (7), .., QY () the
corresponding conditional quantile functions

ZEXY{P (Y o fk(X))] -02 00 02 04 ¥ 06 08 1.0 12 -02 00 02 04 X 06 08 10 52
’ Tk
k=1
. . . Fig. 1. A demonstration of quantile crossing on a simulated dataset. The
?Longstandlng Crossing Quantiles Problem  ogimated quantile curves at Tt = 0.1, 0.2, . . ., 0.9 and the observations
are depicted. The left panel presents the estimates from the deep quantile
fl (z) < fz(gg) < ... < fK(il?) regression without any constraint and there appear crossings. The right

figure presents our proposed quantile estimations with non-crossing
constraints, and there is no crossing.
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Non-Crossing Quantile Networks

1. One-Step: our estimation of the quantile neural network is implemented in one-step
without multiple iterative learning algorithms

2. Non-crossing: our quantile neural network can guarantee instead of encourage the
estimated quantile curves are non-crossing

3. Theory and Optimal Rate: our quantile neural network is supported by learning theory
and achieves minimax optimal rate of convergence for non-parametric estimation

4. Low-dimensional Result: our quantile neural network can adapt to low-dimensional
structures of data to achieve faster convergence rate.

Table 1. A comparison of recent results on quantile neural networks.

Paper One-step Non-cross Theory Low-dim Result Optimal Rate
Zhou et al. (2020) v v X X 7
Padilla et al. (2022) v v X X 7
Yan et al. (2023) X v X X ?
Shen et al. (2024) v ? v X X
This paper v v v v v
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Non-Crossing Quantile Networks

> Mean network: v(-;0)

> Gaps network: o(g(-:0)) Input - Output
e Pre-activated Gaps 9 = (91,.-.,9K) can
take negative values ) BN VEERR N s— ' -
« Apply o(z) = ELU(z) + 1 to get non- Linear G
negative gaps o(g) where Layer
ELU(z) = I(z > 0) -z + I(z < 0) - (exp(z) — 1) a4 GapsNet L ol 4 [~
Gaps
> Final Output: [ = (f1,..., fx)
k K
_ 1 . . i ) .
fk=v—g+ Z o(9i) 9= Z(K +1—7)-0o(g)) Fig. 2. A graphical illustration of the Non-Crossing
i=1 =t Quantile Network. The “Mean Net” aims to learn the
* Verifies: Mean v = K1Y K, average of all quantiles, and the “Gaps Net" aims to

learn the differences between adjacent quantiles.
Gaps o(gr+1) = frp1 — fa
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Non-Crossing Quantile Networks

> We use the figures to show how to formulate non-crossing estimation of quantiles.

. - O l i | - |I|-_ll||
Output of a neural network: Pre-activated Gaps I II ==n I L II ===

Apply the activation function o(2) = ELU(z) +1 .-_Il.III|....|I|_|I|_II.II-..I-.IlII-IlIl

Calculate the cumsum for non-crossing quantiles.  _____.. -llIIIl||l“IIIIIIIIIIIIIIIIIIIIIIIIIIIIlll
______ .-|||||III||||||||IIIIIIII

Center the outputs III““.““...---

Fig. 3. How to formulate non-crossing estimation of quantiles
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Training of NQ Networks

» Implement NQ network as a feedforward
ReLU network f : Ré% — RE+L

» Mean: v(-; 0)

Input
Mean Output

d  GapsNet L ol B L J

first output coordinate Linear

Layer

> Raw Gaps scores: g = (g1, - .-, 9K)

remaining K coordinates

> Class of NQ networks: /'~ := Fpwu,s,B Gaps
* Width W: maximum number of neurons in the » Empirical risk for a NO network f:
hidden layers 1 M1 K
L = — — V. — X
* Depth D : number of hidden layers n(f) N ; K ;pﬂ“( i~ Jr(Xi))
» Size S : total number of parameters (weights > Empirical risk Minimizer (ERM): fn = arg I’Il}_p LN ( f )
and biases) fEFN

» Risk Minimizer (Target, ground truth):
* Number of Neurons I/

K
* Bound B: for each entry of NC network output Qy = (QF,...,Q7F) =argminEy y [K ! Z pr. (Y — fr(X))]
ReLU-activated feedforward neural network k=1
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Learning Guarantees

ﬁTarget: Excess risk R(fN) - ﬁ(fN) - L(Qy)
9 Reason:

Positivity: Since L(Qy) < L(f)for any estimator f.

Self-calibration: R(fx) towards 0 implies Fy towards Oy

(Error Decomposition R (f ) =Ly (f ) — Ly (QY)

E[R(fn)] < E[R(fn) — 2RN(fN)] + 2inf se 7, R(f)

Variance (or Stochastic error):

E[R(fn) — 2RN(fN)]

Bias (or Approximation error):

2 inffoN R(f)
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Hypothesis space

oo
Best In Class 1

'1 Stochastic
TS i  Error
- |
|

—
o
—
—
—
| -

Optimization ~ ~ 3 fn
Error Empirical Risk
Minimizer

Fig. 4. An error decomposition of
empirical risk minimization problems



Assumptions

Assumption 1: Smooth Target quantiles

ASSUMPTION 1. (i) The target quantile curves Qy = (Qy, ..., Q) are 3-Hdlder smooth
with constant B. (ii) The probability distribution of covariate X with domain X = [0,1]% is

absolutely continuous with respect to the Lebesgue measure.
Assumption 2: Local Quadratic Bound of The Excess Risk

ASSUMPTION 2 (LOCAL QUADRATIC BOUND OF THE EXCESS RISK). There exist some
constants ¢ = °(X,Y) > 0 and §° = 6°(X,Y) > 0 such that

C0 =
R(f) = R(Qy) < 2 D E[f-(X) - QF(X)?
k=1

forany f = (fr,,. .., frx) Satisfying || fr. — Q¥ |0y < 6% fork =1,..., K, where X° is
any subset of X such thatP(X € X°) = P(X € X).
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Main Results
> Stochastic Error: &,
Theorem 1 (Non-Asymptotic Upper Bound)

* Linear in sample size N

THEOREM 1 (NON-ASYMPTOTIC UPPER BOUNDS). Let class of neural networks F be Square faster to those derived from

defined as in Section 3.3 with depth D, width W, size S, bound B, and let the excess standard concentration inequalities
(Takeuchi et al., 2006;Sangnier et al., 2016; Mohri et al.,

risk R be defined as in (5). Suppose Assumption 1 holds with B < B. For NQ neural 2018; Padilla etal., 2022; Shen ct al, 2024)

networks in Fy, given any positive integers U, M, let the width W = 38(K + 1)(|3] +

1)2dy 110 log, (8U) and depth D = 21(|] + 1)2dY* " M log,(8M), then the estimated > ‘\PProximation Error: Eop,

quantiles using NQ network f = (fU..... %) defined in (4) satisfies the monotonicity ~° D'tierences from traditional results
on quantile and robust regression
constraint f ,(Vl ) s AJ(VK ) and (Lederer, 2020; Padilla et al., 2022; Shen et al., 2024)

* Bias is proportional to K ?, number

S) log(N) of quantile curves being estimated.
N

]E[R(fN)] = gsto + gappa gsto = C11 s KB{;SD log(
* Error term exp(—2B) emerges due to

Eapp = Ca(K + 2)2[B(B+ 1) dg D (UM) /% + exp(—2B)] used truncation technique to manage
the unbounded preimage associated
for N > c - DSlog(S), where ¢,Cy,Cy > 0 are universal constants and d is the input with ELU activation. Negligible if B

dimension of the target quantile functions Qy . increases appropriately
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Main Results

Trade-off between Stochastic Error and approximation Error

FN
Hypothesis space

Approximation
Error

-— —
—— -

- Stochastic
s Error

Empirical Risk Minimizer
(ERM)

Fig. 5. between Stochastic Error and approximation Error
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> Stochastic Error:

* Increasing in network size (depth,
width and number of neurons)

* Decreasing in sample size N

» Approximation Error:

* Decreasing in network size (depth,
width and number of neurons)

* Decreasing in the smoothness S of
the target quantiles Qy

e Increasing in input dimension d
0

» Choose Proper Width and Depth:
* With respect to N, 5, d

* To optimize convergence rates




Main Results

Corollary 1 (Convergence Rate)
COROLLARY 1. Suppose that the conditions in Theorem 1 hold. LetU = 1, M =
Ndo/12(do+28)] and B = log(N). Then the estimated quantiles fx = (f\"..... f\")) defined
in (4) satisfies the monotonicity constraint f\) < --- < f\*) and

25

E[R(fy)] < C - K*(log N)TN @+,

where C' > 0 is a constant depending only on (3 and d.

» Minimax optimal Rate: (up to logarithms) for nonparametric regression (stone, 1982)

» Network Architecture:

* Choice of U=1 and M = N?Y for NQ network architecture is for parameter efficiency rather than as a strict requirement as
network size scales faster with increasing width than with depth (S =~ DW?).

* Various network architectures, including those with varying widths and depths, can achieve the optimal rate as long as the
total number of parameters in the network scales properly with the sample size.
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GILLINGS SCHOOL OF

GLOBAL PUBLIC HEALTH



Main Results

Under self-calibration conditions (Padilla et al., 2022)

K ]
ZElfﬁ(X) - Q?’E(X”? <" K2(10gN)7N_du+2ﬁ
k=1

M Curse of Dimensionality

@ In scenarios common to many machine learning tasks, where the input
dimension d, is large, the convergence rate of the NQ network estimator
slows markedly.

@ Such a slow convergence rate needs a significantly larger sample size to
achieve the desired theoretical accuracy, often proving impractical in real-

world settings.
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Main Results

Assumption 3: Low-dimensional Support of Data (Manifold Hypothesis)
ASSUMPTION 3. The covariate X is supported on M,, a p-neighborhood of M C

[0, 1]%, where M is a compact d -dimensional Riemannian sub-manifold and

M, ={z € [0,1% : inf{w — ylla 1y € M} < p}, p € (0, 1),

Peaks Datasets

0.8

0.6

104

102

L3

1-0.2

-0.4

-0.6

-0.8

Fig. 6. An example of data with low-dimensional support.
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Main Results

Corollary 2 (Improved Convergence Rate)
COROLLARY 2. Suppose the conditions in Theorem 1 and Lemma 2 hold. LetU = 1
and M = N%/2(d+25)] Then the NQ network estimator fy = ( A}}). . }K )) defined in

(4) satisfies the monotonicity constraint f ﬁj <--o-<f R,K ) and

25

E[R(fn)] < C - K*(log N)'N %+,

where C' > 0 is a constant depending only on 3, dy and dj;.
» NQ Networks Mitigate the Curse of Dimensionality

@ The convergence rate adapts to the intrinsic dimension d* of the data, which can
be significantly faster especially when d* < d,,

@ The NQ networks can mitigate the curse of dimensionality

GILLINGS SCHOOL OF
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Applications to Deep Reinforcement Learning

# Markov decision process (MDP)

@ S and A are state and action spaces e GG Qualue Bonus __
’:t nght_jumj ‘ | Bonus
@ R is the r.v. reward function =

MontezumaRevenge /
v € [0,1) is the discount factor e I l

@ P(s' | s, a) is the transition probability

7 Right (’Ejght-jump)
@ A policy 7(- | s) maps each state s € S to QR-DQN Q-value + Bonus
-~ =

a distribution over A

0.(s,a)
T
\
]!
\

@ For a fixed 7, the return is a r.v. of the

sum of discounted rewards observed along / I
one trajectory of states while following . — |

Cd ~
{ Right } Right-jump

- -

Z" = Z 'R, (a) (b) (c) (d)
t=0

(Problem definition Fig. 7. An Atari example to show how the crossing issue

: C may affect the exploration efficiency.
We want to estimate the distribution of Z™ as well as Y P Y

get an optimal one Z™ in the sense that [E[Z™ | >
EZ™] for any .
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Applications to Deep Reinforcement Learning

#Distributional Bellman Algorithm 1 Distributional RL with fitted NQ Iterations
optimality equation
(TZ)(s,a)=R(s,a) +vZ( ! ar) Require: Initial quantile estimator Z©) = (Z}O), e Z}?)) where each Z,EU) is a quantile
= < |

o, ) ) function dependent upon the state-action pair and belongs to fl(VRL).
with s ~ P(- [ s,a) , a’ = arg ﬁleafE[Z(s ,a)] for iteration m =0 to M — 1 do

Compute the expected return Q™ = K= 3" Z,(cm).
Compute the optimal policy ,, as the greedy policy with respect to Q™).

¢ Quar}tﬂ? regression to represent the Combine 7, with certain exploration strategy (e.g., e-greedy) to generate a sequence
entire distribution of Z(s, a) of tuples {( Sz-(m), Az(_m)’ Rgm), S;(m))}ie[N] of size N
@ NQ Network is itqratiyely train?d Compute (772, m)y; = R™ 4 '}fZ,(cm)(S:(m)? a)fori=1,...,Nand k = 1,... K
to solve Bellman optimality equation where o’ = arg maxees X, Z(m)( '™ q)
@ In the m-th iteration, update NQ Apply the proposed NQ network to update ‘the quantile function estimator
network using newly generated data v oKk K

(™, A B, ) e 20 argin 30303 o ((TZ7)i = 257, A7)
@ Modify the original NQ networks ke
for the value distribution estimation end for

FED _ Compute the greedy policy 7y with respect to QM) = K1Y, ZM).

(f:SxA—R: f(~a) € Fy forany a € A} Output: The estimated optimal policy ;.
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Assumptions

Assumption 4: Unbounded Reward with 15+ moment
ASSUMPTION 4. There exist somep > 1and0 < C,, p < oo such that (E|R(s,a)[P)'/P <

Cp.r foranys € S anda € A.

Assumption 5: Smooth Target Function

ASSUMPTION 5. Forany f € FJ(NRL}

and any a,a’ € A, the function R, (-.a) + vf(-,a’)
is 3-Hdlder smooth with constant B, where R (s, a) denotes the T-th conditional quantile
of the reward given the state s and action a.

Assumption 6: Self-Calibration

ASSUMPTION 6. There exist constants c,C' > 0 such that for any |§] < C' and m =

S, a)

forall € (0,1), s € S, anda € A up to a negligible set. Here P,,(-|s, a) denotes the con-

0,....M — 1, it holds

‘Pm (Zim)(s +6,0) ) P, (z"‘(m)(s,a) > g,

ditional distribution function of Z(™ := T z™) and Z\"™ (s', ') denotes the rth conditional

quantile of Z"™) given state s’ and action a’.

ﬁ C GILLINGS SCHOOL OF
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ﬁ Relaxation over Existing studies

€@ We do not require the data to be
i.i.d. like the existing literature (scce.g.,
Chen and Jiang, 2019; Fan et al., 2020; Li et al., 2021)

as it 1s often violated in MDPs due to
the temporal dependence between the
observations(Hao etal, 2021).

@ Nor do we require stationarity,

ergodicity, or mixing conditions (scce..
Shi et al., 2022; Ramprasad et al., 2023)

@ We only requires the reward
function to have bounded absolute
moments of order p > 1, no matter
how closely p approaches 1. unlike
those bounded (see e.g., Chen and Jiang, 2019; Fan et
al., 2020;Shi et al., 2022; Ramprasad et al., 2023) OT Sllb-
Gaussian (see e.g., Rowland et al., 2023).




Theoretical Results
THEOREM 2. Suppose that Assumptions 4, 5, and 6 hold. Given sample size N, let the
NQ networks in F\*") have depth D = 21(| 3] + 1)2(dy) A1 +1 Ndo/ldo+48] 1og,, (8 N o/ [do+45])
width W = 114(| 8] + 1)2(K + 1)(do) P+, and bound B = log(N). Then the expected

cumulative reward following my; (the greedy policy of Z(M)) satisfies

M+1
2O A (log NYAN 28/ st BT Ci x Cypr

J(m*) — J(mum) < (1—7) (1— )2 P T (1 —~)K®-D/p’

where C', > 0 is a universal constant and c); > 0 is the concentration coefficient (Chen

and Jiang, 2019; Fan et al., 2020) depending on the distribution of data.

@ The expected cumulative reward .J(7) = E[r(a | So)Z™(So. a)]

@ Approximation error occurs since we use the average of K quantiles to approximate the mean.

@ Algorithmic error converges to zero at a linear rate with respect to the number of fitted iterations M

@ Estimation error intrinsically relates to distributional learning with quantile regression using NQ network.

@ Estimation error dominates when iterations M and number of quantiles K are large, with rate |A|N ~2B/(1B+do)
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° YarsRevenge Robotank Hero

Real-Data Experiments

s Evaluation on Atari 2600

@ On six selected Atari game

environments N

’TO leam an Optimal policy aS a Tennis o StarGunner | Defender

function of the snapshots of the

game interface

@ Compare NQ-Net against NC-

QR-DQN (Zhou et al., 2020) 0] § 20000 4 10000 -

utiliZing the Same image- 0 25 50 75 100 125 150 175 200 B ) 25 50 75 100 125 150 175 200 - 0 25 50 75 100 125 150 175 200

embedding network architecture Kangaroo Jamesbond Amidar

and downstream networks with

similar scales. .

@ Specifically, we employ ReLU .

activation for the “Gaps net” in our

model, denoted by NQ-Net*. o |

H.E.R.O. (Atari 2600)

—— NC-QR-DQN  —— NQ - Net”

e e Fig. 8. Testing scores for NQ-Net* and NC-QR-DQN along the
training process.
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Real-Data Experiments

80%

ﬂ Evaluation on Atari 2600

B60% A

@ On six selected Atari game
environments

@ Compare NQ-Net against NC-QR-
DQN (Zhou et al., 2020) utilizing the
same image-embedding network
architecture and downstream networks
with similar scales. We employ ReLU 20% 1

activation for the “Gaps net” in our
model, denoted by NQ-Net*.

Advantage (%)

@ Configuration .
Number of quantiles K =200
Sample size N=200million frames 20% 1

T T T T T T T T T
Jamesbond Kangarco StarGunner Amidar Tennis YarsRevenge Robotank Defender Hero

Learning rate 5 X 10—5
Fig. 9. The advantage of the best-performing NQ-Net* model over NC-QR-DQN.

Llne.ar €8t elbled}ielxp l%rglstlor.llls.trat%gy The advan-tage (%) on the y-axis is defined as (ScoreNQ — ScoreNC )/ScoreNC ,
Star(’;lngnwg <~ .at ' nil 018? bral?es where ScoreNQ and ScoreNC denote the highest testing scores achieved by the
gradually decreasing to € = 0. y trained NQ-Net* and NC-QR-DQNmodels, respectively.

million frames
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Simulation Studies

ﬂ Comparison Methods

@ DQR: Deep quantile regression
(Padilla et al., 2022). As benchmark:
estimates quantiles using ReLU NN
without non-crossing constraints.

@ DQR*: Extension of DQR with
log(1 + exp(+)) activation for non-
crossing multiple quantile estimation.

@ DQRP: Deep quantile regression
process using rectified quadratic unit
networks (Shen et al.,2024). Estimates
the quantile process with a non-crossing
penalty. Implemented with tuning

parameter A = log(n) and § ~ Unif (0, 1).

@ NC-QR-DQN: (Zhou et al., 2020) A
non-crossing quantile network proposed
for optimal policy learning in DRL.

@ NQ-Net: The proposed method.

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH

s Training and Testing

@ Training Data: Sample size N = 512 or 2048 with N/4
validation data for early stopping in the training.

@ Testing Data: Sample size T = 10°

@ Architecture: Rectangular neural networks with the same
architecture for all methods:

* hidden layers width [128, 128, 128] for univariate target

* hidden layers width [256, 256, 256] for multivariate target
@ Optimization: Pytorch with Adam :

* default hyperparameters, learning rate 0.001.

 Batch size 128, maximum epochs 1000

@ Estimate:

* Quantile curves at 19 different levels(ty, ..., T19) =(0.05,
0.1,...,0.9,0.95)

@ Metric: Mean and standard deviation of L1 and L2 distances
over R = 100replications.



Simulation Studies

Model: Linear Model: Wave Model: Angle

T=0.05
T=0.25
T=0.5

Fig. 10. The simulated univariate models. The sample data with size N = 512 is
depicted asgrey dots. Five conditional quantile curves at levels t =0.05 (blue), 0.25
(orange), 0.5 (green),0.75 (red), and 0.95 (purple) are depicted as solid curves.
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Simulation Studies

NQ-Net

0.2 0.4 0.6 0.8 1.0 . .
X X

NC-QR-DQN

0.

[=]

=% oo 02 04 06 08 10 -6

X X ‘ ' - X
Fig. 11. An instance of the fitted quantile curves under “Wave” model when N = 512. The training
data is depicted as grey dots. The target (estimated) quantile curves are depicted as dashed(solid)
curves at levels 1 =0.05 (blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple). The NQ-Net* is

a variant of the NQ-Net, employing ReLLU activation instead of ELU + 1.

0.0 0.2 0.4 0.6 0.8 1.0
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Simulation Studies: “Wave” model

Table 2. Summary statistics for the “Wave” model with training sample N = 512 and replications
R = 100. The averaged L, test errors with standard deviation (in parentheses) are reported.
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Ly
T NQ-Net DQR DQR* NC-QR-DQN  DQRP
0.05 | 0.221(0.064) 0.284(0.095) 0.416(0.122)  0.625(0.654)  0.541(0.119)
0.1 | 0.202(0.050) 0.257(0.086) 0.320(0.115) 0.468(0.515)  0.533(0.122)
0.15 | 0.190(0.046) 0.239(0.083) 0.279(0.103)  0.405(0.402)  0.519(0.124)
0.2 | 0.186(0.046) 0.234(0.083) 0.255(0.092) 0.358(0.314)  0.507(0.127)
0.25 | 0.182(0.044) 0.231(0.083) 0.232(0.079) 0.316(0.241)  0.499(0.130)
0.3 | 0.182(0.045) 0.227(0.083) 0.218(0.072) 0.274(0.175)  0.493(0.132)
0.35 | 0.181(0.044) 0.226(0.082) 0.206(0.070)  0.236(0.122)  0.490(0.133)
0.4 | 0.181(0.044) 0.226(0.082) 0.202(0.067) 0.207(0.077)  0.488(0.134)
0.45 | 0.181(0.042) 0.226(0.081) 0.198(0.063)  0.195(0.055)  0.487(0.135)
0.5 | 0.180(0.043) 0.228(0.081) 0.194(0.063)  0.191(0.049)  0.487(0.134)
0.55 | 0.182(0.045) 0.228(0.081) 0.192(0.063)  0.197(0.054)  0.488(0.134)
0.6 | 0.182(0.044) 0.228(0.082) 0.195(0.060) 0.213(0.084)  0.489(0.133)
0.65 | 0.184(0.046) 0.231(0.081) 0.195(0.062)  0.240(0.132)  0.492(0.133)
0.7 | 0.187(0.045) 0.235(0.081) 0.200(0.063)  0.275(0.190)  0.496(0.133)
0.75 | 0.190(0.044) 0.238(0.081) 0.203(0.060)  0.313(0.258)  0.503(0.135)
0.8 | 0.191(0.044) 0.244(0.081) 0.210(0.067) 0.357(0.332)  0.515(0.139)
0.85 | 0.198(0.047) 0.256(0.084) 0.214(0 070)  0.414(0.418)  0.530(0.146)
0.9 | 0.206(0.052) 0.270(0.084) 0.230(0.083)  0.498(0.520)  0.546(0.153)
0.95 | 0.228(0.063) 0.301(0.084) 0.256(0.096)  0.799(0.608)  0.553(0.141)




Simulation Studies: Multivariate Linear model

Table 3. Summary statistics for multivariate inear model with training sample N = 512 and
replications R = 100. The averaged L, test errors with standard deviation (in parentheses) are

reported.
Ly
F NQ-Net DQR DQR* NC-QR-DQN DQRP
0.05 | 0.603(0.145)  0.651(0.132)  0.618(0.068)  1.373(0.942)  1.435(0.205)
0.1 | 0.461(0.070) 0.486(0.084)  0.489(0.079)  0.973(0.551)  0.814(0.149)
0.15 | 0.407(0.058)  0.420(0.070)  0.455(0.062)  0.925(0.304)  0.669(0.140)
0.2 | 0.376(0.055) 0.386(0.061)  0.468(0.066) 0.859(0.171)  0.627(0.125)
0.25 | 0.354(0.052)  0.363(0.058)  0.480(0.069)  0.786(0.110)  0.609(0.108)
0.3 | 0.337(0.052)  0.349(0. 007) 0.484(0.071)  0.724(0.111)  0.597(0.093)
0.35 | 0.324(0.052)  0.338(0.055)  0.484(0.072)  0.675(0.139)  0.588(0.082)
0.4 | 0.314(0.052)  0.329(0. 002) 0.485(0.072)  0.639(0.166)  0.581(0.074)
0.45 | 0.309(0.052)  0.324(0.053)  0.484(0.072)  0.618(0.183)  0.579(0.070)
0.5 | 0.307(0.052)  0.322(0.054)  0.486(0.073)  0.608(0.187)  0.584(0.070)
0.55 | 0.309(0.052) 0.321(0.054)  0.491(0.072)  0.611(0.175)  0.597(0.075)
0.6 | 0.314(0.053)  0.322(0.056)  0.500(0.075)  0.628(0.151)  0.622(0.085)
0.65 | 0.322(0.054) 0.326(0.056)  0.508(0.079)  0.660(0.122)  0.658(0.100)
0.7 | 0.334(0.054)  0.331(0.056) 0.520(0.082) 0.707(0.099)  0.706(0.119)
0.75 | 0.349(0.058)  0.339(0.058) 0.530(0.083) 0.768(0.111)  0.764(0.142)
0.8 | 0.370(0.060) 0.355(0.060) 0.548(0.088) 0.839(0.182) 0.829(0.167)
0.85 | 0.399(0.064) 0.377(0.062) 0.568(0.092) 0.882(0.328)  0.899(0.190)
0.9 | 0.443(0.073) 0.417(0.078) 0.612(0.106) 0.993(0.554) 0.987(0.199)
0.95 | 0.553(0.130) 0.572(0.124)  0.744(0.172)  1.549(0.900)  1.277(0.200)
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Simulation Studies: Univariate Linear model
Table S2. Summary statistics for the “Linear” model with training sample size N = 512 and

replications & = 100.

The averaged L; and L3 test errors with the corresponding standard
deviation (in parentheses) are reported for the estimators trained by different methods.

NQ-Net

Iy
DQR

DQR*

NC-QR-DQN

DQRP

NQ-Net

3

DQR DQR*

NC-QR-DQN

DQRP

0.05
0.1
0.15
0.2
0.25
0.3

0..35

0.1

0.296(0.175) 0.363(0.166) 0.604(0.205)
0.171(0.082) 0.194(0.094) 0.251(0.081)
0.136(0.060) 0.142(0.066) 0.230(0.085)

0.117(0.019)
0.105(0.044)
0.099(0.041)
0.093(0.039)
0.088(0.039)

5| 0.086(0.036)

0.085(0.035)
5 0.085(0.037)
0.089(0.037)

5| 0.091(0.038)

0.096(0.041)

3| 0.107(0.044)

0.123(0.050)

3| 0.145(0.063)

0.115(0.050) 0.192(
0.104(0.045) 0.158(
0.095(0.041) 0.135(
0.087(0.038) 0.114(
0.082(0.039) 0.102(
0.078(0.034) 0.095(
0.078(0.036) 0.085(
0.082(0.038) 0.085(
0.086(0.037) 0.092(
0.089(0.041) 0.101(
0.094(0.045) 0.112(
0.106(0.049) 0.132(
0.120(0.054) 0.156(
0.143(0.068) 0.180(

0.063)
0.051)
0.048)
0.045)
0.042)
0.038)
0.034)
0.036)
0.035)
0.039)
0.046)
0.052)
0.063)
0.073)

0.185(0.085) 0.200(0.093) 0.220(0.085)

5/0.296(0.168) 0.346(0.165) 0.298(0.157) 0

0.506(0.239)
0.318(0.215)
0.222(0.145)
0.162(0.091

0.131(0.062
0.116(0.048
0.111(0.043
0.111(0.041
0.115(0.042
0.120(0.044
0.124(0.045

0.130(0.046
0.138(0.050
0.154(0.064
0.182(0.009
0.221(0.121
0.261(0.147
0.285(0.148

)
)
)
)
)
)
)
3)
)
)
)
)
)
)

(0.148)
529(0.236)

0.143(0.206)
0.050(0.059)
0.031(0.030)
0.023(0.021)
0.019(0.016)
0.017(0.015)
0.015(0.014)
0.014(0.013)
0.011(0.012)
0.013(0.011)
0.013(0.012)
0.014(0.012)
0.015(0.013)
0.016(0.014)
0.019(0.015)
0.025(0.018)
0.034(0.028)
0.053(0.043)
0.132(0.124)

0.143(0.206)
0.050(0.059)
0.031(0.030)
0.023(0.021)
0.019(0.016)

0.017(0.015)
0.015(0.014)
0.014(0.013)
0.014(0.012)
0.013(0.011)
0.013(0.012)
0.014(0.012)
0.015(0.013)

0.016(0.014) 0.016(0.015)

0.216(0.234)
0.067(0.069)
0.035(0.036)
0.023(0.025)
0.019(0.016)
0.016(0.014) 0.029(0.018
0.013(0.011) 0.022(0.015

0.012(0.012) 0.017(0.014
0.011(0.010) 0.015(0.011
0.011(0.011) 0.012(0.009
0.012(0.012) 0.013(0.011

0.192(0.264)
0.099(0.061)
0.087(0.059)
0.060(0.035)
0.040(0.024

0.014(0.014) 0.017(0.014
0.022(0.017

0.019(0.015) 0.020(0.017) 0.029(0.022

0.025(0.018)

0.024(0.020) 0.040(0.029

0.034(0.028) 0.035(0.033) 0.053(0.037
0.053(0.043) 0.063(0.057) 0.074(0.050
0.132(0.124) 0.189(0.181) 0.138(0.126

)
)
)
)
)
)
)
0.013(0.012) 0.014(0.012)
)
)
)
)
)
)
)

0.42:3(0.139)
0.205(0.286)
0.098(0.133)
0.049(0.059)
0.030(0.028)
0.023(0.018)
0.020(0.015)
0.020(0.014)
0.021(0.015)
0.023(0.016)
0.024(0.018)
0.027(0.019)
0.031(0.023)
0.041(0.034)
0.059(0.054)
0.090(0.085)
0.125(0.124)
0.143(0.146) |
0.384(0.301)

0.197(0.193)
0.195(0.187)
0.473(0.168)
0.452(0.156)
0.436(0.15)
0.426(0.147)
0.119(0.146)
0.415(0.146)
0.413(0.147)
0.112(0.147)
0.411(0.147)
0.113(0.148)
0.417(0.151)
0.126(0.156)
0.443(0.167)
0.168(0.186)
0.503(0.214)

).539(0.215)
0.553(0.238)
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Simulation Studies: Additive model

Table S8. Summary statistics for the additive model with training sample size N = 512 and the
number of replications R = 100. The averaged L; and L3 test errors with the corresponding
standard deviation (in parentheses) are reported for the estimators trained by different methods.

Ly L%

! NQ-Net DQR DQR* NC-QR-DQN  DQRP NQ-Net DQR DQR* NC-QR-DQN  DQRP
0.05] 0.760(0.089) 0.695(0.102) 0.680(0.073) 0.915(0.527) 0.821(0.097)| 0.913(0.191) 0.751(0.203) 0.715(0.142) 1.129(1.482) 1.112(0.240)
0.1 | 0.684(0.071)  0.666(0.088) 0.517(0.052) 0.926(0.336) 0.695(0.066)| 0.750(0.144) 0.698(0.171) 0.431(0.086) 1.348(0.824) 0.839(0.162)
0.15] 0.638(0.061) 0.638(0.080) 0.546(0.075) 0.894(0.226) 0.647(0.055)] 0.657(0.118) 0.646(0.152) 0.480(0.125) 1.234(0.510) 0.734(0.130)
0.2 | 0.602(0.055) 0.613(0.070) 0.568(0.085) 0.840(0.159) 0.622(0.051)| 0.589(0.103) 0.601(0.132) 0.516(0.144) 1.097(0.344) 0.677(0.112)
0.25] 0.577(0.050)  0.594(0.063) 0.569(0.082) 0.777(0.117) 0.607(0.049)] 0.541(0.091) 0.566(0.111) 0.516(0.141) 0.954(0.251) 0.642(0.101)
0.3 [0.560(0.047) 0.579(0.058) 0.562(0.075) 0.726(0.090) 0.597(0.019)| 0.509(0.084) 0.540(0.104) 0.505(0.127) 0.845(0.196) 0.618(0.095)
(.35/0.548(0.045) 0.567(0.051)  0.555(0.069) 0.687(0.075) 0.590(0.048)0.487(0.079) 0.518(0.090) 0.491(0.115) 0.764(0.164) 0.602(0.092)
0.1 [0.539(0.044) 0.558(0.047)  0.549(0.059)  0.659(0.069) 0.586(0.018)|0.472(0.076) 0.503(0.082) 0.481(0.100) 0.707(0.147) 0.593(0.091)
0.15/0.534(0.043) 0.553(0.043)  0.545(0.051)  0.643(0.069) 0.585(0.018)|0.463(0.074) 0.49M(0.074)  0A80(0.087) 0.676(0.141) 0.591(0.091)
0.5 [0.532(0.043) 0.552(0.042) 0.548(0.044) 0.637(0.068) 0.586(0.018)]0.459(0.073) 0.492(0.073) 0.484(0.076) 0.664(0.138) 0.595(0.093)
0.55|0.5633(0.044) 0.5565(0.044)  0.556(0.011)  0.640(0.066) 0.591(0.048)|0.461(0.075) 0.497(0.076) 0.499(0.073) 0.671(0.137) 0.606(0.006)
0.6 |0.537(0.044) 0.560(0.048) 0.568(0.043) 0.663(0.065) 0.599(0.019)0.467(0.077) 0.506(0.081)  0.520(0.078) 0.697(0.139) 0.626(0.102)
0.65/0.545(0.046) 0.569(0.053) 0.585(0.051) 0.678(0.070) 0.612(0.052)|0.481(0.080) 0.521(0.094) 0.553(0.094) 0.745(0.152) 0.656(0.111)
0.7 [0.556(0.048) 0.580(0.060) 0.607(0.058) 0.716(0.086) 0.629(0.055)0.500(0.085) 0.541(0.107) 0.593(0.110)  0.822(0.182) 0.698(0.126)
0.75/0.572(0.051) 0.596(0.067) 0.636(0.073) 0.761(0.116) 0.653(0.060)|0.528(0.093) 0.569(0.122)  0.648(0.110)  0.917(0.239) 0.755(0.116)
0.8 [0.594(0,056) 0.614(0.074) 0.669(0.085) 0.813(0.163) 0.682(0.066)0.570(0.106) 0.601(0.135)  0.713(0.165)  1.031(0.342) 0.828(0.172)
0.85/0.625(0.062) 0.636(0.083) 0.704(0.098) 0.845(0.238) 0.719(0.072)|0.629(0.120) 0.639(0.153) 0.784(0.196) 1.107(0.533) 0.922(0.202)
0.9 0.671(0.072) 0.663(0.092) 0.7143(0.113) 0. 321([] 369) 0.770(0.077) 0.720(0.147) 0.689(0.170) 0.867(0.230) 1.103(0.902) 1.049(0.231)
0.95 0.741(0.088) 0.696(0.103) 0.788(0.135) 57(0.452) 0.861(0.088)| 0.865(0.188) 0.750(0.197) 0.963(0.283) 2.081(1.321) 1.275(0.260)
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Questions of Interest

How to extend our Non-crossing Quantile Network to time-to-event analysis,
while considering more advanced DL architectures?

S. Huang, Z. Qu, Z. Hua , G. Shen, Rui Tang, H. Zhu (2025). Non-Crossing Quantile
Regression for Time-to-Event Analysis: A Deep Learning Framework with Theoretical
Guarantees. In submission.
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Motivations and resolution

Motivations Goals

Traditional methods: baseline . With covariates incorporated
covariates not incorporated - =
Heterogeneity in patient Enhance prediction accuracy.

population, prognostic factors

Traditional methods: D
_ Distribution — free
model assumptions —

AFT, CoxPH Flexible to non-linear patterns
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Related applications in clinical trials

identify prognostic
factors, optimize Py
treatment strategy identify patients sensitive
to benefit from treatment,
those at high risk of
clinical trial designs, severe safety events

predicting timeline for
efficacy readout

39

Improve quality of life
Optimize resource
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Deep censored quantile regression

Traditional quantile regression: Deep quantile regression:
Under right censoring, the estimator Replace the linear functional by the
B, can be obtained by minimizing output from the neural network log(Q?)),
the loss function: and train by minimizing the new loss:
n n
D i pe(log(¥) —[BX) D, @1 pe(log(r) —|log(@")
: =1

=1

w; = 8;/G(Y}), G(Y;): Kaplan-Meier estimator of the censoring distribution;
p.(u): check function, p,(u) = ult — I(u < 0)]
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Technical challenges:
multiple quantile estimation and crossing

Sequential *Estimate a grid of M desired quantiles at a time
estimation *Efficient and resource-saving

. . e Implicit restriction in quantile regression
Crossing 1ssues

41

* Positive activation function log(1 + exp(-))

Non-crossing: Q:r(X) < -+ < Q5(X)
Positive activation: log(1 + exp(-)); Base network, Gap networks; Cumsum
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TabTransformer

outputs
4 1 N
> Our data: MLP
* - Each feature is a scalar. ><
 -The order of features does not matter Forvard
> Attentions are performed on the features il g T
- Embed each scalar feature to a feature vector &mli}

Embeddings Positional

.‘@ @@ Encoding In‘;
“ @ Transformer (—» @ Embedding
E@ECHE) D), !

Inputs

42

9
®
69

@&

@@
&
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KAN

e Kolmogorov-Arnold Network (KAN), proposed in May 2024.

. o @
e Kolmogorov-Arnold representation theorem A
2n+1 n
FOO) = G ) = ) @0 gp()) I AN AN DN
P1 P2 Q3 ‘2 Ps
q=1 p=1 « < 4 A A
43 h @ h, @ hs @ he @ hs @

* Learnable functions instead of parame.ers- W — ‘S B R R
. . P11 P21 P31 Pa Ps1 P1,2 P2,2 P32 Pa,2 <P'5,2
* Right figure: n=2, 2n+1=5 e . T PP S e
xn @ x» @
* Replace feed forward layer (MLP) in Transformer
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Model structures

-—

t t

Non-crossing network

T

'
!
S
¥

DUNC
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|
uhe

KAN-CNQ

Non-crossing network

*
[ ~ Add & Norm \
I

Feed Forward ===—-

N—

Lx 7~ Add & Norm
|

Multi-head
Attention

=

Trans-CNQ

Non-crossing network

*
/ ~ Add & Norm \

Lx ~ Add & Norm
|
Multi-head
Attention

="

TransKAN-CNQ



Theoretical guarantees

Theorem 1: Let R be the excess risk defined in (11). Then forany N > 1, and
n > 0, with probability of not less than 1 —~e~" — exp(—H,/3N),

R(fv) = L(/x) = inf L(f)

feEF
. 6J[n+logN(fN,|| ||oo,e)]+DO+2

2 8€eLy,

< + >

HZVN H{
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Real data distributions
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Figure 7: KM curves and the confidence band for 5 real datasets
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Results - Simulation and real data

Censoring Proportions for Distribution: Weibull

Censoring: 25% Censoring: 50%

Censoring: 75%
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Question of Interest

While the manifold hypothesis provides a useful guiding intuition, its strict mathematical form is often
too brittle for real-world, noisy, heterogeneous datasets. Modern work therefore moves toward looser

notions—mixtures of manifolds, fractal supports, or purely learned latent distributions—that can
better tolerate noise, intersections, and varying intrinsic dimensions.

How to address the challenges of unstructured image data in the supervised
learning framework?

Shen, G. and Zhu, H.. (2025). Understanding Convolutional Neural Networks:
Statistical Generative Models for Unstructured Image Data. In submission.
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Understanding CNNs: Statistical Generative Models for Image Data

» To understand CNN: learning theories through
the lenses of complexity, approximation, and
optimization (training dynamics).

Fully
* Optimization: algorithms, such as SGD can Corwalution f'_rgmd
effectively find global minima of the training Input Pooling ... 5 . Output
0bJECtIVES (zhou & Feng, 2018; Allen-Zhu et al., 2019). . O 2;’0
e Studies on Complexity lead to generalization 0;.}2
guarantees for learning tasks involving CNN:ss. L O
and approximation (Lin & Zhang, 2019; Feng et al., 2021; Shen 2024: o
Petersen & Voigtlaender, 2020; Zhou, 2020a;b) \ ) \‘ /’
» Revealing no significant advantage of CNNs Featur:'E/xtractiun ClassiI:atiun
over other FNNs on image data
* The limitation stems from insufficient calibration Fig. 1. An example of a convolutional neural
of the heterogeneous characteristics of i1mage network(CNN) for classification, comprising a feature
data, identifying the signals and noises, and extraction stage followed by classification using fully
understanding their interactions with CNNs connected layers.

during feature extraction.

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH




Understanding CNNs: Statistical Generative Models for Image Data

» To address these challenges, three critical questions arise:

» (Q1) How can we model image data statistically, particularly in differentiating between ’signals’
and ’noise’ for downstream tasks?

» (Q2) How can we understand the role of feature maps by using stacked convolutional and pooling
layers that trans-form heterogeneous image data into relatively homogeneous feature representations?

» (Q3) How can we evaluate the learning efficiency of CNNs in vision tasks using our image data
model and feature mapping approach?

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

DUNC




Statistical Generative Models (SGMs) of Image Data

ﬂ Statistical Generative Models (SGMs) of image data
X = X&bj(ul) D---D Xj:j(u-f) De

@ X: image data with domain Q = Z,, X Z,,,

Qngj, . X({bj: Random Objects in the image

@ e: Backgrounds, may correlate with objects

@ D: Masked addition operation, overlaying objects

@ J: Number of objects, ] ~ Possion(A(Q))

@ A(u): Intensity function, A(Q) = [ 0 Alu) du

@ u;: Location of object j, u; ~ Py = A(u)/A(Q)

QProblem definition . ,
Fig. 2. Sample images from the VOC2012 dataset. The top
 Flexibility and Adaptability row displays original images, while the bottom row
 Statistical Interpretability highlights the objects with the background shaded in gray.

 Enhanced Feature Prioritization
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Feature Mapping Approach (FMA) for Learning Tasks

S Predict an attribute Y from image X

@ Often modeled as Y = f*(X, €), where f* is the target
function and € 1s the noise. The efficiency of learning
methods, especially FNNs, relies on intrinsic structures in
X and f* and the adaptation of FNNs to these

structure(schmidt-Hieber, 2019; 2020; Jiao et al., 2023; Zhou & Huo,2024).

@ For image data, we redefine X as X = X,,; @ € and
express the relationship as Y = f*(X,p ;) where X,p
includes the objects of interest relevantto Y , and €
encompasses irrelevant objects and noise.

QY =X, ;) assumes that X contains all necessary
information to infer ¥ through X, ;, allowing estimators to
achieve near-perfect performance. This aligns with the

success of deep neural networks in vision tasks (wang et al., 2017;

Langer & Schmidt-Hieber, 2022).

@ The model fundamentally differs from conventional
regression models Y = f*(X) + €. No estimator can
perfectly predict Y , as E|f(X) — Y|? > €2.

IﬁUNC GILLINGS SCHOOL OF
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@ In CV, X, ; can be described using low-dimensional
structures like edges and textures (zhao et al., 2019; Zou et al., 2023).
We assume X, j encapsulates all relevant information for

inferring Y via M* local patterns Hy, ..., Hy+ € [0,1]% %K.
Each local pattern is a k™ X k™ sub-image within the larger
image domain ().

@ Using the widely adopted sliding window approach in
CV, we define p(Xopj, Hp) € RIVTK +DX(=K+1) ¢
represent the feature map of X, ; with respect to Hp,.

@ The target link f* for the relationship between Y and
Xopj 18 characterized as

Y = F*(p(Xopj» H1), s P(Xonjs Hur))

where F* is a nonlinear mapping.




Informative Metrics of FMA

s Object Size

@ Quantifies the spatial extent of objects in an image,
which is crucial for object recognition and various image

proces Sing tasks (Ghassemian & Landgrebe,1988; Bainbridge & Oliva, 2015).
Structure (Schmidt-Hieber, 2019; 2020; Jiao et al., 2023; Zhou & Huo,2024).

_ [mask(Xop))|
]

@ Larger objects lead to proportionally larger k* X k* local
patterns, which in turn reduce the dimensionality of the

feature maps to (n — k*+1) X (m — k*+1). This reduction
facilitates learning the target function F* , enhancing both
the efficiency and effectiveness of the learning process.
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L8 GLOBAL PUBLIC HEALTH

& Number of Objects

@ Quantifies scene composition and complexity

J ~ Possion(A(Q))

@ Images with multiple objects provide stronger and
robust signals in the feature map, enhancing the learning of

F* in tasks such as object detection and segmentation
(Lempitsky & Zisserman, 2010).

P Spatial distribution of objects

@ Captures their arrangement within an image, influencing
tasks such as localization, segmentation, and scene
understanding (Schauerte& Stiefelhagen, 2013; Andrianov etal., 2015),

S = = ) pa(wlog@a(w)
Uue)

@ S()) reaches its maximum for a uniform A, indicating
evenly distributed locations, and is minimized at 0 when p;
concentrates at a single point for deterministic placement.




Informative Metrics of FMA

ﬂ Signal-to-Noise Ratio (SNR)

lo(Xopj,Hm)
lp(X,Hin)=p(Xob j,Hm)

@ SNR(X,H,,) =

@ Noise in the feature maps p(X, Hp) — p(Xopj» Him).
1.e., the difference between the feature maps derived
from the image X and the object X,p ;.

@ A larger SNR facilitates the learning of the
downstream nonlinear map F* , leading to more
accurate predictions, while a smaller SNR increases the
difficulty in distinguishing object patterns from noise,
reflecting greater learning challenges. SNR can be
influenced by factors such as object size and count with
larger objects and higher counts naturally in-crease the
signal-to-noise ratio.
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Experiments on MNIST Dataset
A CNN Configuration A Image Manipulation

@ For our simulations, we train 5-layer CNNs with a

fixed architecture under various scenarios. _ _ o
, , , @ Resize the handwritten digits
@ The architecture includes the following components:

 a convolutional layer C(16, 3, 1, 1) with 16 filters of

size 3 x 3, a stride of 1, and padding of 1; @ Duplicate the number of objects
* anon-overlapping max-pooling layer with a window
size of 2 and a stride of 2; @ Change spatial distribution patterns for the objects

 another convolutional layer C(32, 3, 1, 1) with 32
filters of size 3 X 3, a stride of 1, and padding of 1;

* a second non-overlapping max-pooling layer with a
window size of 2 and a stride of 2;

 and a fully connected layer with an input dimension of
32 x 7 x 7 and an output dimension of 10.
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Loss and Accuracy vs p

B: 0.186 0.008 0.017 0. 0.045 0.067 0.092 0.119 _ " X J . (100
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Fig. 3. Performance of CNNs trained on modified MNIST datasets.
Columns in the left figure present samples of original (f = 0.186)
and modified datasets with different sizes of objects where B denotes

theaverage size in the datasets.

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Experiments on MNIST Dataset

AUNC

GILLINGS SCHOOL OF

GLOBAL PUBLIC HEALTH

5

) H.-

Y 9 H
I!I!

0.0014 1

0.0012

Loss and Accuracy vs Number of Objects

/‘
]
_//—/"
/(”
Ve = —e— Train Loss
Test Loss

—=— Test Accuracy

1 2 3 a :
Number of Objects

Fig. 4. Performance of CNNs trained on modified MNIST datasets.
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Experiments on MNIST Dataset
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Fig. 5. Performance of CNNs trained on modified MNIST datasets.
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different distributions of objects given different numbers of objects J.




Experiments on ImageNet Dataset

’ Feature Visualization of
original image vs object segmentation

@ Sample image from ImageNet. For each subfigure, the
top row displays original image and the object
segmentation by “SAM?2" (Ravi et al., 2024). The rest rows
visualize the feature maps calculated from the pretrained

models at different layers (levels).
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Experiments on ImageNet Dataset

Distribution of Object size
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Fig. 6. The distribution of the object size of the subset of 17,489
ImageNet images
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Experiments on ImageNet Dataset
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Fig. 7. The accuracy and the averaged CE loss of the
pretrained models on a subset of 17,489 ImageNet images.
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Experiments on ImageNet Dataset

Classification Accuracy vs Object Size
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Fig. 8. Regression Curves of Classification Accuracy vs.
Object Size with 95% confidence bands for pretrained
models on a subset of 17,489 ImageNet images.
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Experiments on ImageNet Dataset

Signal-to-Noise Ratio vs Object Size
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Fig. 8. Regression Curves of Signal-to-Noise Ratio vs.
Object Size for pretrained models on asubset of 17,489
ImageNet images.
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Experiments on ImageNet Dataset
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Cross Entropy Loss vs Sighal-to-Noise Ratio
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Fig. 9. Regression Curves of Cross Entropy Loss vs. Signal-

to-Noise Ratio for pretrained modelson a subset of 17,489
ImageNet images.
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Decision Intelligence for Two-sided Marketplaces

Fundamentals of Deep Learning

Lect:
Two-sided marketplaces have emerged as viable business models in many real-world applications, such as ridesharing, retail,

vacation rental, and food delivery. In particular, we have entered a paradigm of network with multiple distinct types of participants Lec2:
representing the supply and demand of a specific commodity or service.

Basic Network Structures
This tutorial aims to impart a deep understanding of decision intelligence in two-sided marketplaces, with a particular emphasis

on reinforcement learning and sequential decision-making for long-term optimization. Attendees will explore the design and Lec3:
management of such marketplaces, with case studies in ridesharing, and learn to tackle their unique challenges. They will gain

practical skills in supply-demand forecasting, dynamic pricing, online matching, growth strategies and A/B testing, applicable to Lecd:
real-world situations. By the end of the tutorial, they should be proficient in applying these techniques and evaluating these

systems, a valuable asset for AAAI community members interested in marketplace dynamics and decision intelligence.

Resources
¥ »

B The recordings are ready in Youtube and Bliblit

Schedule and Recordings

Topic Duration Speaker Recordings
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