CBPH 850 MODERN CONCEPTS IN CELL BIOLOGY Fall 2019

Tuesday and Thursday 3:00-5:00 PM, MBRB rm 6201, 4 credit hours
Course Director: Scott Hammond

Exploiting microscopy to reveal subcellular organelle localization, dynamics, and function
(Stephanie Gupton, Joe Costello, Sarah Cohen, Wes Legant, Tony Amelio)
Tue Aug 20 Fluorescence Microscopy for Cell Biology (Gupton)
Thu Aug 22 Confocal and Live-Cell Microscopy (Cohen)
Tue Aug 27 How TIRF Microscopy Works and When to Use It (Gupton)
Thu Aug 29 Superresolution Microscopy (Cohen)
Tue Sept 3 Light Sheet Microscopy, SiM, and New Developments in Microscopy (Legant)
Thu Sept 5 Bridging microscopy and genetics (Amelio)

Genetic Approaches in Cell Biology
(Pat Brennwald, Amy Gladfelter, Jay Brenman, Amy Shaub Maddox, Rob Dowen)
Tue Sept 10 Intro to Yeast Genetics and the Secretory Pathway (Brennwald)
Thu Sept 12 Classical Genetics and Epistatic Analysis of Transport (Brennwald)
Tue Sept 17 Molecular Genetics: Cloning the first Rab GTPase (Brennwald)
Thu Sept 19 Advanced Yeast Genetics (Brennwald & Gladfelter)
Tue Sept 24 Introduction to Fly Genetics (Brenman)
Thu Sept 26 Modern Fly Genetics (Brenman)
Tue Oct 1 C. elegans as a Model System for Cell Biology (Shaub Maddox)
Thu Oct 3 Metabolism and gene regulation in C. elegans (Dowen)

Genomics, Proteomics, and Bioinformatics in Cell Biology
(Scott Hammond)
Tue Oct 8 RNAi and other loss of function approaches
Thu Oct 10 Genome Editing with CRISPR/Cas9
Tue Oct 15 Break day (exam, no class)
Midterm exam – take home exam – due Mon Oct 21 at 11:00 AM
Thu Oct 17 Fall Break-NO CLASS
Tue Oct 22 High Throughput Genomics
Thu Oct 24 Single cell approaches to cell biology
Tue Oct 29 Bioinformatics

Protein Quality Control and Proteostasis (Doug Cyr)
Thu Oct 31 Quality Control
Tue Nov 5 Chaperones
Thu Nov 7 ER Quality Control
Tue Nov 12 Quality Control and Human Disease

Discoveries & Controversies in Membrane Trafficking
(Stephanie Gupton, Patrick Brennwald, Jimena Giudice)
Thu Nov 14 An InterGolgi Assay and the Directionality of Transport
Tue Nov 19 Coat Proteins and Vesicle Production
Thu Nov 21 Fusogenic Factors from Yeast to Man & the SNARE Hypothesis
Tue Nov 26 Resolutions & Ongoing Controversies in Membrane Trafficking
Thu Nov 28 Thanksgiving-NO CLASS

Final exam - take home exam - due Mon Dec 3 at 11:00 AM
Time & Place
Class will meet Tuesdays and Thursdays from 3:00-5:00 PM in 6201 MBRB unless noted otherwise.

Format
Classes usually begin with a faculty member discussing the key ideas and points in a given area. The second half of each class is usually reserved for a student led discussion of papers from the primary literature, although there will sometimes be demonstrations or tutorials. Because the course is driven by discussions of the primary literature, it provides excellent experience both in cell biology and in the analysis of scientific papers. Active participation of all students in presentations and discussions is a key part of the course.

Course Website
Course materials such as reading assignments and discussion papers will be posted to the course website on Sakai.

Student Assignments
For most of the classes, groups of students will be assigned to present and lead discussion on research papers. Students listed first and marked with an asterisk are expected to present a few minutes of introduction and background information to “set the stage” for discussing the paper. The student(s) who are presenting a paper are expected to lead the discussion, but **EVERYONE IS EXPECTED TO HAVE READ EACH PAPER AND TO CONTRIBUTE TO THE DISCUSSION.**

Optional text
Although the reading materials for course such as review articles and research papers will be posted to the Sakai website, those who need to strengthen their background in a given area (or want become more expert) will benefit greatly from reading the relevant chapters in Alberts et al, Molecular Biology of the Cell (6th edition). Alberts is a superb text that provides a systematic coverage of cell biology.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Presentations:</td>
<td>~ 25%</td>
</tr>
<tr>
<td>Class Participation:</td>
<td>~ 25%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>~ 25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>~ 25%</td>
</tr>
</tbody>
</table>

Students are also required to complete an anonymous course evaluation at the end of the semester.