Docosahexaenoic acid demonstrates anti-tumorigenic effects in endometrial cancer

Jillian A O’Donnell, MD1; Lindsey K Buckingham, MD1; Stuart R Pierce, MD1; Lindsay West, MD1, Yajie Yin MD1, Wenchuan Sun1, Ziwei Fang1,2, Douglas Lee1, Chunxiao Zhou, MD, PhD1,3, Victoria L Bae-Jump, MD, PhD1,3

1University of North Carolina at Chapel Hill, Gynecologic Oncology, 2Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital affiliated to Capital Medical University, Beijing, P. R. China
3University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center

Objectives

Obesity is associated with increased risk and mortality from endometrial cancer (EC). Research shows that omega-3 polyunsaturated fatty acids (PUFAs) have activity against obesity-driven cancers; this has not been investigated in EC. We assessed the effect of omega-3 PUFAs on cell proliferation and tumor growth in endometrio EC cell lines and an LKB1169;p5316 mouse model.

Methods

The EC cell lines ECC-1 and KLE were exposed to varying concentrations of docosahexaenoic acid (DHA), an omega-3 PUFA. Cell proliferation was assessed by MTT assay, apoptosis by Annexin V-FITC assay, and reactive oxygen species (ROS) by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Western immunoblotting was performed to assess trends in anti-apoptotic proteins BCL-2 and MCL-1 and cellular stress proteins PERK, Bip, and PDI. LKB1169;p5316 mice were fed either a low-fat (lean) or high-fat (obese) diet and then treated with placebo or DHA. Immunohistochemistry (IHC) was performed on treated and untreated tumors to assess proliferation and apoptosis. Metabolomics identified the effects of DHA in the tumors.

Results

Figure 1: DHA inhibits cancer cell proliferation in both cell lines.

ECC-1 and KLE were treated for 72 hours with varying concentrations of DHA. Both cell lines demonstrated dose-dependent inhibition of cell proliferation with an IC-50 of approximately 50uM.

Figure 2: DHA induces G2 cell-cycle arrest in both cell lines.

ECC-1 (A) and KLE (B) cells treated for 24 hours with DHA demonstrated cell cycle arrest in G2 phase in a dose-dependent manner.

Figure 3: DHA causes cellular stress in both cell lines.

ECC-1 (A) and KLE (B) cells treated for 18 hours with DHA showed increasing reactive oxygen species in a dose-dependent manner. Western immunoblotting showed increased expression of Bip and Perk in both cell lines (C).

Figure 4: DHA treatment inhibits cell adhesion.

DHA treatment diminished cell adhesion in a dose-dependent manner (A and B). Confirmatory western blot assays demonstrated decreased expression of the adhesion protein B-catenin, Snail, and VEG-F in both cell lines (C).

Treatment with DHA diminished cell adhesion in a dose-dependent manner (A and B). Confirmatory western blot assays demonstrated decreased expression of the adhesion proteins B-catenin, Snail, and VEG-F in both cell lines (C).

Obese mice demonstrated an 81% tumor weight reduction while lean mice demonstrated a 64% tumor weight reduction (p<0.05). There was no change in mouse weight with DHA treatment.

Figure 5: Obese and lean mice treated with DHA demonstrated decreased tumor weight.

Obese mice demonstrated an 81% tumor weight reduction while lean mice demonstrated a 64% tumor weight reduction (p<0.05). There was no change in mouse weight with DHA treatment.

Figure 6: Metabolomic data in obese and lean mice

Metabolomic profiling revealed that total monacyl-, diacyl- and triacyl-glycerols were increased with DHA treatment in both obese and lean mice, suggesting that lipids were diverted from membrane biosynthesis to energy storage. Differences were found in DHA’s effect when comparing obese and lean mice, including (1) decreases in lipid biosynthesis and amino acid metabolism in obese mice, and (2) increases in fatty acid desaturase activity in lean mice.

Conclusions

• DHA robustly inhibited EC proliferation and tumor growth in vitro and in vivo
• Omega-3 PUFA supplementation may be a promising dietary strategy for endometrial cancer prevention and treatment.

References


Disclosures: JEA and VVP are employees and shareholders of Oncoceutics. VBI has collaborative grants from Novartag and Merck, receives drug for pre-clinical studies from Oncoceutics and Sphaera, and provides consulting to Tesaro, Eisai, and Rakuten.

Figure 7: Ki67 and BCL-XL Immunohistochemistry in DHA-treated and control mouse tumors

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

IHC showed decreased Ki67 (A) expression and increased BCL-XL (B) expression in both groups.