Maresin-1, a specialized-pro-resolving mediator of inflammation, demonstrates anti-tumorigenic activity in obesity-driven endometrial cancer (EC)
Catherine John MD, Boer Deng, Xiaochang Shen, Ziyi Zhao, Mark Sherman MD, Ginger L. Milne PhD, Stephen Hursting PhD, Douglas Lee, Chunxiao Zhou MD, PhD, Victoria Bae-Jump MD, PhD

BACKGROUND
- Endometrial cancer: 4th most common cancer among women in U.S.
 - Increasing in frequency and mortality due to the obesity epidemic.
- Obesity induces a chronic inflammatory state which is proposed to drive development of endometrial cancer (EC).
- Central obesity linked to shifts in adipokine profiles and lipolysis, increased inflammatory cytokines and pro-inflammatory eicosanoids.
- Insulin resistance and hyperestrogenism are implicated as proximate causes of EC.
- Decreased levels of specialized pro-resolving lipid mediators (SPMs) of inflammation are linked to insulin resistance and hyperestrogenism.
- One of the main SPMs = maresin-1 possess anti-inflammatory effects in multiple inflammatory mediated diseases.
- SPMs have a protective effect in inflammatory conditions, low levels can fuel carcinogenesis.
- Preclinical studies: Maresin-1 has been shown to inhibit tumorigenesis.

Given the intimate relationship between inflammation and EC progression, it is logical that SPMs may play a role in obesity-driven EC. However, the impact of SPMs, such as maresin-1, in EC pathogenesis remains unexplored.

OBJECTIVE: To evaluate the effect of maresin-1 on tumor growth in the Lkb1fl/flp53+/+ genetically engineered mouse model of endometrioid EC under obese and lean conditions.

METHODS
The effects of maresin-1 were evaluated in the Lkb1fl/flp53+/+ mouse model of endometrioid EC, using the following protocol:

- Effects of maresin-1 were assessed by one-way ANOVA.
- Oxylipin profiling (including SPMs) was performed in both visceral adipose tissue (VAT) and tumor tissue.
- Differences in oxylipins between treatment groups were assessed by one-wall test.

RESULTS
Figure 1. ECs in obese (HFD) vs lean (LFD) mice demonstrated increased lipid biosynthesis and decreased expression of maresin-1 (p<0.05).

Figure 2. Hydroxyeicosatetraenoic acids (HETEs) were lower in the visceral adipose tissue (VAT) in obese (HFD) vs lean (LFD) mice.

Figure 3. Maresin-1 decreased tumor weight and Ki-67 expression in both obese (HFD) and lean (LFD) mice in the Lkb1fl/flp53+/+ mouse model.

CONCLUSIONS
1. Maresin-1 has anti-tumorigenic effects in an endometrioid endometrial cancer mouse model:
 - Significant reduction in endometrial cancer tumor weight and Ki-67 expression.
 - These effects were more pronounced in the setting of obesity.
2. Obesity decreased the production of HETEs in VAT and the anti-inflammatory SPM maresin-1 in EC tumors.

Take-away: Future investigation of maresin-1 as a novel inflammatory-resolving agent for the treatment of EC is warranted.