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Abstract

Cross-species comparison and prediction of gene expression profiles are impor-

tant to understand regulatory changes during evolution and to transfer knowledge
learned from model organisms to humans. Single-cell RNA-seq (scRNA-seq) profiles
enable us to capture gene expression profiles with respect to variations among indi-
vidual cells; however, cross-species comparison of sScRNA-seq profiles is challenging
because of data sparsity, batch effects, and the lack of one-to-one cell matching
across species. Moreover, single-cell profiles are challenging to obtain in certain
biological contexts, limiting the scope of hypothesis generation. Here we developed
Icebear, a neural network framework that decomposes single-cell measurements

into factors representing cell identity, species, and batch factors. Icebear enables
accurate prediction of single-cell gene expression profiles across species, thereby pro-
viding high-resolution cell type and disease profiles in under-characterized contexts.
Icebear also facilitates direct cross-species comparison of single-cell expression profiles
for conserved genes that are located on the X chromosome in eutherian mammals
but on autosomes in chicken. This comparison, for the first time, revealed evolutionary
and diverse adaptations of X-chromosome upregulation in mammals.

Introduction

The magnitude of a gene’s expression may vary across species, and this variation may
contribute to or be representative of morphological or trait evolution [1, 2]. Thus, com-
paring gene expression profiles across species has the potential to offer valuable insights
into a wide range of questions related to, for example, which genes have adapted to
new regulatory machineries and functions during evolution, and how gene expression
changes when a gene moves to a different chromosomal context or when a gene’s copy
numbers varies across organisms (e.g., genes located on two sets of autosomes in chicken
and on the single X chromosome in male mouse). Furthermore, understanding tran-
scriptional differences between model organisms and humans will greatly enhance our
ability to transfer insights gained from model organism studies into a human context.
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Previous studies have compared transcriptional differences among organisms based
on bulk and single-cell gene expression measurements. However, comparison of bulk
gene expression profiles across species [3—6] may not fully capture cellular heterogene-
ity and may suffer from imbalanced cell type composition of tissues across species [7].
Recently, single-cell profiles have been widely generated to capture cell-specific expres-
sion profiles and mitigate the issue of uncaptured cell heterogeneity in bulk samples, but
direct transcriptional comparisons are difficult because of the challenge of matching
cells across species. Moreover, single cell measurements suffer from sparsity, noise, vari-
able sequencing depth, and potential batch effects. As a result of these limitations, cur-
rent studies instead perform cross-species matching or comparison at the cell type level
[8—12]. Unfortunately, this approach requires accurate cell type calling and matching
across species and, similar to bulk comparisons, fails to take into consideration single-
cell variability.

More importantly, although single cell data are widely available for certain model
organisms, such as mouse, single-cell expression atlases in human and non-model-
organisms are still far from complete, due to limitations of sample availability and acces-
sibility (e.g., it is difficult to retrieve human brain samples, as well as fetal or pediatric
tissues, especially in disease conditions). Although multiple methods have been devel-
oped that focus on aligning single cells across species [8, 10, 13, 14], these methods are
not able to make cross-species comparison at single-cell resolution, nor can they make
predictions about evolutionary changes when certain experimental measurements (e.g.,
a particular cell or tissue type of a species) are not available. Because of these limitations,
studies of transcriptional evolutionary patterns are restricted to tissues or cell types in
species that have existing, high-quality measurements.

To address these challenges, new computational methods are needed that can (1)
predict gene expression profiles for missing cell types and biological contexts and (2)
directly compare expression profiles across species at single-cell resolution, without
relying on external cell type annotations. Although several deep learning-based methods
enable cross-species prediction of perturbation effects from high-throughput screens,
these methods rely on discrete cell type labels and are not designed to predict and com-
pare cellular gene expression in wildtype physiological conditions across species [7, 15,
16]. We hypothesize that a neural network model that can decompose single cell profiles
into species factors and cell factors invariant of species will allow us to make single-cell,
cross-species prediction and comparison by swapping the species factor corresponding
to each cell.

We are motivated in part by the study of sex chromosome evolution, which would ben-
efit from methods for single-cell comparison and prediction of gene expression across
species. In mammals, males have a single X chromosome and a gene-poor Y chromo-
some, whereas females have two X chromosomes. X chromosome upregulation (XCU)
has been proposed to evolve in response to gene loss due to Y-chromosome degenera-
tion during sex chromosome evolution [17-22]. XCU increases expression of many
X-linked genes to balance gene expression between the single X chromosome and two
sets of autosomes in diploid male XY cells. In female XX cells, X inactivation silences
one of the two X chromosomes in females to avoid hyperactivation. Evolutionary stud-
ies have shown that the X chromosome of eutherian mammals has arisen from ancestral
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autosomes in two major steps: first, an autosome gave rise to the so-called X conserved
region (XCR) in the ancestor of both eutherian and metatherian mammals [20]. Today,
the XCR is represented by the whole X chromosome of marsupials (e.g., opossum) and
corresponds to about two thirds of the eutherian X chromosome. The latter acquired the
so-called X added region (XAR) by translocation of autosomal pieces to the XCR, which
resulted in the larger conserved X chromosome of eutherian mammals (e.g., human,
mouse, rat). Chromosomes that demonstrate homology to the XCR and XAR can be
identified in marsupials (X chromosome and parts of autosomes 4 and 7) and in birds
(parts of autosomes 1 and 4 in chicken) (Fig. 1D).

While XCU has been clearly demonstrated in Caenorhabditis elegans, the mechanisms
of XCU in mammals are still debated [23—-27]. Importantly, which X-linked genes are
upregulated and at which levels at each evolutionary step is still unclear. This is largely
because most studies have relied on transcriptomic approaches to compare expression
between groups of X-linked and autosomal genes. However, direct expression compari-
sons of evolutionarily conserved genes before and after becoming X-linked are limited
or impeded by different data normalization methods and by the lack of appropriate sam-
ples to directly compare species across tissues and cell types [4, 5].

Here we propose a deep learning model, Icebear, that induces a non-sparse version
of single-cell expression data and performs cross-species prediction and comparison
at single-cell resolution. Using several publicly available datasets, we demonstrate that
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Fig. 1 Icebear’s cross-species prediction and comparison framework. A Icebear is trained on single-cell
RNA-seq profiles across species. Specifically, Icebear uses conditional variational autoencoders that predict
cellular profiles from a combination of species and batch factors, as well as species-invariant cell factors. B
Once the model is trained, we can swap the species factor to predict a (e.g,, mouse) cell's corresponding
profile in another species (e.g.,, human). C Icebear can be used to predict single-cell profiles in species (e.g.,
human) where the corresponding cell type has not been profiled. D Icebear can also perform cross-species
comparison at the single-cell level, revealing X chromosome upregulation patterns during evolution.
Components of this figure were created with Biorender
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Icebear is able to integrate single-cell expression profiles across species, batch and tissue
types, and predict single-cell profiles in missing cell types across species. In addition,
we show that, on the basis of mouse data, Icebear can accurately predict transcriptomic
alterations in human Alzheimer’s disease (AD) versus control samples, thereby enabling
the transfer of knowledge from single-cell profiles in mouse disease models to human.
After several cross-species validation experiments based on public datasets, we applied
Icebear to predict and compare gene expression changes across eutherian mammals
(mouse), metatherian mammals (opossum), and birds (chicken), using our in-house
generated sci-RNA-seq profiles with minimal cross-species batch effects. By doing so,
Icebear reveals gene expression pattern shifts across species that support the exist-
ence of mammalian XCU and suggest the extent and molecular mechanisms of XCU
vary among mammalian species and among X-linked genes with distinct evolutionary

origins.

Methods

Multi-species single cell profile generation

Mixed-species scRNA-seq data were generated by a three-level single-cell combinatorial
indexing approach (sci-RNA-seq3) [28]. Adult brain and heart from both male mouse
and chicken were purchased from BioChemed Services, and male opossum adult brain
was provided by J. Turner (MRC, UK). The data were collected by indexing cells from
each species by reverse transcriptase barcoding and then processing them jointly, in
which case the species identity of each cell was known based on the sequence barcode.

Assigning species labels to cells and mapping reads

Mapping reads from sci-RNA-seq3 experiments to profile hundreds of thousands of sin-
gle cells from multiple species’ samples is complicated by the possibility of cells from
different species entering the same doublet during sample preparation and three-round
combinatorial cell barcoding. Accordingly, our pipeline begins by mapping each read
to multiple species and retaining only reads that map uniquely to a single species. This
step allows us to detect and remove species-doublet cells with reads from more than one
species.

The detailed protocol is as follows:

1. For a given sample, create a multi-species reference genome by concatenating the
reference genomes of all the species used in that sample.

2. Map all of the reads to the multi-species reference, retaining only reads that map
uniquely. We used the STAR aligner [29] with the following parameters: —out-
SAMtype BAM Unsorted -outSAMmultNmax 1 -outSAMstrandField
intronMotif -outFilterMultimapNmax 1.

3. Remove PCR duplicates.

4. Eliminate any read that maps to an unassembled scaffold, mitochondrial DNA, or
any locus that is marked as a repeat element by RepeatMasker (http://www.repea
tmasker.org). The repeat elements by RepeatMasker were retrieved from UCSC
genome browser [30], with the exception of opossum, where we ran RepeatMasker
to generate them. Repeat elements were removed using BEDtools [31].
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5. For each cell, count the total number of remaining reads that map to each of the
three species.

6. If the sum of the second- and third-largest counts is greater than 20% of all counts,
then mark the cell as a species-doublet and eliminate it.

7. Label the remaining cells according to their generating species.

Having identified the species origin for each cell, we then re-map the reads associated
with each single-species cell only to its corresponding species, retaining only the reads
that map uniquely within that species. The parameters used for this step were —out-
SAMtype BAM Unsorted -outSAMmultNmax 1 -outSAMstrandField
intronMotif.

The re-mapping is run using the pipeline developed by the Brotman Baty Institute
(BBI) (https://github.com/bbi-lab/bbi-sci/). The first two steps of mapping multi-species
reference were modified from their pipeline. The reference genomes and annotations
were from the BBI, using assembly GRCm38 for Mus musculus, ASM229v1 for Mono-
delphis domestica, and GRCg6a for Gallus gallus (Ensembl release 99) [32]. The genes
were also filtered to match the ones used by BBL

Reconciling orthology relationships

To simplify the model and focus on the most straight-forward cross-species transcrip-
tional changes, we would like to establish one-to-one orthology relationships among
genes in the various species included in our study. The Biomart resource [33, 34] at
Ensembl reports orthology relationships between genes in a many-to-many fashion,
each with an associated percent identity score. To reduce this data resource to a one-to-

one mapping, our approach takes into account the following considerations.

+ We use the percent identity score to resolve ambiguities. If, for example, two mouse
genes are mapped to two opossum genes with four edges, then we select the two
edges that create a one-to-one mapping with maximal score.

+ In some cases, transitive relationships can be used to fill in missing edges. For exam-
ple, if gene A in human has an ortholog B in mouse, B has an ortholog C in chicken,
but A has no ortholog in chicken, then we can add an edge from A to C.

Formally, we represent our problem using an undirected graph G in which vertices V'
are genes and edges E represent orthology relationships. Each vertex v € V has an asso-
ciated species label s(v) € {human, mouse, rat, opossum, chicken}. Our goal is to elimi-
nate edges from this graph so as to ensure that every node is connected to at most one
node in each of the other species. This is done by building a graph G’ = {V’, E’} such
that V' C V, as follows. First, we reconcile mouse with each other species by creating a
one-to-one mapping between genes in the two species. We do this in a greedy fashion
for two species A and B by ranking all edges connecting A and B (i.e., all “high confi-
dence” edges in Biomart) in decreasing order by percent identity and then adding an
edge to G’ if and only if neither of its corresponding vertices already has an associated
accepted edge. Second, we fill in transitive relationships. This is done by creating a one-
to-one mapping between genes, using the same greedy algorithm as before, but for each
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pair of non-mouse species. We then search for “transitivity” triangles (4, B, C) that fulfill
the following criteria:

e $(A) = human

o 5(B) # human and s(C) # human

o s(B) #s(C)

+ The edge from A to Bis in G

+ G’ does not contain any edge connected to C.

+ The one-to-one mapping between s(B) and s(C) connects B to C.

In this case, we add to G’ the edge connecting A to C. This transitivity step is done
iteratively over the non-mouse species in order of evolutionary distance; i.e., the spe-
cies B and C are considered in the following order: (mouse, opossum), (mouse, chicken),
(opossum, chicken). For each of the resulting triples of species, transitivity triangles are
selected in a greedy fashion by sorting the triangles in decreasing order by the percent
identity associated with the edge connecting B to C.

At the end of this process, in the graph G’ each mouse vertex has at most one con-
nected neighbor in each of the non-mouse species. Note that we make no attempt to
ensure that the pattern of orthology relationships respects the species tree. Thus, in
principle a mouse gene might have an ortholog in chicken but none in opossum. This
is possible in the case of a gene deletion event along the opossum lineage. This process
yielded 10,030 genes with orthologs shared across the three species, 70 of which were
added through transitive relationships.

Data preprocessing

In-house multi-species dataset

To perform cross-species prediction and comparison, we performed the following pre-
processing steps:

1. Retain genes that have orthologs shared across all species.

2. Remove all mitochondrial reads.

3. Remove cells with <200 UMIs.

4. Remove genes expressed in fewer than 50 cells across all the datasets.

This process resulted in a gene (n = 9878) by cell (m = 561,340) matrix (Table 1); the
median UMI is 450.

Public datasets
Gene expression profiles were downloaded from a multi-species primary motor cortex
(M1) dataset [35], human and mouse cell atlases [36, 37], and an Alzheimer’s disease
study [38].

For the M1 dataset, we used the expert-curated cell type annotations in each data-
set, which contains 10 major cell type annotations that are further subdivided into 45
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Table 1 Cell counts in the final dataset

Species Tissue Batch1 Batch2 Batch3
Mouse Brain 33,569 — —
Opossum Brain 2664 235,178 —
Chicken Brain 8927 167,873 —
Mouse Heart — — 17,403
Chicken Heart — 28,003 67,723

high-resolution cell type annotations. We only focused on cell types that are annotated
as homologous between human and mouse based on expert curation. After applying the
above gene filtering, mapping and cell filtering steps, 233,296 cells and 13,924 genes are
retained for the downstream analysis.

For the human and mouse atlases, we trained Icebear on cells collected in the adult
stage, which contains 288,886 cells and 12,367 genes. For the purpose of evaluation, cell
types were determined based on expert annotations drawn from the original paper, and
we only made predictions on cell types with > 25 cells in both human and mouse. To
make sure our predictions are not confounded by batch or donor effects, we only evalu-
ated on the subset of cell types that exist in tissues that do not exhibit large donor effects
in humans. To do that, we calculated Euclidean distances based on normalized pseu-
dobulk profiles across all human adult tissue samples, and we retrieved tissues in which
samples from different donors are closest to each other.

For the Alzheimer’s disease dataset, we retrieved single cells from human and
7-month-old mice. For the purpose of evaluation, we mapped cell type annotations from
mouse to human based on the cell clusters called in the original paper, and we only vali-
dated on cell types with one-to-one mappings across species. No additional filtering was
performed. This dataset was merged with the M1 dataset (with the same ortholog map-
ping approach above) to increase the cell numbers for model training. 440,689 cells and
12,474 genes are retained in the joint dataset.

Because the model takes raw counts as input, no further data normalization is needed.

Icebear cross-species prediction model
Our model reconstructs each scRNA-seq profile using a set of factors representing cell
identity, tissue, species, and batch. The batch factor represents any knowledge of poten-
tial technical confounders, including studies, sequencing machines, or data generation
batches. In the absence of prior knowledge of experimental batches, the batch fac-
tor is the same across all cells. Similarly, the tissue factor is kept constant if all cells are
extracted from the same tissue type. These factors are concatenated and fed into a neural
network to reconstruct the original gene expression profile. The model adapts a con-
ditional variational autoencoder framework [10]. Species, tissue, and batch factors are
encoded using one-hot encoding, while the model learns cell factors as n-dimensional
vectors, where 7 is a hyperparameter to be tuned.

Intuitively, each gene expression count (X) in a specific cell is estimated based on
three learned variables: the sequencing depth-corrected mean (i), dispersion of the
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negative binomial distribution (r), and logit of the dropout event (p). The reconstruc-
tion loss consists of the log likelihood of the raw count x and sequencing depth-cor-
rected estimation using a zero-inflated negative binomial (ZINB) loss:

lossyeconstr = —zinb.loglik(X, ZINB(d * 1/, r, p|X, b, s, 1)), (1)

where d is the sequencing depth. The model also regularizes the cell embeddings by
applying a KL divergence loss between the posterior distribution (Q) of cell embeddings
(z) given batch (), species (s), and tissue () factors and the prior distribution (P, stand-
ard multivariate normal distribution):

losskr, = DxL[Q(z[X, b, s, t)[[P(z, b, s, 1)] (2)
Thus, in each epoch we minimize the the following loss:
lOSSCVAE = lossreconstr + 10ssKkL, (3)

To further guide the alignment of cells across species, optionally, we adopted the
idea of generative adversarial networks (GANs) [39], where we used a discriminator
to distinguish cells from different species, and then we trained the model to fool the
discriminator and learn cell embeddings invariant to species. Specifically, we divided
the model training into two major iterative steps. In the first step, we trained a single-
layer discriminator to predict species labels (s) based on cell embeddings, to distin-
guish species of origin from learned cell embeddings. In this step, the model aims
to minimize the discriminator loss calculating the discrepancy between true species
label (s) and predicted label (D(z)):

lossgis = CE(D(z|X, b, 5, 1), 5) @

In the second step, we fixed the parameters in the discriminator and tried
to optimize for reconstruction and fooling the discriminator by minimizing
losscyap — lossgis. The above steps are iterated per training epoch. This GAN option is
provided as an option in the hyperparameter search.

In each prediction task, we held out all cells in a cell type or tissue in the target spe-
cies as the test set, to mimic the actual use case where we would like to predict cel-
lular profiles in an unseen context. This set of cells was not seen by the model during
training and was used to evaluate prediction performance. For the rest of the cells,
because our model does not rely on cell type annotations, we randomly assigned 10%
to the validation set (with a cap of 20,000 cells), and the rest of cells were used as the
training set. Each model was trained until the validation loss .y, stopped decreasing
for 45 consecutive epochs. We then selected the model with minimum validation loss.

We selected model hyperparameters using a grid search strategy. We considered
two hyperparameters: a Boolean indicating whether to include the discriminator layer
or not, and the dimension of the bottleneck layer of 25, 50, 100. The number of hid-
den layers in the encoder and decoder are fixed to 2. Among these possible hyperpa-
rameter settings, we selected the model that yielded the largest LISI score [13] across
cell embeddings learned from different species on the validation set.
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To perform cross-species prediction on single cells, we first learned cell embed-
dings from cellular profiles in the known species and then concatenated the cell
embeddings with the species factors of the target species to make cross-species pre-
dictions through the trained decoder architecture. This process produced sequencing
depth-normalized and denoised single cell gene expression in the target species for
each corresponding cell in the source species.

Cross-species prediction evaluation metric

To evaluate the prediction performance, we made use of expert-curated cell type
labels and cell type matching across species, and we asked whether the model can
accurately predict pseudobulk gene expression profiles of the missing cell types across
species.

For each cell type, we held out its profile in the target species and made predictions
using the corresponding cell type’s profile in the source species. Pearson correlation
between the true and predicted pseudobulk profiles was used to assess the predic-
tion performance (“prediction”). Pseudobulk profiles were calculated as the average
of sequencing-depth-normalized gene expression profiles across cells, to put the true
and predicted profile on the same scale.

We compared the prediction performance with three baselines.

1. Donor baseline (“donor_baseline”): a “cheating” baseline that calculates the mean
similarity across donors within the held-out test set. Here, we calculate the Pearson
correlation of sequencing-depth normalized and log-transformed pseudobulk cell-
type specific profiles between each pair of donors and report the mean correlation
across all donor pairs.

2. Species baseline (“species_baseline”): similarity between the original held-out cell
type’s profile in human and the corresponding cell type’s profile in mouse. Genes
are transferred to the target species through ortholog mapping and Pearson correla-
tion between human and mouse sequencing-depth normalized and log-transformed
pseudobulk cell-type specific profiles are reported.

3. Celltype baseline (“celltype_baseline”): a “lazy” but close baseline that calculates the
similarity between profiles of the held-out cell type and a similar cell type that has
measurements in the target species. We first identify the cell type that has the most
similar pseudobulk gene expression profile to the held-out cell type in the source
species, calculated based on Euclidean distance on the sequencing-depth-normalized
and log-transformed pseudobulk profiles. This baseline is created to ensure that our
prediction captures more meaningful signals of the held-out cell type compared to
guesses using a similar existing one.

To make a fair comparison with the performance of the donor baseline, we also calcu-
lated the mean of similarity measurements between our predictions with each donor
in the test set (“indiv_predictions”).
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To measure the prediction error with regard to the original gene expression magni-

tude and variation, for each held out cell type, we calculated the relative prediction error
[human;,;eq —human,y|

based on pseudobulk gene expression values as Touse.; —humano] -
Evaluation of Alzheimer’s disease profile prediction

To evaluate how well we can predict human AD profiles based on mouse models, we
tried to place ourselves in the actual use cases when studying human diseases, which
is to find differentially expressed genes and the direction and magnitude of expression
alterations between AD and wild type (WT) in human samples. Because the predicted
expression values in Icebear are denoised continuous values, it is not straightforward to
statistically compare Icebear’s predictions with the sparse, count-based measurements
in the original single-cell profiles. Therefore, we evaluated Icebear’s performance based
solely on the direction and magnitude of gene expression changes in predicted AD vs.
WT profiles in human. These patterns are compared against the observed gene expres-
sion alternation patterns between the original AD versus WT profiles in human, based
on Pearson correlation. Because studies of mouse disease models usually directly use
the gene expression alterations in mouse as a proxy to understand human disease (when
human samples are unavailable), we included gene alteration patterns in AD versus WT
mouse as a baseline prediction and calculated its correlation with gene expression alter-
ations in human.

To capture both the direction and magnitude of gene expression alterations in AD and
WT, we used the log2 fold change (log2FC) based on pseudobulk profiles (normalized to
library size of 10,000) as the gene expression alteration measurement. To further avoid
large, noisy log2FCs from genes with low expression values, we added 1 to all pseudob-
ulk gene expression profiles before calculating log2FC.

Cross-species X-linked gene expression changes during evolution

To assess the pattern of XCU during mammalian sex-chromosome evolution, we first
trained the model on all datasets and then compared gene expression changes between
each pair of species by directly swapping the species factors. To do that, we used the
trained Icebear model to retrieve cell embeddings based on single-cell profiles in mouse,
and we predicted each cell’s corresponding gene expression profiles in the target species
by appending the cell embedding with the target species factors. This approach allowed
us to produce a denoised prediction of the gene expression profile of a given cell in the
same or a different species. To make sure that the expression values are comparable
across species, we normalized each cell’s gene expression profile based on 2401 house-
keeping genes in mouse [40]. Then, we compared gene expression changes across species
and, for each gene, we calculated the log2 fold change (log2FC) between the two species
for each cell, and we took the median value across all cells as its overall log2 fold change.
Genes were then grouped into three categories based on their evolutionary origin:

1. Genes located in the X-added region (XAR) were added to the X chromosome in
eutherian mammals, i.e., these genes are X-linked in eutherian mammals (e.g.,
mouse) but are autosomal in metatherian mammals (on chromosomes 4/7 in opos-

sum) and on chromosome 1 in chicken.
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2. Genes located in the X-conserved region (XCR) are X-linked in both eutherian and
metatherian mammals, but are autosomal (on chromosome 4) in chicken.
3. Genes located on autosomes in mammals and chicken.

To test whether genes in the XAR or XCR tend to become upregulated when becoming
X-linked (i.e., lose one copy in males), we performed a one-sided, one-sample Wilcoxon
signed-rank test with the null hypothesis that the median log2FC within that gene group
is smaller than or equal to —1. To test whether XCU is stronger in mouse than opossum,
we performed a one-sided, one-sample Wilcoxon signed-rank test with the null hypoth-
esis that the median log2FC (between mouse and opossum) within that gene group is
greater than or equal to 0. Similarly, to test whether the dosage of gene expression is fully
compensated (i.e., each X-linked gene is upregulated by two-fold to achieve the same
expression level that it had when it was autosomal), we performed a one-sided, one-sam-
ple Wilcoxon signed-rank test with the null hypothesis that the median log2FC (between
mouse and chicken) within that gene group is greater than or equal to 0.

Results

Icebear accurately predicts cell type profiles across species

Icebear is a deep learning model that is designed to integrate cross-species, single-
cell profiles (Fig. 1A, Methods: Icebear cross-species prediction model section). Once
trained, the model decomposes each observed cellular gene expression measurement
into several components, corresponding to cell, batch, and species. Prior to applying the
model in a prospective fashion, we carried out several validation experiments to verify
that the model works as intended.

First, we hypothesized that we could reduce or eliminate effects associated with spe-
cies or batch factors by manipulating the model appropriately. To test this hypothesis,
we trained the model on a public dataset derived from multiple species, and we assessed
whether the model could eliminate the effect of species in the learned cell factors. Spe-
cifically, we used as input a dataset with primary motor cortex (M1) cells from both
human and mouse [35], and we mapped genes across species via orthology [41]. The
original dataset shows clear separation by species in the context of 2D visualization via
UMAP (Fig. 2A). We then investigated whether Icebear could be used to remove this
species-specific effect. Accordingly, we plotted a UMAP visualization of the learned cell
embeddings (Fig. 2B). This visualization shows minimal segregation of cells by species,
suggesting that Icebear can correct species-specific effects and align single cells across
species. To further quantify the performance of cross-species cell type matching, we
compared Icebear with SATURN, a state-of-the-art cross-species alignment method
[14]. Although cell type matching is only a by-product of Icebear, we find that Icebear
can outperform or perform comparably to SATURN in this task (Supplementary Fig.
S1). To further quantify the performance of cross-species cell type profile prediction,
we created another baseline that is based on cross-species alignment [13] followed by
k-nearest-neighbor calculation, and we found that Icebear significantly outperforms this
baseline (Supplementary Fig. S2).

The primary goal of Icebear is to jointly model gene expression data from human
and mouse using factors representing species, gene, and cell identity, thereby enabling
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Fig. 2 Alignment and prediction of single-cell profiles from mouse to human in primary motor cortex. A
UMAP of cells across species, colored by species. B UMAP of cell embeddings learned in Icebear, where

cell embeddings are independent of species factor. C Barplot showing Pearson correlation coefficient (cor)
between predicted and observed gene expression profiles in the “held-out” major cell types in human motor
cortex. For each cell type, the Pearson correlation coefficient is compared between Icebear’s prediction (dark
green bar) and two baselines (species and cell type). We also compared “indiv_donorbaseline” (correlation
between individual donors) with Icebear’s correlation with individual donors (“indiv_prediction”, light green
bar). D Similar to C, we evaluated Icebear’s performance on predicting high-resolution cell type specific
profiles. E Boxplots of genes absolute log2FC between predicted and true human profiles per cell type
(grouped by whether they are housekeeping genes or not). F Boxplots of genes relative prediction error
across cell types

cross-species prediction and comparison. Ideally, the model could then be used to
answer questions such as, “What would the expression profile of this mouse cell look
like if it were instead a human cell?” Unfortunately, validating the accuracy of such a pre-
dictor is impossible. We therefore adopted an alternative validation approach.

To validate Icebear’s cross-species prediction performance, we made cross-species
predictions at the level of individual cells but evaluated the predictive accuracy at the
level of cell types. For this analysis, we used the cell type annotations produced in the
original M1 study [35]. To mimic the real life scenario where we have uncharacterized
biological contexts, we trained Icebear using a dataset in which one cell type in human
was held out entirely, and we then used the trained model to predict gene expres-
sion profiles from the same cell type in mouse. Aggregating these predicted single-cell
expression profiles yields a predicted pseudobulk profile that can then be compared, via
Pearson correlation, to the pseudobulk profile of the held-out cells.

Before carrying out this experiment, we designed three “baseline” predictors to pro-
vide comparators for our model (Methods and Cross-species prediction evaluation met-
ric sections). The first baseline (“donor baseline”) provides a “cheating baseline” on the
predictive accuracy: we directly compute as our performance measure the mean Pearson
correlation between pseudobulk profiles for the test cell type across all donors in the
held-out test set. This baseline is cheating, in the sense that it has access to the data
in the test set; however, the idea is that the empirical variance of the performance of
this baseline on data from different individuals within a species provides a rough upper
bound on how well any predictor could possibly perform on this task. The second

Page 12 of 22
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baseline (“species baseline”) predicts that gene expression values do not change at all
between species; thus, for a given cell type, the predicted human gene expression pro-
file is equal to the corresponding mouse profile, with genes transferred from mouse to
human through ortholog mapping. The third baseline (“cell type baseline”) is stronger
than the species baseline, because it requires that we have access to cell type annotations
in both species. In that setting, the cell type baseline makes a prediction for the held-out
cell type by (1) finding the cell type in the source species whose pseudobulk profile most
closely resembles that of the held-out cell type and (2) identifying the corresponding
cell type in the target species. The prediction for the held-out cell type is then the pseu-
dobulk profile drawn from its neighboring cell type. Note that this baseline is somewhat
unfair to Icebear, which is not given access to cell type labels in either species.

Validating on the cell types annotated in the M1 dataset, we find that Icebear outper-
forms both the species and cell-type baselines. We first applied the validation protocol
to the 10 general motor cortex cell types, observing that in 9 out of 10 cases, Icebear out-
performs both baselines (Fig. 2C). The one exception is Oligo-OPC (i.e., Oligodendro-
cytes and Oligodendrocyte progenitor cells) in which our model only outperforms the
cell-type but not species pipeline. To further evaluate how well our model can predict
single-cell profiles with fine cell type resolution, we trained Icebear on the same dataset
but held out and evaluated the prediction based on high-resolution cell type annotations
(Fig. 2D). In this setting, Icebear outperforms the species baseline in all 45 cell types and
outperforms the cell-type baseline in 33 of the 45 cell types (p = 5.62 x 10>, Wilcoxon
one-sided signed rank tests). Note that our model tends to perform better in neurons
than non-neuronal cells, especially endothelial cells, microglia-PVM (perivascular mac-
rophage) and VLMC (vascular leptomeningeal cells). As expected, our method performs
worse than the “donor baseline” This suggests that though the model can perform gen-
eral cross-species imputation, it may fail to capture some cell type-specific evolutionary
effects.

Because Icebear performs non-linear projection of cellular profiles across species, we
hypothesize that a gene with large cell-type specific functional divergence during evo-
lution may participate in species- and cell-type-specific adaptation processes, and thus
may not follow a general cross-species expression pattern shift. Thus, we expect that
the expression values of functionally diverged genes may be poorly predicted across
species. To test this hypothesis, we investigated whether housekeeping genes, whose
functions are more likely to be conserved across species, can be more accurately pre-
dicted compared to non-housekeeping genes. To do that, we calculated absolute log2FC
between the predicted and observed gene expression values in human (Fig. 2E). Indeed,
of all major cell types tested, Icebear achieved better predictive power for housekeep-
ing genes compared to non-housekeeping genes. To further control for potential bias
caused by baseline expression and expression differences across species, and to investi-
gate how much Icebear’s prediction improves upon the species baseline, we calculated
the absolute value of the ratio between the prediction error (predicted human vs. origi-
nal human) and cross-species difference (original mouse vs. original human) (“relative
prediction error’, Methods: Cross-species prediction evaluation metric section, Fig. 2F).
Again, Icebear is able to correct for species-specific effects more accurately for house-
keeping genes than non-housekeeping genes. These results point to a potential limitation
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to any cross-species model, since the cell-type specific evolutionary divergences, which
are a product of evolutionary selective pressure, may contribute to the gap between the
predicted and observed profiles. To test whether the better predictive performance of
housekeeping genes is due to higher gene expression, we divided all genes into 10 equal-
sized bins based on pseudobulk gene expression across all cells and compared the pre-
dictive error of housekeeping versus non-housekeeping genes within each expression
bin (Supplementary Fig. S6). The result suggests that genes with lower expression are
likely to have a higher predictive error, and housekeeping genes tend to have lower pre-
dictive error than their expression-matched non-housekeeping genes. To gain insights
into what factors drive such differences, we further hypothesized that genes with high
expression variation across cells may be more challenging to predict than genes with
relatively consistent expression. To test the hypothesis, we binned genes by expression
variation across cells (Supplementary Fig. S7). Intriguingly, while variance contributes to
some performance differences, housekeeping genes still tend to have lower relative pre-
diction errors than non-housekeeping genes. The above evidence suggests that Icebear’s

prediction performance may reflect meaningful biological changes during evolution.

Icebear can generalize across tissues, datasets, and species

To test whether Icebear can generalize across tissues in another dataset, we trained the
model on single-cell profiles from the human and mouse cell atlases [36, 37]. In this vali-
dation experiment, we focused on single-cell profiles collected in the adult stage (Meth-
ods: Public datasets section). We held out each major cell type from human, and we
trained Icebear to predict expression profiles based on the corresponding cell types in
mouse. To ensure a fair comparison that considers tissue-specific variations, we evalu-
ated the cell-type-specific profile prediction per tissue, even though such information is
not used in our training.

The results of this experiment suggests that Icebear can outperform both the species-
specific and cell-type-specific baseline in 34 cases out of 41 total (Fig. 3A). Interest-
ingly, Icebear outperforms the donor baseline in 22 out of 27 cases (when more than
one donor exists for that tissue and cell type). Also, explicitly modeling tissue as a fac-
tor significantly improves the cross-species prediction performance (Supplementary Fig.
S3). These results suggest that Icebear provides a robust estimation of single-cell pro-
files across species and thus can be broadly applied to computationally impute single cell
profiles in human based on measurements in mouse across tissues and cell types.

We further applied Icebear to concatenated datasets of five species generated across
four studies (Supplementary Methods S1.3). Icebear is able to align cells across the five
species (Supplementary Fig. S4A). Furthermore, Icebear outperforms all baselines when
predicting human cell type-specific profiles from cells in the frog and zebrafish (Sup-
plementary Fig. S4B). These results further demonstrate Icebear’s ability to generalize to

multiple species across various evolutionary distances.

Icebear can transfer findings from a mouse Alzheimer’s disease model to human

As a final validation and demonstration of a key use case, we test the hypothesis that
Icebear can predict gene expression alterations in disease conditions versus healthy con-
trols in human, based on healthy human samples and disease models in mouse. To test
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this hypothesis, we trained Icebear on human and mouse single-cell profiles in primary
motor cortex (used in the above section), control samples in both human and mouse
from an AD study, as well as profiles in the AD mouse model (Fig. 3B) [38]. Once the
model was trained, we applied it to predict the held-out profiles in human AD sam-
ples (green rectangle, Fig. 3B) and calculated the log2FC of predicted gene expression
between AD and WT samples in human. To evaluate how well the predicted gene altera-
tion pattern agrees with the true pattern, we compared it against the true log2FC pattern
derived from the original human AD versus control samples, using Pearson correlation
(Fig. 3C, orange, Methods: Evaluation of Alzheimer’s disease profile prediction section).
To make sure Icebear captures more informative disease signatures than the mouse
model itself, we compared the true log2FC pattern in human against the log2FC pattern
in mouse AD versus WT samples per cell type (Fig. 3, blue). In all uniquely mapped cell
types, Icebear’s prediction outperforms the mouse baseline, suggesting that by project-
ing single-cell profiles from mouse to human, Icebear is able to retrieve more accurate

gene alteration patterns in human, compared to the original mouse experiments.

Icebear reveals X chromosome upregulation patterns during evolution
Having established the ability of Icebear to capture species-specific effects, we next
apply the model prospectively, using it to investigate the pattern of expression change
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across species in specific classes of genes. Essentially, our model allows us to ask, for any
given cell, how its expression pattern would change if that cell had been in a different
species. We are particularly interested in asking when autosomal genes become X-linked
and have halved copy number in XY males during mammalian sex chromosome evolu-
tion, whether their gene expression increases from halved gene dose to compensate for
this copy number changes (Figs. 1D and 4C). To do that, we collected single cell RNA-
seq profiles in male chicken, opossum, and mouse brain samples, as well as male chicken
and mouse heart samples (Fig. 4A, Methods: Public datasets section, with opossum
heart not measured). We then applied Icebear on the dataset and predicted each cell’s
gene expression changes when we swap its species factor across chicken, opossum, and
mouse (Fig. 4B, Methods: Cross-species X-linked gene expression changes during evolu-
tion section). Compared to the original measurement, Icebear is able to bring mouse and
human cells closer to a shared space, as measured by the LISI score (Supplementary Fig.
S8). For each gene, we can do this analysis on a cell-by-cell basis, asking how its expres-
sion changes when the cell changes from, say, chicken to opossum or opossum to mouse.

We find that when genes lying on the X conserved region (XCR) changed from the
chicken autosome 4 (chr4) to the opossum X chromosome, the median gene expres-
sion log2FC between opossum and chicken do not fall significantly above or below —1
(p=17x10""1

test, Fig. 4D). Interestingly, these XCR genes show significant upregulation on mouse

in brain and p = 1.3 x 107! in heart, Wilcoxon one-sample rank sum
X chromosome as shown by the median gene expression log2FC between mouse and
chicken (p = 3.0 x 1077 in brain and p = 4.8 x 10~* in heart), suggesting that XCU of
XCR genes is more prominent in eutherian mammals than in marsupials.

In addition, for genes at X added region (XAR) that changed from the chicken auto-
some 1 (chrl) to the X chromosome in eutherian mammals after the divergence from

A brain heart B brain heart C Gene copy number in male
1o " 10 . XAR XCR autosome
. . 1 species
NS AN, NI I . N (A
% A % L), ® chicken  Chicken | 2 2 | 2
s 0 p s 01 - ® mouse
=) ; =} RN Opossum: 2 1 2
-5 I | -5 bl opossum
4 Mouse 1 1 2
<10 -5 0 5U|V1|OA7F}0175 0 5 10 2105 0 5 GT\A,Algf 0 5 10 #genes | 89 | 150 | 9095
D
brain heart Eq, 0.0050{ TS~ o .
L ns
[=4
2
2.5 group 5 0.0025 group
E [ AT T 7] E autosome § E autosome
5 %01 el 0] B on g 000007 188 xan
o EY xR & B3 xcr
=
2.5 5 -0.0025
€
- a =™ -
L _L o ; o L L o

Fig. 4 X chromosome gene upregulatiom pattern across species. A UMAP based on orlglnal input profiles.
B UMAP based on cell embeddings learned from Icebear. C Gene copy number changes in males across
species. D Boxplot of gene expression log2 fold changes from the lower to the upper species. Genes are
grouped by their X-linked pattern. Statistical significance of XCU events are calculated using Wilcoxon
one-sample rank sum test and subjected to multiple hypothesis correction. E Boxplot of GGACH motif
frequency changes across species, grouped by the same rule as C. Statistical significance calculated on the

hypothesis that genes in XAR and XCR are likely to have less m6A motif binding when moved from autosome

to X chromosome, compared to genes in autosomal regions. Components of this figure were created with

Biorender



Zhang et al. Genome Biology (2025) 26:40 Page 17 of 22

metatheria marsupials (e.g., opossum in which these genes on chr4 or chr7), we observed
their median log2FC between mouse and chicken, and between mouse and opossum, are
significantly more than —1, suggesting X upregulation also occurs for this group of genes
in mouse (Fig. 4D). Furthermore, there are no significant changes observed of XAR
genes changing from chicken to opossum, when they are both on autosomes, which
agrees with prior expectation (p = 6.1 x 107! in brain and p = 8.0 x 1072 in heart).
Comparing mouse with opossum or chicken, our finding also agrees with and further
supports the general notion that X upregulation does not usually fully compensate for
the half-dosage effect [19], since XAR and XCR genes tend to have logFC less than 1
(in XCR regions when comparing mouse to opossum) or 0 (in other XCU comparisons)
(adjusted p < 0.5 x 1072 for all cases). Notably, Icebear is able to predict XCU patterns
in heart, where single-cell measurements in opossum are unavailable.

A recent study has indicated that transcripts from X-linked genes including XAR
and XCR genes tend to have lower levels of m6A (and thus less GGACH motifs) than
those from autosomal genes, which results in more stable X transcripts compared to
autosomal transcripts and thus contribute to XCU [26]. With this evidence, we hypoth-
esize that the changes in m6A levels when genes move across species are related with
whether the gene is in the XAR/XCR or autosomal. To test this hypothesis, and pro-
vide an orthogonal validation to XCU event, we retrieved the GGACH motif frequency
in coding sequence (CDS) regions from chicken, opossum, and mouse [26], and ask
whether there is a decrease in motif frequency for XAR/XCR orthologs when moved
from chicken autosomes to mouse X chromosomes, compared to those from autosomal
orthologs (Fig. 4E). Indeed, we found that XCR orthologs show a significant decrease in
the motif frequency between mouse and opossum or between mouse and chicken, when
compared to autosomal orthologs. This agrees with Icebear’s prediction where XCU in
the XCR is most significant in mouse (Fig. 4D). In support of this, we only found mar-
ginal significance of motif frequency differences for XCR orthologs between opossum
and chicken, in comparison to autosomal orthologs (p = 4.1 x 10~2). More intriguingly,
we did not see significant changes in motif frequency for XAR orthologs compared to
autosomal orthologs between mouse and chicken or between mouse and opossum, sug-
gesting that XCU in the XAR may not be adapted through enhanced RNA stability via
reduced m6A motifs in the CDS region.

Discussion

In this study, we proposed Icebear, a machine learning model for cross-species pre-
diction and comparison of single-cell gene expression data. We demonstrate Icebear’s
utility in predicting missing cell type-specific profiles between species, accurately trans-
ferring gene alterations identified in a mouse disease model to the corresponding human
disease context, and identifying gene expression alterations during evolution in response
to X chromosome dosage changes.

In our analysis, we have tested Icebear on both an atlas-level dataset covering 12
organs and 9 major cell types [36, 37], and a domain-specific dataset on motor cortex
covering 10 major cell types and 45 fine-grained cell types [35]. Our results suggest that
Icebear can perform accurate single-cell cross-species inference across various tissues
and cell types. Interestingly, we observed that Icebear’s prediction accuracy varies by cell
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type. For example, the accuracy in predicting expression values of human non-neuronal
cells on the M1 dataset tends to be lower than that of other cell types. There could be
two reasons for this variability. First, previous studies have found that glia cells are more
evolutionarily diverged [42], so a general cross-species algorithm trained on cell types
other than astrocytes may not accurately capture astrocyte-specific variations. Cells with
immune functions, such as microglia, may be especially variable among species due to
different exposure to pathogens. The other possible reason is that neuronal cell types are
more abundant and their profiles and functions are more cohesive than those of glial cell
types, which could lead to an easier machine learning task. In line with this explanation,
we observed that housekeeping genes are more accurately predicted across species, pre-
sumably because housekeeping genes tend to be functionally conserved across species
and cell types and thus are more easily captured by Icebear’s projection framework. In
the future, a closer look at the genes whose predicted expression profiles are very differ-
ent from their observed profiles could potentially reveal genes that adapt to the species-
specific environment in a cell-type-specific manner.

Icebear also shows improved accuracy at recapitulating transcriptomic perturbation
patterns (based on log fold changes) in human AD based on mouse disease models, com-
pared to traditional disease studies that directly map gene perturbation patterns across
species by orthologs. This finding suggests a limitation of disease knowledge transfer
through ortholog mapping and demonstrates the potential of applying Icebear to more
accurately transfer single-cell level perturbations such as disease signatures and drug
responses from model organisms to human. In the future, we plan to develop statistical
methods to rigorously assess the significance of predicted gene expression perturbations
and compare them with the perturbation pattern based on original gene expression pro-
files, by leveraging ideas proposed by Boyeau et al. [43]. In this study, we demonstrated
as a proof of principle how we can predict human AD profiles based on mouse AD mod-
els. We envision this method being applied to different diseases, such as Rett syndrome,
Parkinson, lupus, or progeria where human samples (e.g., brain) are difficult to obtain.

Icebear reveals that there is an increase of expression levels of X-linked genes com-
pared to their autosomal orthologs in mouse, supporting the hypothesis that XCU
occurs during sex-chromosome evolution (Ohno’s hypothesis) [44]. The level of upregu-
lation varies among individual X-linked genes, suggesting a gene-by-gene adjustment.
Multiple transcriptional and post-transcriptional types of regulation have been sug-
gested to explain XCU in mammals [23, 27, 45-48]. The most recently proposed regula-
tory mechanism is reduced GGACH motifs at X-linked versus autosomal transcripts,
which results in X-specific reduced m6A levels and thus enhanced RNA stability [26].
Surprisingly, we found that XCR but not XAR genes show a significant decrease in fre-
quency of GGACH motifs compared to autosomal genes in mouse, suggesting differ-
ences in XCU mechanisms dependent on the evolutionary origin of the XCR and XAR.
Interestingly, X inactivation, which has been proposed to counteract XCU in females
(reviewed in Disteche [18]), is also more complete for genes in the XCR versus the XAR
[49].

Icebear has the following advantages when compared with pseudobulk-based com-
parison (Supplementary Fig. S5). First, Icebear can discover XCR/XAR patterns when
gene expression measurements are missing in certain species and tissues; i.e., we are
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able to predict the X chromosome upregulation pattern for the heart when there are no
measurements available in the opossum heart. Second, Icebear’s cross-species compari-
son does not require any known matching of cell type labels across species or assump-
tion of an equal proportion of cell type compositions between species, which greatly
broadens the use cases where there are no existing matched cell type annotations across
species. Third, comparing our prediction with the original measurements, we found
general agreement of X chromosome upregulation (XCU) patterns inferred from Ice-
bear and pseudobulk profiles. However, XCU patterns are more apparent by Icebear
imputation (as shown by increased significance) than simple pseudobulk comparison,
because the latter may suffer from insufficient normalization cross-species and complex
cell type composition. In addition, Icebear can predict XCU events when genes in the
XAR region moved from the chicken autosome to the mouse X crhomsome, whereas
the pseudobulk-based measurements cannot, again suggesting the sensitivity of Icebear.
Icebear’s prediction agrees with the previous knowledge that mouse X-linked genes are
subject to XCU and also suggests for the first time that the extent of XCU varies between
regions with different evolutionary origins. In evolutionary biology, it is still controver-
sial whether there XCU occurs in mammals and, if so, what and how X-linked genes are
upregulated during sex-chromosome evolution. The challenge is the lack of appropriate
data and computational methods to directly compare expression levels of orthologous
genes before and after changing from autosomal to X-linked. Understanding X-chromo-
some dosage regulation is important to understand the impact of large-scale gene dos-
age alterations such as chromosome aneuploidy, which are often linked to cancer and
developmental disorders. One of the major contributions of Icebear is its ability to com-
pare gene expression changes across species at cellular resolution, so that we can reveal
how orthologous gene expression evolves across different cells and tissues. In this work,
we demonstrated that upregulation of X-linked genes occurs in an evolutionary and
diverse pattern and is, at least partially, associated with enhancing RNA stability. These
findings provide new evolutionary insights into the time and mechanisms of XCU. In
addition, by looking at differences between the actual gene expression and the predicted
value across species, we have observed the cell types and genes that have the most evo-
lutionary divergence, which has the potential to identify cell types and genes conserved
across species or adapted to species-specific needs.

Currently, Icebear is designed to model cross-species gene expression using one-
to-one orthology relationships. This approach discards a subset of duplicated genes
that potentially harbor valuable information about cellular function and evolution. In
this study, we observe that the advantage of Icebear’s cross-species alignment perfor-
mance against SATURN shrinks as the median cell UMI decreases (Supplementary
Fig. S1). In the future, inspired by ideas from SATURN [14] and coupled variational
autoencoders [50], we could extend Icebear to include all genes, rather than only one-
to-one orthologs. In principle, such an extension to Icebear could enhance the cross-
species translation performance without losing information from non-orthologous
genes. Icebear assumes the cell factor is conditionally independent of other factors
(such as species and batch), according to the biological knowledge that cell identities
are not supposed to vary a lot across batches or species. This assumption allows us to
swap factors such as species to directly assess how the same cell’s expression would
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change across species. Note that in some instances cell populations may be distinct
across species (e.g., mice have tails and humans do not), which will not fit into our
model.

In the future, we envision Icebear to be a general tool to (1) augment the effort of
measuring complete profiles of human cells, (2) predict gene transcriptional changes
in under-characterized human contexts by leveraging mouse models, and (3) study
the evolutionary changes of transcription regulation, as well as divergence of cell
types and genes. Icebear can also be extended in a straightforward fashion to perform
cross-species prediction and comparison of other data modalities (e.g., protein quan-
tity, epigenetic marks), when there are shared feature spaces across species.
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