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PLATELETS AND THROMBOPOIESIS
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KEY PO INT S

l Blockade of Rap1
binding to talin-1 F0
and F1 domains
phenocopies the
defects in integrin
activation observed in
platelets lacking
Rap1a/b.

l Rap1–talin-1
interaction in platelets
is crucial for
hemostasis, with
minor impact on
granule secretion.

Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling path-
ways that result in talin-1 binding to the integrin b cytoplasmic domain and consequent
integrin activation, platelet aggregation, and effective hemostasis. The nature of the
connection between Rap1 and talin-1 in integrin activation is an important remaining gap in
our understanding of this process. Previous work identified a low-affinity Rap1-binding site
in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets.
We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a
greater contribution than F0 in model systems. Here we generated mice bearing point
mutations, which block Rap1 binding without affecting talin-1 expression, in either the
talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains
(R35E,R118E), which were embryonic lethal. Loss of the Rap1–talin-1 F1 interaction in
platelets markedly decreases talin-1–mediated activation of platelet b1- and b3-integrins.
Integrin activation and platelet aggregation in mice whose platelets express only talin-
1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking
both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion,

and surface exposure of phosphatidylserine, loss of the Rap1–talin-1 interaction in talin-1(R35E, R118E) platelets had
little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that
regulates platelet integrin activation in hemostasis. (Blood. 2020;136(10):1180-1190)

Introduction
The mechanism of platelet aggregation has been an enduring
question since the 19th-century work of Bizzozero and Virchow.
The seminal discovery that platelet agonists cause integrin
aIIbb3 to bind fibrinogen (“activation”) with high affinity pro-
vided a crucial clue as to the mechanism of platelet aggrega-
tion.1 Studies with antibody2,3 and peptide4,5 inhibitors ultimately
resulted in the development of aIIbb3 antagonists for clinical use;
however, these agents have been hampered by the difficulty in
striking a balance between antithrombotic effects and
bleeding.6 b3 mutations that reduce activation can lessen
thrombosis while ameliorating the pathological bleeding
caused by complete lack of aIIbb3 function, leading to the
idea that blocking activation might widen the therapeutic
window for aIIbb3 inhibitors.7 Many different signaling
pathways have been implicated in aIIbb3 activation; however,
induction of talin-1 binding to the integrin b subunit cyto-
plasmic domain is a final common step in platelets and
megakaryocytes.7-10

Ras-related protein 1 (Rap1) GTPases are important signaling
hubs that control platelet adhesion.11-13 They function as a
molecular switch and transition between the active guanosine
triphosphate (GTP)-bound form and the inactive guanosine di-
phosphate (GDP)-bound state.14 Murine platelets express high
levels of Rap1b, whereas Rap1a accounts for ;10% of total
platelet Rap1 proteins.15 In response to platelet stimulation with
agonists, elevation of the calcium concentration in the cytosol
triggers activation of Ca21- and diacylglycerol-regulated gua-
nine nucleotide exchange factor I (CalDAG-GEFI), which func-
tions as aGEF for Rap1.16Genetic deletionof bothRap1aandRap1b
in the megakaryocyte lineage causes macrothrombocytopenia due
to impaired proplatelet formation, profoundly impaired
integrin activation in platelets, and marked defects in hemo-
stasis.12 Thus, Rap1 GTPases are main regulators of talin-
1–dependent integrin activation in platelets. Elucidating the
connection between active Rap1 and talin-1 in integrin acti-
vation is an important remaining gap in our understanding of
platelet aggregation.
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Talin-1 N-terminal head domain is an atypical FERM (4.1-
protein/ezrin/radixin/moesin) domain subdivided into F0, F1,
F2, and F3 subdomains.17 Talin-1 is autoinhibited in the cytosol
due to the interaction of the talin-1 head domain with the rod
domain, which prevents its interaction with the integrin b cy-
toplasmic tail.18 Pioneering studies showed that Rap1b binds
directly to the talin-1 F0 domain through a low-affinity
interaction.19 Structural studies subsequently revealed the im-
portance of the lipid environment at the membrane to
strengthen the Rap1–talin-1 F0 interaction.20 Quantitative
proteomic analyses of murine platelets revealed the high
abundance of Rap1b and talin-1 at equal molar ratios (.200000
per platelet).15 The lack of a known Rap1 effector with such a high
abundance in platelets suggests that talin-1 acts as a direct
effector of Rap1 to activate aIIbb3 integrins in platelets. How-
ever, we and others showed that blocking the Rap1–talin-1 F0
interaction has a relatively minor effect on platelet integrin ac-
tivation and hemostasis and cannot account for the dramatic
effects of loss of Rap1 activity on platelet functions.21,22 Recently,
we identified a second Rap1-binding site in the talin-1 F1 do-
main of similar affinity to that in F0.23 We found that an R118E
mutation in the talin-1 F1 domain, which blocks Rap1 binding,
abolishes the capacity of Rap1 to potentiate talin-1–induced
integrin activation in A5 CHO cells expressing recombinant
aIIbb3. The ability of the talin-1 F1 domain to mediate Rap1-
dependent integrin activation requires a unique unstructured
loop that transforms into an amphipathic helix upon binding to
membrane lipids. Bromberger et al24 have confirmed the Rap1-
binding capacity of talin F1 and shown that mutations in F0 and
F1 that block Rap1 binding partially impair activation of b1
integrins in recombinant talin-expressing talin-null fibroblasts.
Thus, direct binding of Rap1 to both talin-1 F0 and F1 domains
can affect integrin activation in model systems; however, the
relative role of these 2 binding sites in platelet integrin activation
and in hemostasis is unclear.

In the current study, we generated mice bearing point mutations
in either the talin-1 F1 domain (R118E) or both the F0 and F1
domains (R35E,R118E) that block binding to Rap1 without af-
fecting protein expression in platelets. We found that, in contrast
to the Rap1–talin-1 F0 interaction, disrupting the Rap1–talin-1 F1
interaction in talin-1(R118E) platelets causes a marked defect in
the activation of b1- and b3-integrins. Platelets expressing the
talin-1(R35E,R118E) mutant are further impaired; indeed, they
phenocopy the defects in aIIbb3 activation observed in platelets
lacking both Rap1a and Rap1b. Thus, talin-1 is the major Rap1
effector involved in integrin activation in platelets. The talin-
1(R35E,R118E) mutation does not cause the severe defects in
thrombopoiesis, secretion, or generation of procoagulant ac-
tivity observed in Rap1-deficient platelets, indicating the exis-
tence of additional platelet/megakaryocyte Rap1 effectors
important in these processes. These data show that direct
binding of Rap1 to talin-1 is a major link in the pathway from
platelet stimulation to integrin activation, a key event in platelet
aggregation and hemostatic plug formation.

Methods
Mice
Tln1FLOX/FLOX,8 Tln1R35E/R35E,21 Rap1A/BFLOX/FLOX,25 and PF4-
Cre1/226 mice have been previously described. Eight- to

16-week-old sex-matched wild-type littermates were control
animals for all experiments. Tln1WT/R118E and Tln1WT/R35E,R118E knock-
in mice were generated by using a CRISPR/Cas9 approach at the
University of California Irvine Transgenic Mouse Facility (UCI
TMF). Detailed information is provided in the supplemental
Methods (available on the Blood Web site). One founder
Tln1WT/R118E and one founder Tln1WT/R35E,R118E were obtained and
backcrossed to the C57BL/6J strain to obtain heterozygous
Tln1WT/R118E and Tln1WT/R35E,R118E mice. Sex-matched Tln1WT/WT lit-
termates were used as controls for Tln1R118E/R118E mutant animals
(indicated as Tln1-R118E) in all experiments. Similar to Tln12/2mice,
Tln1R35E,R118E/R35E,R118E mice were not viable. To circumvent the le-
thality, we crossed Tln1WT/R35E,R118E;PF4-Cre1/2 mice with the
Tln1FLOX/FLOX strain to obtain megakaryocyte-specific deletion
of Tln1-Flox allele in Tln1FLOX/WT;PF4-Cre1/2 (control) and
Tln1FLOX/R35E,R118E;PF4-Cre1/2 (Tln1-mR35E,R118E) littermates for
experiments. Similarly, Tln1FLOX/R35E;PF4-Cre1/2 mice (Tln1-mR35E)
were compared with Tln1FLOX/WT;PF4-Cre1/2 (control) littermates for
experiments, and Tln1FLOX/R118E;PF4-Cre1/2 mice (Tln1-mR118E)
withTln1FLOX/WT;PF4-Cre1/2 (control) littermates. Tln1-mKO refers to
the Tln1FLOX/FLOX;PF4-Cre1/2 strain, and Rap1a/b-mKO refers to
Rap1a/bFLOX/FLOX;PF4-Cre1/2. Mice were housed in the animal fa-
cilities of the University of California, San Diego. Experimental
procedures were approved by the Institutional Care and Use
Committee.

Platelet preparation
Blood was drawn with heparin-coated capillaries (VWR) from the
retro-orbital plexus into tubes containing low-molecular-weight
enoxaparin sodium (Lovenox, sanofi-aventis). Whole blood
was diluted with modified Tyrode’s buffer (137 mM NaCl,
0.3 mM Na2HPO4, 2 mM KCl, 12 mM NaHCO3, 5 mM N-2-
hydroxyethylpiperazine-N9-2-ethanesulfonic acid, 5 mM glucose,
pH 7.3) containing 0.35% bovine serum albumin. Platelet-rich
plasma was obtained by 2 successive centrifugation steps at
130g for 4 minutes first and then 100g for 5 minutes at room
temperature. The platelet-rich plasma was centrifuged at 700g
for 5 minutes at room temperature in the presence of 5 mM
prostacyclin to pellet platelets. Platelets were resuspended in
modified Tyrode’s buffer, and the platelet concentration was
adjusted to 5 3 108/mL.

Flow cytometry
For whole blood assays, blood was diluted 1:12.5 in modified
Tyrode’s solution containing 1 mM CaCl2, agonists, and JonA/
PE (2 mg/mL) or 9EG7/Alexa Fluor 488 (2 mg/mL) plus anti-GPIX
antibody labeled with Alexa Fluor 647 (2 mg/mL). Samples were
incubated for 10 minutes at room temperature and then diluted
1:400 in phosphate-buffered saline before analysis with a BD
Accuri C6 Plus flow cytometer (BD Biosciences). Platelet phos-
phatidylserine (PS) exposure was measured by using Alexa Fluor
647–conjugated Annexin V (BioLegend) staining following
stimulation with 0.1 mg/mL convulxin 1 500 mM protease-
activated receptor-4–agonist-peptide (PAR4-AP). For analysis
of surface receptor expression levels, 23 106 platelets in diluted
whole blood (modified Tyrode’s buffer) were stained for
10 minutes with 2 mg/mL phycoerythrin (PE)-conjugated anti-
bodies and immediately analyzed by using flow cytometry.

For real-time aIIbb3 activation assay, washed platelets were
diluted in modified Tyrode’s solution containing 1 mM CaCl2.
After establishing a baseline with unlabeled platelets for
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30 seconds, JonA/PE and agonist (PAR4-AP or convulxin) were
added simultaneously in an equal volume of modified Tyrode’s
solution. Jon/A-PE binding was recorded continuously for
10 minutes.

Aggregometry
Platelet-rich plasma was diluted to a concentration of 3 3 108

platelets/mL in modified Tyrode’s buffer containing 0.35% bo-
vine serum albumin and 1 mM CaCl2. Experiments were per-
formed at 37°C under stirring conditions (1200 rpm). Platelets
were stimulated with various concentrations of PAR4-AP, fibrillar
collagen type I, or adenosine 59-diphosphate (ADP). Light
transmission was recorded on a 4-channel optical aggregation
system (Chrono-log).

Saphenous vein laser injury
Mice (6-8 weeks of age) were anesthetized with 2.5% isoflurane
before the saphenous vein was surgically exposed. Mice were
injected with Alexa Fluor 488–conjugated antibodies to GPIX
(2.5 mg) to label circulating platelets and Alexa Fluor 647–
conjugated antibodies to fibrin (2.0 mg), and the saphenous vein
was injured as previously described.27 Bleeding times and
platelet plug formation at the site of laser injury were assessed by
intravital microscopy using an Examiner Z1 microscope (Zeiss)
equipped with a CSU-W confocal scanning unit (Yokogawa
Electric Co.) and Orca Flash 4.0 camera (Hamamatsu). Data were
analyzed with SLIDEBOOK 6.0 (Intelligent Imaging Innovations).

Statistics
Statistical significance was assayed by using a 2-tailed Student
t test for single comparisons. Analysis of variance with a Tukey
post hoc test or a Gehan-Breslow-Wilcoxon test with Bonferroni
correction was used to assay statistical significance for multiple
comparisons. A Shapiro-Wilk normality test was used to assess
the Gaussian distribution of all data sets. A value of P , .05 was
considered significant.

Additional methods and more detailed descriptions are pro-
vided in the supplemental Methods.

Results
Rap1 binding to the talin-1 F1 domain significantly
contributes to integrin activation in platelets
The amino acid substitution R118E in the talin-1 F1 domain does
not disrupt the folding of F1 and blocks binding to Rap1.23 To
evaluate the contribution of Rap1 binding to the talin-1 F1
domain to integrin activation in platelets, CRISPR/Cas9 was used
to introduce the mutation R118E into exon 3 of the murine Tln1
gene (Figure 1A-B). Homozygous Tln1R118E/R118E mice (indicated
as Tln1-R118E) were viable and fertile, exhibited no gross de-
velopmental abnormalities, and appeared healthy, with normal
platelet counts (Table 1). Platelet content of talin-1 (Figure 1C)
and surface expression of aIIb, b3, a2, a5, and b1 integrins
(Figure 1D) in Tln1-R118E platelets were similar to wild-type
platelets, indicating that Tln1-R118E mice are suitable for ex-
amination of the effects of blocking Rap1 binding to the talin-1
F1 domain on platelet integrin function in vivo and ex vivo.

We next measured binding of JonA/PE, an antibody that spe-
cifically detects the active conformation of murine aIIbb3,28 to

platelets stimulated with various agonists. Tln1-R118E platelets
exhibited a substantial reduction in JonA/PE binding in response
to stimulation with various concentrations of PAR4-AP, ADP, and
convulxin (Figure 1E-F). Conversely, JonA/PE binding to
platelets carrying the amino acid substitution R35E in the talin-1
F0 domain, which blocks its binding to Rap1,21 was similar
compared with platelets from wild-type mice (Figure 1E).
Binding of 9EG7 antibody, which selectively binds to the active
conformation of b1 integrin, was also reduced in Tln1-R118E
platelets in response to agonist stimulation (Figure 1G). To verify
that the defect was platelet/megakaryocyte cell autonomous, we
tested platelets from Tln1FLOX/R118E;PF4-Cre1/2 mice (indicated
as Tln1-mR118E). In these mice, talin-1(R118E) is the only form of
talin expressed in the megakaryocyte lineage, whereas other
cells also contain a wild-type allele. Tln1-mR118E platelets
exhibited a similar reduction in activation of b1 and b3 as
platelets from Tln1R118E/R118E mice (supplemental Figure 1).

Importantly, we checked for off-target mutations that could have
been inserted using CRISPR-Cas9 into the genome of Tln1-
R118E mice. The top 5 off-target sites were sequenced for
each guide RNA, and no detectable mutations were found
(supplemental Table 1). Furthermore, the defects in integrin
activation were not detected in platelets from Tln1FLOX/R118E;PF4-
Cre2/2 littermates but were only observed upon loss of the Tln1-
Flox allele in Tln1FLOX/R118E;PF4-Cre1/2 platelets (supplemental
Figure 2A). Thus, the defect in platelet integrin activation in
Tln1FLOX/R118E;PF4-Cre1/2 mice can be ascribed to the Tln1-
R118E mutation. Altogether, our results show that blockade of
Rap1 binding to the talin-1 F1 domain inhibits agonist-induced
activation of both b1 and b3 integrins, whereas blocking Rap1
binding to F0 has a much weaker effect.

Mutation of the 2 Rap1 binding sites in the talin-1
F0 and F1 domains further impairs platelet
integrin activation
Although both the talin-1 F0 and F1 domains contain a Rap1-
binding site,21,23 only the R118Emutation in the F1 domain leads
to a major reduction in talin-1–mediated integrin activation in
platelets. We next generated amouse strain carrying both amino
acid substitutions R35E and R118E in talin-1 F0 and F1 domains,
respectively, to block both Rap1-binding sites in talin-1.We used
the same CRISPR-Cas9 approach as for Tln1-R118E mice to
introduce the R118E mutation into the Tln1-R35E allele
(Figure 1A). Intercrosses of heterozygous Tln1WT/R35E,R118E mice
only resulted in wild-type and heterozygous pups at a 1:2 ratio.
We ruled out the presence of off-target mutations that could
have been inserted by CRISPR-Cas9 into the genome of
Tln1WT/R35E,R118E mice (supplemental Table 1). We also se-
quenced the whole coding sequence of the Tln1 gene in
Tln1WT/R35E,R118E mice and found no additional mutations. Thus,
the absence of homozygous animals indicates that the combi-
nation of R35E and R118E mutations leads to a profound loss of
function in talin-1 that is incompatible with postnatal life.

To circumvent the embryonic lethality of the Tln1-R35E,R118E
allele, we generated Tln1FLOX/R35E,R118E;PF4-Cre1/2 mice selec-
tively expressing talin-1(R35E,R118E) mutant protein (indicated
as Tln1-mR35E,R118E) in platelets. These mutant mice were
viable and fertile, with normal platelet counts, no gross de-
velopmental abnormalities, and no spontaneous bleeding
(Table 1); the viability of these mice and lethality of the
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homozygous Tln1R35E,R118E/R35E,R118E mice indicate that Rap1
binding to talin-1 is important in cells other than platelets, as also
suggested by the leukocytosis in Tln1R118E/R118Emice (Table 1),
the defect in leukocyte migration in mice bearing a combination
of 3 mutations in talin-1 F0 domain that disrupts Rap1 binding,22

and defective focal adhesion targeting of Rap1-binding de-
fective talins.20,23,24 Expression of talin-1(R35E,R118E) and
kindlin-3 was unaffected in Tln1-mR35E,R118E platelets
(Figure 2A), and surface levels of aIIb, b3, a2, a5, and b1
integrins were similar to integrin contents in platelets from lit-
termate controls (Figure 2B). Binding of JonA/PE (Figure 2C) or
9EG7 (Figure 2D) antibody to agonist-stimulated Tln1-
mR35E,R118E platelets was drastically reduced compared
with controls. Importantly, the defects in integrin activation were

not detected in Tln1FLOX/R35E,R118E;PF4-Cre2/2 platelets but only
observed upon loss of the Tln1-Flox allele in Tln1FLOX/R35E,R118E;
PF4-Cre1/2platelets (supplemental Figure 2B); this indicates that
defects in integrin activation in Tln1-mR35E,R118E platelets are
not due to off-target mutations but rather ascribable to the loss
of Rap1–talin-1 interaction.

We next examined the ability of Tln1-mR35E,R118E platelets to
form aggregates in response to stimulation with various doses of
PAR4-AP, collagen, or ADP. A dramatic reduction was observed
in the aggregation response of Tln1-mR35E,R118E platelets,
whereas shape change remained intact, indicating an intact
Ca11 response to stimulation (Figure 2E). These results highlight
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the strong contribution of the 2 Rap1-binding sites in talin-1 to
integrin activation and platelet aggregation.

To assess the contribution of the Rap1–talin-1 interaction to
hemostatic plug formation in vivo, the Tln1-mR35E,R118E mice
were then challenged in a laser injury–induced saphenous vein
hemostasis model as previously described.27 In this assay, a laser
ablation–induced injury with a diameter of;50 mm is generated
in the saphenous vein endothelium of a mouse, and the time to
cessation of bleeding is quantified. About half of the lesions in
Tln1-mR35E,R118Emice bled, on average,;5 times longer than
those in control littermates, whereas the other half of the Tln1-
mR35E,R118E lesions bled continuously for the 10-minute ob-
servation period (Figure 2F). Notably, hemostasis was less im-
paired in Tln1-mR118E mice, indicating a detectable
contribution of Rap1 binding to talin-1 F0. Thus, disruption of the
Rap1–talin-1 interaction profoundly impairs b3 integrin–
mediated platelet aggregation and hemostatic plug formation.

Mutation of one or both Rap1 binding sites in talin-1
produces a graded series of defects in platelet
integrin activation
To directly determine the relative contributions of the talin-1 F0
and F1 Rap1-binding sites to integrin activation compared with
loss of both sites, we compared JonA/PE binding in Tln1-mR35E
(Rap1-F0 mutant), Tln1-mR118E (Rap1-F1 mutant), Tln1-
mR35E,R118E (both F0 and F1 mutated), and Tln1-mKO
(complete loss of talin-1) platelets in response to stimulation
with PAR4-AP. A graduated response was observed in talin-
1–mediated integrin activation, in which the Rap1–F0 interaction
makes a minimal contribution, whereas Rap1 binding to F1 has a
strong impact on integrin activation (Figure 3A). Activation of
aIIbb3 was reduced even more when both the Rap1–F0 and
Rap1–F1 interactions were hindered in Tln1-mR35E,R118E
platelets to reach a level nearly to that of the Tln1-mKOplatelets.
A similar observation was made when we studied integrin ac-
tivation kinetics using a flow cytometry–based assay to monitor
real-time binding of JonA to Tln1-mR35E,R118E platelets in
response to PAR4-AP and convulxin stimulation (Figure 3B-C).
Accordingly, agonist-induced aggregation responses of Tln1-
mR35E,R118E platelets were affected substantially more com-
pared with Tln1-mR118E platelets (Figure 3D). Together, our
findings show the cooperation of the 2 Rap1 interactions with
talin-1 F0 and F1 domains to enable optimal integrin activation in
platelets and how these novel mutant mouse strains exhibit a
graded series of platelet integrin activation defects.

Tln1-mR35E,R118E platelets phenocopy the
defects in aIIbb3 activation observed in
Rap1a/b-deficient platelets
To assess the relative role of the Rap1–talin-1 interaction in aIIbb3
activation, we compared aIIbb3 activation in platelets from Tln1-
mR35E,R118E mice with platelets deficient for the 2 Rap1a and
Rap1b isoforms (indicated as Rap1a/b-mKO). Complete blockade
of the Rap1–talin-1 interaction in Tln1-mR35E,R118E platelets
inhibited aIIbb3 activation to a similar extent as in Rap1a/b-mKO
platelets upon PAR4-AP stimulation (Figure 4A). However, Rap1a/
b-mKO platelets exhibited a slightly more pronounced reduc-
tion in aIIbb3 activation in response to convulxin stimulation
(Figure 4B). Agonist-induced aggregation of Tln1-mR35E,R118E
and Rap1a/b-mKO platelets were similarly impaired (Figure 4C).
Thus, the integrin activation phenotype in Tln1-mR35E,R118E
platelets recapitulates the defects observed in combined de-
ficiency of both Rap1a and Rap1b isoforms, thereby showing
that other effectors cannot substantially compensate for the loss
of the talin-1–Rap1 interaction in aIIbb3 activation.

To compare the importance of the talin-1–Rap1 interaction to
Rap1 in platelets to support hemostasis, we challenged Tln1-
mR35E,R118 mice and Rap1a/b-mKO mice in the laser injury–
induced saphenous vein hemostasis model. Accumulation of
Tln1-mR35E,R118E platelets at the site of vascular injury was
reduced to a similar extent to that observed with Rap1a/
b-mKO mice (Figure 5A). Accordingly, Tln1-mR35E,R118E mice
exhibited a significant prolongation in the bleeding time that
persisted for up to 10 minutes in half of the tested lesions
(Figure 5B). The defect in hemostasis was more severe in Rap1a/
b-mKO mice, however, as all lesions were unable to cease
bleeding within the 10-minute duration of the assay.

In addition to platelet aggregation, secretion of platelet granule
contents and generation of procoagulant activity contribute to
hemostasis. Deficiency of Rap1 in platelets impairs a-granule
secretion.12,16 Therefore, we next investigated the contribution
of the Rap1–talin-1 interaction in platelets to granule secretion.
P-selectin exposure was largely intact in Tln1-mR35E,R118E
platelets in response to PAR4-AP and partially impaired in re-
sponse to convulxin stimulation (Figure 5C-D). Similar preser-
vation of P-selectin expression was reported in talin-1–null
platelets.8,9 In sharp contrast, Rap1a/b-mKO platelets showed a
much more profound secretion defect in response to both ago-
nists, indicating that Rap1 activation is intact in Tln1-mR35E,R118E

Table 1. Peripheral blood cell counts of Tln1-R118E and Tln1-mR35E,R118E mice

Genotype PLT (3103/mL) MPV (fL) HCT (%) HB (g/dL) WBC (3103/mL)

Tln1WT/WT (n 5 13) 829.2 6 27.43 4.4 6 0.06 44.3 6 0.69 13.7 6 0.23 8.4 6 0.72

Tln1R118E/R118E (n 5 14) 910.2 6 34.76* 4.5 6 0.09* 44.8 6 0.64* 13.8 6 0.26* 15.8 6 1.29†

Tln1FLOX/WT; PF4-Cre1/2 (n 5 16) 819.1 6 29.45 4.2 6 0.05 42.7 6 0.61 13.5 6 0.15 10.78 6 0.65

Tln1FLOX/R35E,R118E; PF4-Cre1/2 (n 5 16) 955.8 6 29.89* 4.3 6 0.05* 43.1 6 0.56* 13.5 6 0.18* 13.1 6 0.67†

Data are presented as the mean 6 standard error of the mean. Statistical significance was assayed by a 2-tailed Student t test. No significant differences were observed.

HB, hemoglobin; HCT, hematocrit; MPV, mean platelet volume; PLT, platelet; WBC, white blood cell.

*Not significant.

†P , .05.
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Figure 2. Blockade of Rap1 binding to both F0 and F1 domains in talin-1 prevents integrin activation in platelets in Tln1-mR35E,R118E mice. (A) Expression of talin-1
mutant in Tln1-mR35E,R118E platelets was assayed by using western blotting. Results are representative of 3 independent experiments, n 5 3 mice each time. (B) Surface
expression of aIIb, b3, a2, a5, and b1 integrins in Tln1-mR35E,R118E platelets was measured by using flow cytometry. Bar graph represents mean fluorescence intensity (MFI)6
standard error of the mean (n 5 6 mice). Two-tailed Student t test. (C-D) Impaired integrin activation in Tln1-mR35E,R118E. Flow cytometry assay to measure binding of GPIX-
labeled platelets in whole blood to JonA/PE antibody (C) or Alexa Fluor 488–coupled 9EG7 antibody (D) in response to agonist stimulation. Bar graphs representMFI6 standard
error of the mean (n5 6 mice, representative of$3 independent experiments). Two-way analysis of variance with Tukey posttest. (E) Representative aggregation responses of
Tln1-mR35E,R118E platelets stimulated with various concentrations of agonists (indicated by arrows). (F) Intravital microscopy studies to monitor hemostatic plug formation after
laser injury to the saphenous vein in Tln1-mR118E and Tln1-mR35E,R118E mice. The experiment was terminated at the end of 10 minutes to avoid excessive loss of blood.
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sites), and 5 Tln1-mR35E,R118E mice (39 injury sites). Statistical significance was assayed by a one-way analysis of variance with Tukey posttest. ***P , .001. ns, not significant.
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platelets (Figure 5C-D). These results are consistent with previous
reports that Rap1b is more important for platelet secretion in re-
sponse toGPVI than PAR4 stimulation.29 Agonist-induced exposure
of PS on the outer leaflet of the plasma membrane in platelets
confers procoagulant activity by increasing the assembly of co-
agulation protease/cofactor complexes, which enhances thrombin
generation. PS exposure in platelets depends on signaling by
Rap1,30 which led us to investigate the PS exposure in Tln1-
mR35E,R118E or Rap1a/b-mKO platelets that were stimulated
with convulxin combined with PAR4-AP to induce PS exposure.
Remarkably, PS exposure was reduced in Tln1-mR35E,R118E
platelets compared with control platelets (Figure 5E). However,
Rap1a/b-mKO platelets exhibited more severe inhibition in PS

exposure compared with Tln1-mR35E,R118E platelets. Thus, our
findings reveal that the Rap1–talin-1 interaction in platelets is es-
sential for integrin activation but cannot fully account for impaired
thrombocytopoiesis, granule secretion, and PS exposure seen in
combined deficiency of the 2 Rap1 isoforms.

Discussion
Many different signaling pathways have been implicated in the
capacity of agonists such as ADP, thrombin, and collagen to
trigger platelet integrin activation required for platelet aggre-
gation and normal hemostasis. All of these signaling pathways
converge on activation of Rap1, which in turn results in talin-1
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GPIX-labeled platelets in whole blood to Jon/A-PE antibody
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binding to the integrin b cytoplasmic domain, a final step in
integrin activation. Here we analyzed mice bearing mutations in
one or both of the Rap1-binding sites of talin-1 and used these
mice to define the connection between Rap1 and talin-1 in
platelets. Compared with the talin-1 F1 domain, the talin-1 F0
domain makes a relatively small contribution to integrin acti-
vation in platelets. Disabling both Rap1-binding sites had a
greater effect than disabling F1 alone and recapitulated the
defect in integrin activation seen in platelets lacking both Rap1a
and Rap1b. Thus, talin-1 is the principal and perhaps only
platelet Rap1 effector for integrin activation; however, loss of
Rap1–talin-1 did not phenocopy defects in thrombocytopoiesis,
secretion, and surface exposure of PS observed in Rap1-
deficient platelets. These results combined with recent struc-
tural studies suggest a mechanism whereby Rap1 mediates
initial recruitment of talin-1 to the platelet membrane, resulting
in unmasking of the talin-1 integrin-binding site and integrin
activation in hemostasis.

Disabling the Rap1-binding sites in talin phenocopies lack of
Rap1a and Rap1b with regard to platelet integrin activation and
aggregation, indicating that talin-1 is a major Rap1 effector
involved in these processes. Deletion of talin-1 itself had a
slightly stronger effect, suggesting additional mechanisms,
such as disruption of talin-1 autoinhibition by Ga13,31 in talin-
1–dependent integrin activation. The fact that convulxin, which
binds GPVI and signals via Syk tyrosine kinase, was slightly less
affected suggests that tyrosine kinase signaling may provide
another such alternative pathway. Interestingly, Rap1a/b-mKO
mice exhibited a more profound hemostatic defect than Tln1-
mR35E,R118E mice, even though integrin activation in plate-
lets from these mice was impaired to a similar extent. This result
can be ascribed to the mild thrombocytopenia and additional
platelet function defects, such as impaired granule release and
procoagulant response, in mRap1a/b-KO mice. These added
defects also highlight the potential importance of one of the
many other known Rap1 effectors.32,33 The defects in throm-
bocytopoiesis and platelet morphology in mRap1a/b-KO mice
raised the possibility that the defective integrin activation, in
part, could be due to a developmental defect in megakaryo-
cytes rather than lack of Rap1 signaling in platelets. The
presence of normal platelet counts, intact gross morphology,
and secretion in Tln1-mR35E,R118E platelets further indicates
that Rap1 is the major final signaling element in platelet
integrin activation.

In combination with recent structural studies,18 the data reported
here suggest a model for the main final steps in platelet integrin
activation. Earlier work with talin-1 fragments in model systems
showed that the talin-1 F3 domain alone is sufficient for
activation.34 Even in the absence of Rap1 signaling, the presence
of the lipid-binding sites in the F2 domain markedly increases
the capacity of talin-1 to disrupt the integrin a and b sub-
unit transmembrane domain interaction, resulting in integrin
activation.35-38 In contrast to these talin-1 fragments, full-length
talin-1 is autoinhibited,39 and this autoinhibition can be relieved
by binding to phosphatidylinositol (4,5)-bisphosphate (PIP2).40 In
full-length talin-1, the integrin-binding site in F3 is obscured by
its interaction with the R9 helical bundle of the rod domain,41-43

and a recent cryo-electron microscopic structure of talin-1
revealed that the critical PIP2-binding site in F2 is masked by
the R12 helical bundle18 (Figure 6). The talin-1 F0 and F1
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RAP1–TALIN-1 BINDING CONTROLS PLATELET AGGREGATION blood® 3 SEPTEMBER 2020 | VOLUME 136, NUMBER 10 1187

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/136/10/1180/1756644/bloodbld2020005348.pdf by U

N
IV O

F N
C

/AC
Q

 SR
VC

S user on 20 O
ctober 2020



domains were not part of the autoinhibited structure; mutations
in them are therefore unlikely to perturb autoinhibition, and F0 and
F1 are thus available to bind to Rap1-GTP in the plasma
membrane.18 The lipid-binding loop in F119 enables F1 to make a
greater contribution than F0 to this interaction with the plasma

membrane. At the membrane, PIP2 can disrupt the F2–R12 and
F3–R9 interactions, thus unveiling the integrin-binding site ac-
counting for the critical role of PIP2 in integrin activation.43,44 The
binding of the F3 domain to the integrin b tail provides a final
cooperative link of the talin-1 head domain to the plasma
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Figure 5. Tln1-mR35E,R118E mice exhibit milder defects in hemostasis compared with Rap1a/b-mKO mice, along with preserved capacity of platelets to secrete
a-granules and expose surface PS. (A-B) Intravital microscopy studies to monitor hemostatic plug formation after laser injury to the saphenous vein in Tln1-mR35E,R118E and
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error of the mean (n 5 6 mice). Two-way analysis of variance with Tukey posttest. **P , .01; ***P , .001. ns, not significant.
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membrane and induces activation of aIIbb3 and b1 integrins in
platelets.7,45
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Inactive talin-1 where R9 and R12
interact with F3 and F2 domains

Talin-1 F0 and F1 are available for
interactions with Rap1 and PI(4,5)P2

TTalin-1 recruitment to the membrane opens
the F2-F3/PI(4,5)P2 and F3/integrin binding sites

Talin-1 binds to the 3 integrin cytoplasmic
tail to activate b3 integrins
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Figure 6. Model for the main final steps in talin-
1–dependent platelet integrin activation. (A) Talin-1
is autoinhibited where the F3 integrin–binding site (red
disc) is obscured by its interaction with the R9 helical
bundle, and the PI(4,5)P2 binding site in F2 and F3 are
masked by the R12 helical bundle. (B) The Rap1-
binding sites in F0 and F1 were not part of the auto-
inhibited structure and therefore available to bind
Rap1-GTP.18 (C) At the membrane, PI(4,5)P2 can disrupt
the F3–R9 and F2–R12 interactions to unveil the talin-1
F3 integrin–binding site (red disc). (D) The binding of
talin-1 F3 domain to the integrin b tail induces acti-
vation of aIIbb3 and b1 integrins.
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