Impact of Menopausal Status and BMI on Metabolic Flexibility

Lacey M. Gould¹, Amanda N. Gordon¹, Andrew T. Hoyle¹, Hannah E. Cabre¹,², Abbie E. Smith-Ryan¹,²

¹Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
²Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

INTRODUCTION

Menopause and the associated changes in hormones (i.e., estrogen and progesterone) are known to negatively impact body composition and metabolism, ultimately producing a metabolically compromised phenotype. Physical activity and exercise may mitigate these changes; however, little is known about substrate utilization and metabolic flexibility in menopausal women. Identifying changes in metabolic flexibility may highlight a critical window for preventative interventions.

PURPOSE:
The purpose of this study was to compare fat and carbohydrate oxidation at rest and during exercise (metabolic flexibility) in pre-menopausal (PRE), peri-menopausal (PERI), and post-menopausal (POST) women of varying adiposity levels.

FORMULAS

\[
\text{RER}(\text{a.u.}) = \frac{\dot{V}O_2(L + \min^{-1})}{\dot{V}CO_2(L + \min^{-1})}
\]

Intensity	% HRR
Low | ≤ 30%
Moderate | 31-50%
High | > 50%

Reduced metabolic flexibility in PERI compared to PRE may identify peri-menopause as a critical window for preventative intervention.

METHODS

72 healthy women (24 PRE, 24 PERI, 24 POST) (Mean±SD: Age: 48.28±7.21 yrs, BMI 26.01±5.21 kg/m²; Range: 18.81-41.00 kg/m²) underwent metabolic assessments at rest and during exercise.

RESULTS

At all intensities (rest, low, moderate, and high), post-menopausal women oxidized the most carbohydrates (and least amount of fat) as indicated by a higher RER. Metabolic flexibility displayed in pre-menopausal women is diminished in both peri- and post-menopausal women.

CONCLUSION

Transitioning to menopause appears to reduce metabolic flexibility during exercise, impacting POST women to a greater extent than PERI; metabolic inflexibility through menopause may be exacerbated by obesity.

<table>
<thead>
<tr>
<th>Variable</th>
<th>PRE (n=24)</th>
<th>PERI (n=24)</th>
<th>POST (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>39.79 ± 3.27*</td>
<td>49.96 ± 3.37*</td>
<td>55.08 ± 3.49*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.25 ± 5.06</td>
<td>26.48 ± 5.44</td>
<td>26.42 ± 5.24</td>
</tr>
<tr>
<td>Salivary Estradiol (pg/mL)</td>
<td>0.85 ± 0.47</td>
<td>1.02 ± 0.42</td>
<td>0.79 ± 0.29</td>
</tr>
<tr>
<td>Resting RER (a.u.)</td>
<td>0.76 ± 0.04</td>
<td>0.73 ± 0.06†</td>
<td>0.76 ± 0.06</td>
</tr>
<tr>
<td>Low Intensity RER (a.u.)</td>
<td>0.81 ± 0.10</td>
<td>0.76 ± 0.04*</td>
<td>0.82 ± 0.07</td>
</tr>
<tr>
<td>Moderate Intensity RER (a.u.)</td>
<td>0.81 ± 0.08</td>
<td>0.83 ± 0.08</td>
<td>0.87 ± 0.11</td>
</tr>
<tr>
<td>High Intensity RER (a.u.)</td>
<td>0.92 ± 0.09</td>
<td>0.92 ± 0.08</td>
<td>0.94 ± 0.09</td>
</tr>
</tbody>
</table>

One-way ANOVAs with Bonferroni post-hoc comparisons were conducted by intensity (Rest, Low, Moderate, High) for the total sample and stratified by BMI: Normal: 18.5-24.9 kg/m²; Overweight/Obese: ≥25.0 kg/m².