Ipatasertib, an oral AKT inhibitor, effectively inhibits cell proliferation and migration, and induces apoptosis in serous endometrial cancer cell lines in vitro: Endometrial Cancer Molecularly Targeted Therapy Consortium

Lindsey Buckingham MD, Jillian O’Donnell, MD, Tianran Hao BS, Angeles Alvarez Secord MD, Chunxiao Zhou, MD, PhD, Victoria L Bae-Jump, MD, PhD

Introduction & Objectives

- Ipatasertib (IPAT) is an orally administered, selective protein kinase B (AKT) inhibitor.
- Data has been promising for IPAT’s action against solid tumors in both pre-clinical studies and clinical trials.
- IPAT targets the PI3K/AKT/mTOR pathway, making endometrial cancer (EC) an apt candidate for investigation.
- Serous EC is more aggressive and less chemo-responsive in the recurrent setting than endometrioid EC.
- Our study evaluated the anti-proliferative efficacy of IPAT in human serous EC cell lines.

Materials & Methods

- Two human serous EC cell lines were chosen for this study: ARK-1 (PTEN wild type), and SPEC-2 (PTEN mutant).
- Cells were exposed to varying concentrations of IPAT (Genentech).
- Cell proliferation was assessed by MTT and colony assays.
- Cell cycle progression was measured by Cellometer.
- Apoptosis was assessed by cleaved caspase-3 assay.
- Cell adhesion and wound healing assays were used to evaluate impact on cell migration and invasion.
- Western immunoblotting determined effects on CDK4, CDK6, BCL-2, MCL-1, and snail and slug proteins.
- Pathway protein expression was analyzed by western immunoblotting.

Results

- Figure 1: IPAT inhibits cell proliferation
- Figure 2: IPAT induces cell cycle arrest
- Figure 3: IPAT induces apoptosis via cleaved caspase 3
- Figure 4: IPAT inhibits cell adhesion and migration
- Figure 5: IPAT alters expression of AKT pathway proteins

Conclusions

- IPAT significantly suppressed cell proliferation through inducing cell cycle arrest and apoptosis as well as inhibiting adhesion and migration in human serous EC cell lines.
- IPAT may be a promising targeted agent in the treatment of serous EC.
- Studies in transgenic and patient-derived xenograft EC mouse models are underway to assess the in vivo efficacy of IPAT.