Metal mixtures in private well water are associated with preterm birth in North Carolina

Lauren A. Eaves1,2, Alexander P. Keil3, Anne Marie Jukic4, Radhika Dhingra1,5, Jada L. Brooks6, Julia E. Rager1,2,7,8 and Rebecca C. Fry1,2,7,8

1. Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill; 2. Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill; 3. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill; 4. Epidemiology Branch, National Institute of Environmental Health Sciences; 5. Brody School of Medicine, East Carolina University; 6. School of Nursing, University of North Carolina at Chapel Hill; 7. Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill; 8. Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill.

1. Introduction and Hypothesis

- In North Carolina (NC), the prevalence of preterm birth is 10.8%, compared to 10.1% nationwide. There is geographic variation in the prevalence across the state (Fig. 1) [1].
- Private well water in NC has been documented to contain high levels of toxic metals (Table 1) [2].
- Metal exposure via private well water, which is federally unregulated, may increase the risk of preterm birth [3].
- Municipal underbounding, the intentional gerrymandering of communities of color, leaves these peri-urban communities relying on private wells [4].

Hypothesis: (1) Exposure to metals (arsenic (iA), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), and zinc (Zn)) and mixtures of metals via private well water increases the risk of preterm birth. (2) There exist differences in the metal mixture-preterm birth association by maternal race/ethnicity.

2. Methods

1. NCWELL database [2]
 - 117,960 well water test reports from 1998-2019
 - Metals included: iAs, Mn, Pb, Cd, Cr, Cu, Zn
 - Multiple imputation with chained equations for values <limit of reporting

2. Birth certificate data
 - All non-anomalous singleton livebirths in NC from 2003-2015 (n=1,329,071)
 - Geocoded by maternal residence at delivery
 - Assigned the mean census tract-level concentration for each metal to each birth

3. Statistical analyses
 - Single metals: logistic regression
 - Metal mixtures: partial effects quantile-based g-computation
 - Adjusted for maternal smoking, maternal age, maternal race/ethnicity, maternal education, season of conception, tract-level poverty, tract-level nitrates and nitrites.
 - Effect measure modification by maternal race/ethnicity

4. Conclusions

- Contamination of private wells with metals, namely Pb and Cd, contributes to preterm birth. This study:
 - extends the evidence connecting Pb and preterm birth to a specific exposure: federally unregulated private well water.
 - underscores environmental justice concerns in relation to well water-based toxic exposures among American Indian communities. This disparity is likely contributed to by historical patterns of forced removal from tribal lands and community exclusion from city services, ultimately leading to municipal underbounding and American Indian populations disproportionately relying on private well water for drinking and cooking.
 - highlights the urgent need for awareness and action around metal contamination of private wells, including greater access and affordability of testing and treatment.

![Fig. 1](image1)

![Fig. 2](image2)

![Fig. 3](image3)

![Fig. 4](image4)

Fig. 1 Percentage of births that are preterm.

Fig. 2 Forest plot of odds ratios for preterm birth comparing mothers in tracts with varying concentrations of individual metal concentrations reported in private wells. Models were fit comparing mothers in tracts with low (mean tract-level metal concentration <=50th percentile of state-wide metal concentration), medium (mean tract-level metal concentration >50th and <90th percentile of state-wide metal concentration) and high (mean tract-level metal concentration >= 90th percentile of state-wide metal concentration).

Fig. 3 Results from the partial effects quantile-based g-computation modeling. Forest plot of odds ratios for preterm birth associated with increasing all metal concentrations in private wells by one quartile ("Overall"), just the metals that had negative weights in the training set ("Negative direction"), and just the metals that had a positive weights in the training set ("Positive direction").

Fig. 4 Forest plot of odds ratios for preterm birth when simultaneously increasing the mean census tract concentration of all metals by one quartile, stratified by maternal race/ethnicity.}

References

Funding

This work was supported by the National Institute of Environmental Health Sciences (1R01ES029253, P42ES031007).