Combining Residual Hearing with Electric Stimulation: Results from Pediatric & Adult CI Recipients

Lisa Park, AuD
Meredith Anderson Rooth, AuD
Research Assistant Professors
Department of Otolaryngology/Head and Neck Surgery
University of North Carolina at Chapel Hill
UNC Investigative Team

• Physicians

 • Harold Pillsbury, MD
 • Professor and Chair
 • Executive Director, Children’s Cochlear Implant Center at UNC

 • Kevin Brown, MD, PhD
 • Associate Professor
 • Medical Director, Children’s Cochlear Implant Center at UNC

 • Brendan O’Connell, MD
 • Assistant Professor

 • Carlton Zdanski, MD
 • Associate Professor
UNC Investigative Team

• Pediatric Audiologists
 • Holly Teagle, AuD
 • Associate Professor
 • Co-Director, Children’s Cochlear Implant Center at UNC
 • Jennifer Woodard, AuD
 • Erica Gagnon, AuD
UNC Investigative Team

• Speech-Language Pathologists
 • Hannah Eskridge, MSP, CCC-SLP, LSLS Cert.AVT
 • Assistant Professor
 • NCFI/Barnhardt Director, Children’s Cochlear Implant Center at UNC
 • Maegan Evans, PhD, CCC-SLP, LSLS Cert.AVEd

• Lillian Henderson, MSP, CCC-SLP, LSLS Cert.AVT
 • Clinic Manager – SLP

• Sandra Hancock, MS, CCC-SLP, LSLS Cert.AVT

• Christine Kramer, MS, CCC-SLP, LSLS Cert.AVEd

• Erin Thompson, MS, CCC-SLP, LSLS Cert.AVT
UNC Investigative Team

• Adult Audiologists
 • English King, AuD
 • Clinical Coordinator of Adult Cochlear Implants
 • Andrea Bucker, AuD
 • Sarah McCarthy, AuD
UNC Investigative Team

• Clinical Research Audiologists

 • Margaret Dillon, AuD
 • Associate Professor
 • Director, Cochlear Implant Clinical Research

 • Meredith Anderson Rooth, AuD
 • Assistant Professor

 • Lisa Park, AuD
 • Assistant Professor
Topics

• Electric Acoustic Stimulation (EAS)

• Unilateral Hearing Loss (UHL) and Asymmetric Hearing Loss (AHL)
Combining Residual Hearing with Electric Stimulation: Results from Pediatric & Adult CI Recipients

Electric-Acoustic Hearing
Responding with Poll Everywhere

Web voting

Text voting
In one word, describe how you are feeling after this morning's talks...

When poll is active, respond at PollEv.com/lisapark812
Text LISAPARK812 to 22333 once to join
Could This Child Be A CI Candidate?
Could This Child Be A CI Candidate?

- **Receptive Language Score:** 95
- **Expressive Language Score:** 92
- **Aided Word Recognition Score:**
 - 30% left ear
 - 38% right ear
- **Best Aided Sentence Recognition:**
 - 0% in quiet
 - 0% in noise
Two Years Into the Future
Could This Child Be A CI Candidate?

- Of course! 81%
- No way! Look at all of that hearing! 10%
- She's doing so well. Let's watch and wait. 9%
- Is this a trick question?
Cochlear Implant: Hearing Preservation

• Potential benefits
 • Improved speech perception
 • Quiet
 • Noise
 • Improved music perception
 • Improved quality of life
Cochlear Implant: Hearing Preservation

- Two technologies, one ear
 - Cochlear Implant (amplitude)
 - Acoustic Hearing, Hearing Aid (fine structure)
Electric-Acoustic Stimulation (EAS)

• Benefits of acoustic + electric stimulation
 • Incoming speech signal includes envelope and fine structure information
 • Most CI coding strategies present envelope information
 • Acoustic component may provide fine structure information
 • Discrimination of low-frequency cues
 • Fundamental frequency
 • First formant
Electric-Acoustic Stimulation (EAS)

Benefits of combining electric and acoustic hearing

• EAS (CI + HA in one ear, HA in contralateral ear)
 • Improved speech perception in noise (Adunka et al. 2013; Gantz & Turner, 2003)
 • Improved music perception (Gfeller et al. 2006)
 • Improved localization (Dunn et al., 2010)
 • Improved quality of life (Helbig et al., 2011; Gstoettner et al. 2008)
EAS: Programming

• Two technologies, one ear
 • Cochlear Implant
 • Low-frequency cut-off of electric stimulation
 • Overlap between acoustic and electric
 • Acoustic Hearing, Hearing Aid
 • Amplification of the low-to-mid frequency region
EAS: Programming

Figure 2

Karsten et al (2013)
EAS: Programming

- Choose cross-over frequency
- Meet acoustic targets
- Crossover of acoustic signal
Adult Multi-center EAS clinical trial
UNC Experience

• 34 Participants UNC
 • Age at Implantation
 • Min: 20.2 Years
 • Max: 76.6 years
 • Avg: 55.8 years
What about kids?

• We’re studying EAS in children too!

• Can electric-acoustic stimulation provide benefits over traditional electric stimulation in pediatric patients?
Pediatric Study: Subject Demographics

<table>
<thead>
<tr>
<th>ID</th>
<th>Etiology</th>
<th>ANSD</th>
<th>Type</th>
<th>Ear</th>
<th>Age @ Surgery</th>
<th>Device</th>
<th>Contralateral Ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>021</td>
<td>Unknown</td>
<td>no</td>
<td>1<sup>st</sup> Side</td>
<td>right</td>
<td>13y 9m</td>
<td>Nucleus CI522</td>
<td>HA (now EAS)</td>
</tr>
<tr>
<td>031</td>
<td>Unknown</td>
<td>no</td>
<td>1<sup>st</sup> Side</td>
<td>left</td>
<td>15y 6m</td>
<td>Nucleus CI522</td>
<td>HA</td>
</tr>
<tr>
<td>041</td>
<td>Claudin 14</td>
<td>no</td>
<td>1<sup>st</sup> Side</td>
<td>right</td>
<td>4y 9m</td>
<td>Nucleus CI522</td>
<td>HA (now EAS)</td>
</tr>
<tr>
<td>061</td>
<td>Unknown</td>
<td>no</td>
<td>2<sup>nd</sup> Side</td>
<td>left</td>
<td>12y 3m</td>
<td>Nucleus CI522</td>
<td>CI (electric)</td>
</tr>
<tr>
<td>071</td>
<td>Ototoxicity</td>
<td>no</td>
<td>1<sup>st</sup> Side</td>
<td>left</td>
<td>7y 11m</td>
<td>Nucleus CI522</td>
<td>HA</td>
</tr>
<tr>
<td>081</td>
<td>Unknown</td>
<td>unknown</td>
<td>2<sup>nd</sup> Side</td>
<td>right</td>
<td>11y 8m</td>
<td>Nucleus CI522</td>
<td>CI (now EAS)</td>
</tr>
<tr>
<td>131</td>
<td>Unknown</td>
<td>unknown</td>
<td>1<sup>st</sup> Side (Sim Bil)</td>
<td>right</td>
<td>6y 8m</td>
<td>Nucleus CI522</td>
<td>CI (EAS)</td>
</tr>
<tr>
<td>191</td>
<td>Unknown</td>
<td>no</td>
<td>2<sup>nd</sup> Side</td>
<td>left</td>
<td>8y 4m</td>
<td>Nucleus CI522</td>
<td>CI (electric)</td>
</tr>
<tr>
<td>201</td>
<td>Suspected NICU complications</td>
<td>no</td>
<td>2<sup>nd</sup> Side</td>
<td>left</td>
<td>7y 9m</td>
<td>Nucleus CI522</td>
<td>CI (electric)</td>
</tr>
</tbody>
</table>

9 Participants
Age at Implantation
Min: 4 Years 9 Months / **Max:** 15 Years 6 Months / **Avg:** 9 Years 9 Months
Adult EAS Clinical Trial

• Protocol
 • Assessment of residual hearing
 • Aided speech perception performance
 • Quiet (CNC words)
 • Noise (CUNY sentences)
 • Quality of life

• Intervals
 • Preoperative
 • Initial CI activation
 • Electric stimulation only
 • Initial EAS activation
 • Electric + Acoustic stimulation
 • 3, 6, and 12 months post-initial EAS activation
Pediatric Study

- **Protocol**
 - Assessment of residual hearing
 - Aided speech perception performance
 - Quiet (CNC words)
 - Noise (BabyBio sentences at +5 dB SNR)

- **Intervals**
 - Preoperative (Hearing Aid)
 - 6 months post-initial activation (CI and EAS programs)
Adult EAS Clinical Trial

• Subjects received a Med-El FlexEAS array with a shallow insertion
• Were fit with a Duet EAS Processor
• Pre-Operative hearing range:
 • Internal
 • FlexEAS
 • External
 • Duet

[Graph showing hearing levels across different frequencies]
Pediatric Study Requirements

• All children received Cochlear Slim Straight electrode arrays.
• Post-op LFPTA (125, 250, and 500 Hz) of 75 dB HL or better and a threshold of 80 dB HL or better at 500 Hz.
• Nucleus 6 processors and the hybrid hearing component.
• These children all had significant preoperative hearing, but were CI candidates because of poor single word speech perception scores.
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

Frequency (Hz)

250 500 750 1000 1500 2000 3000 4000 6000 8000

dB HL

- Preoperative
- CI Activation
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

- Preoperative
- CI Activation
- EAS Activation

Frequency (Hz)

dB HL
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

Frequency (Hz)

- Preoperative
- CI Activation
- EAS Activation
- 3 Month

dB HL
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

- Preoperative
- CI Activation
- EAS Activation
- 3 Month
- 6 Month
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

- Frequency (Hz)
- dB HL

- Preoperative
- CI Activation
- EAS Activation
- 3 Month
- 6 Month
- 12 Month
Adult EAS Clinical Trial

Residual Hearing: Surgical Ear

- Preoperative
- CI Activation
- EAS Activation
- 3 Month
- 6 Month
- 12 Month
- 2 Year
Pediatric Study: Pre-op Thresholds
Pediatric Study: Pre- and Post-Op Thresholds

Graphs showing thresholds for different patients (021, 031, 041, 061, 071, 081, 131, 191, 201).
Adult EAS Clinical Trial: Speech Perception

Figure 3

CNC Words

Adunka et al (2013)
Pediatric Study: Speech Perception

![Graph showing CNC Words vs. HA]
Pediatric Study: Speech Perception

![Graph showing speech perception results for different CNC words. The graph compares HA and CI conditions with error bars for each word and a mean value.](image-url)
Pediatric Study: Speech Perception

![Graph showing speech perception results for different CNC words with HA, CI, and EAS conditions.](graph_image)
Kids and Adults: Speech Perception

Figure 3

Mean Pediatric Scores

Adunka et al (2013)
Adult EAS Clinical Trial: Hearing in Noise

CUNY Sentences, +0 dB SNR
Pediatric Study: Hearing in Noise

Baby Bio at +5 dB SNR

Mean
Pediatric Study: Hearing in Noise

Baby Bio at +5 dB SNR

- HA
- CI

Mean
Pediatric Study: Hearing in Noise

Baby Bio at +5 dB SNR

Mean

021 031 041 061 071 081 131 191* 201**

HA CI EAS
What we know now...

• Hearing preservation can be achieved in cochlear implant recipients
• Combining acoustic and electric stimulation in an ipsilateral listening condition may improve speech perception, music perception, and quality of life as compared to conventional amplification
• Patients who receive full electrode placement and maintain aidable residual hearing can benefit from EAS.
• Are we reaching everyone?
Pediatrics: Candidacy Criteria

- Bilateral severe-to-profound sensorineural hearing loss
- Poor speech recognition with appropriately fit hearing aids
Could This Child Be A CI Candidate?
CNC Scores

Pre-Op
6 Mo
1 Year (RE), 3 Mo (LE)
1 Year 3 Mo (RE), 6 Mo (LE)

- Hearing Aid RE
- Hearing Aid LE
- EAS RE
- EAS LE
- Both ears EAS
Sentences in Noise – Right Ear
Thank You
Combining Residual Hearing with Electric Stimulation: Results from Pediatric & Adult CI Recipients

Unilateral Hearing Loss (UHL): Adults

CAUTION: Not FDA approved. Investigational Device Exemption
What we know now...

• Hearing preservation can be achieved in cochlear implant recipients.

• Combining acoustic and electric stimulation in an ipsilateral listening condition may improve speech perception as compared to conventional amplification.
What we know now...

• Hearing preservation can be achieved in cochlear implant recipients

• Combining acoustic and electric stimulation in an ipsilateral listening condition may improve speech perception and quality of life as compared to conventional amplification

• Are we reaching all of those who would benefit from cochlear implantation?
UHL: Limitations

- Unilateral Hearing Loss (UHL) as compared to normal hearers:
 - Poor speech perception in noise
 (Welsh et al, 2004; Rothpletz, Wightman & Kistler, 2012)
 - Variable ability on localization tasks
 (Slattery & Middlebrooks, 1994)
 - Increased report of hearing handicap
 (Iwasaki et al, 2013)
 - Reduced quality of life
 (Wie, Pripp, & Tvete, 2010)
UHL: Treatment Options

• Current treatment options for UHL:
 • Bone-conduction devices
 • Contralateral Routing of the Signal (CROS) hearing aid systems

• Limitations:
 • Ability to use binaural cues for speech perception in noise is variable (Kunst et al, 2007)
 • Localization abilities have been found to be at chance (Bosman et al, 2003; Hol et al, 2010)

CAUTION: Not FDA approved. Investigational Device Exemption
Cl in UHL

• Considerations for UHL:
 • Ability to integrate acoustic and electric stimulation when one ear is a normal hearing ear?
 • Distraction of the better hearing ear?
CI in Single-Sided Deafness (SSD) clinical trial

- Cochlear Implantation in Cases of SSD clinical trial
 - FDA Investigational Device Exemption (IDE)
 - n=20
 - Principal Investigator: Margaret Dillon, AuD

- Study Aim
 - Demonstrate the effectiveness of CI in subjects with SSD
 - Measures of speech perception, localization, and subjective report

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD clinical trial

• Inclusion Criteria
 • Affected Ear: moderate-to-profound sensorineural hearing loss (PTA ≥ 70 dB HL)
 • Aided CNC word score ≤ 60%
 • Contralateral Ear: normal-to-mild hearing (PTA ≤ 35 dB HL)
 • ≥ 18 years of age at implantation
 • Duration of moderate-to-profound hearing loss ≤ 10 years
 • Previous experience with current SSD treatment option
 • Realistic expectations
 • No reported cognitive issues

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD clinical trial

• Exclusion Criteria
 • Non-native English speaker
 • Speech perception materials presented in English
 • Conductive hearing loss in either ear
 • Compromised auditory nerve
 • Cochlear ossification
 • Meniere’s disease with intractable vertigo
 • Case of sudden SNHL that has not been first evaluated by a physician
 • Tinnitus as the primary purpose for seeking cochlear implantation

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD clinical trial

• Investigational devices:
 • MED-EL Concert Standard electrode array
 • Full insertion (31 mm)
 • All subjects with similar insertions depths to limit potential confounding variable (Buchman et al, 2014)
 • Opus 2 external speech processor
 • All subjects listening with an ear-level device to limit any potential microphone placement effects
 • All subjects programmed with the FS4 coding strategy
CI in SSD: Speech Perception

• Test Material:
 • AzBio sentences in noise
 • 10-talker babble
 • 0 dB SNR
 • Tested a group of normal hearers as a performance comparison
 • n=17

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Speech Perception

- Test Material:
 - AzBio sentences in noise listening conditions:
 - Speech Front, Noise Front (S0N0)
 - Speech Front, Noise to the poorer hearing ear (S0NCI)
 - Speech Front, Noise to the better hearing ear (S0NContra)
 *most challenging listening condition

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Speech Perception

Buss et al (submitted)
CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Speech Perception

AzBio

Percent correct

Position of masker

good side

front

bad side

CI pre-op
CI 1-mo
CI 3-mos
CI 6-mos
CI 9-mos
CI 12-mos

NH

Buss et al (submitted)
CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Speech Perception

AzBio

Percent correct

Position of masker

good side

front

bad side

CI pre-op
CI 1-mo
CI 3-mos
CI 6-mos
CI 9-mos
CI 12-mos
NH

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

- 11-speaker array
- 200 ms speech-shaped noise bursts
 - Randomize three presentation levels
 - No feedback provided
- Tested a group of normal hearers as a performance comparison
 - \(n=24 \)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

Better

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

Buss et al (submitted)

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Localization

CAUTION: Not FDA approved. Investigational Device Exemption

Buss et al (submitted)
CI in SSD: Summary

• Speech Perception
 • Improvement in speech perception noted as early as 1-month post-initial activation of the external speech processor
 • Even in the most challenging listening condition

• Localization
 • Improvement noted as early as 1-month post-initial activation of the external speech processor
 • Stable through the 12-month interval

• Subjective Report
 • Improvement in reported ability
 • Subtests: speech, spatial, and quality
CI in SSD: Summary

• Speech Perception
 • Improvement in speech perception noted as early as 1-month post-initial activation of the external speech processor
 • Even in the most challenging listening condition

• Localization
 • Improvement noted as early as 1-month post-initial activation of the external speech processor
 • Stable through the 12-month interval

• Subjective Report
 • Improvement in reported ability
 • Subtests: speech, spatial, and quality

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Summary

• Speech Perception
 • Improvement in speech perception noted as early as 1-month post-initial activation of the external speech processor
 • Even in the most challenging listening condition

• Localization
 • Improvement noted as early as 1-month post-initial activation of the external speech processor
 • Stable through the 12-month interval

• Subjective Report
 • Improvement in reported ability
 • Subtests: speech, spatial, and quality

CAUTION: Not FDA approved. Investigational Device Exemption
CI in SSD: Current Phase

• Asymmetric hearing loss (AHL)
 • Supplemental approval: December 2015
 • n=20

CAUTION: Not FDA approved. Investigational Device Exemption
Combining Residual Hearing with Electric Stimulation: Results from Pediatric & Adult CI Recipients

UHL and AHL: Pediatrics

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL

• Cochlear Implantation in Pediatric Cases of UHL
 • FDA Investigational Device Exemption (IDE)
 • n=20
 • Principal Investigator: Kevin Brown, MD, PhD
 • Lead Research Audiologist: Lisa Park, AuD

• Study Aims
 • Demonstrate the effectiveness of CI in children with moderate-to-profound UHL
 • Measures of speech perception, localization, and subjective report
Pediatric UHL

• Inclusion Criteria:

 • Affected Ear: moderate-to-profound sensorineural hearing loss (PTA ≥ 70 dB HL)
 • Aided CNC word score ≤ 30%
 • Contralateral Ear: normal hearing (PTA ≤ 25 dB HL)
 • Between 3.5 and 6.5 years of age at implantation
 • Willing to undergo a trial with a hearing aid verified and fit to DSL targets
 • Realistic parental expectations
 • Normal range of development and cognition within the normal range

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL

• Exclusion Criteria:
 • English is not primary language of the home
 • Speech perception materials and parental questionnaires presented in English
 • Conductive hearing loss in either ear
 • Compromised auditory nerve
 • Cochlear ossification
 • Case of sudden SNHL that has not been first evaluated by a physician
 • History of conditions that contraindicates middle or inner ear surgery or anesthesia
Pediatric UHL

• Investigational devices:
 • MED-EL Synchrony Flex28 electrode array
 • 28 mm
 • Sonnet external speech processor
 • All subjects listening with an ear-level device to limit any potential microphone placement effects
 • All subjects programmed with the FS4 coding strategy
 • ASM 2.0 features disabled
 • Omnidirectional
 • Wind noise reduction OFF
Pediatric UHL: Initial Review

<table>
<thead>
<tr>
<th>Enrolled</th>
<th>Implanted</th>
<th>Activated</th>
<th>3-Month Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL: Initial Review

<table>
<thead>
<tr>
<th>Enrolled</th>
<th>Implanted</th>
<th>Activated</th>
<th>3-Month Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Length of HL (years)</th>
<th>Age at Surgery (years)</th>
<th>Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.8</td>
<td>6.5</td>
<td>Trauma/Sudden</td>
</tr>
<tr>
<td>02</td>
<td>1.2</td>
<td>6.4</td>
<td>Unknown/Sudden</td>
</tr>
<tr>
<td>03</td>
<td>1.2</td>
<td>4.5</td>
<td>Trauma/Sudden</td>
</tr>
<tr>
<td>04</td>
<td>6.1</td>
<td>6.1</td>
<td>Malformation</td>
</tr>
<tr>
<td>05</td>
<td>4.6</td>
<td>4.7</td>
<td>Waardenburg</td>
</tr>
<tr>
<td>06</td>
<td>3.6</td>
<td>Scheduled</td>
<td>Malformation</td>
</tr>
</tbody>
</table>

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL: Hearing Configuration

Pre-Operative Thresholds

Threshold (dB HL) vs. Frequency (Hz)

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL: Speech Perception

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL: Subjective Report

Pediatric QL: Only those with 3-month data points

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL: Localization

- 11-speaker array
- 200 ms speech-shaped noise bursts
- Single presentation level
Pediatric UHL: Localization

- Pilot testing
 - n=3

- Clinical trial
 - n=1 (3-month interval)

- Normal-hearing (NH) children
 - n=3

CAUTION: Not FDA approved. Investigational Device Exemption
Pediatric UHL/AHL

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at Implantation</th>
<th>Duration of CI Use</th>
<th>Hearing Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>9 years</td>
<td>2 years</td>
<td>AHL; contra unaided</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>5 years</td>
<td>3 years</td>
<td>AHL; contra aided (BTE)</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>5 years</td>
<td>2 years</td>
<td>UHL</td>
</tr>
</tbody>
</table>

![Graph showing performance comparison between CI Off and CI On conditions.](image)

CAUTION: Not FDA approved. Investigational Device Exemption

Better

Pediatric UHL/AHL

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at Implantation</th>
<th>Duration of CI Use</th>
<th>Hearing Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>9 years</td>
<td>2 years</td>
<td>AHL; contra unaided</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>5 years</td>
<td>3 years</td>
<td>AHL; contra aided (BTE)</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>5 years</td>
<td>2 years</td>
<td>UHL</td>
</tr>
</tbody>
</table>
Pediatric UHL/AHL

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at Implantation</th>
<th>Duration of CI Use</th>
<th>Hearing Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>9 years</td>
<td>2 years</td>
<td>AHL; contra unaided</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>5 years</td>
<td>3 years</td>
<td>AHL; contra aided (BTE)</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>5 years</td>
<td>2 years</td>
<td>UHL</td>
</tr>
<tr>
<td>PUHL 1</td>
<td>6.5 years</td>
<td>3 months</td>
<td>UHL</td>
</tr>
</tbody>
</table>

CAUTION: Not FDA approved. Investigational Device Exemption

![Graph showing RMS error (degrees) for CI Off and CI On conditions.](chart.png)

Better
Pediatric UHL/AHL

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at Implantation</th>
<th>Duration of CI Use</th>
<th>Hearing Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>9 years</td>
<td>2 years</td>
<td>AHL; contra unaided</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>5 years</td>
<td>3 years</td>
<td>AHL; contra aided (BTE)</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>5 years</td>
<td>2 years</td>
<td>UHL</td>
</tr>
<tr>
<td>PUHL 1</td>
<td>6.5 years</td>
<td>3 months</td>
<td>UHL</td>
</tr>
</tbody>
</table>

CAUTION: Not FDA approved. Investigational Device Exemption

NH Subject

<table>
<thead>
<tr>
<th>NH Subject</th>
<th>Age at Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 yrs</td>
</tr>
<tr>
<td>2</td>
<td>4.5 yrs</td>
</tr>
<tr>
<td>3</td>
<td>6.5 yrs</td>
</tr>
</tbody>
</table>
Summary

Combining Residual Hearing with Electric Stimulation: Results from Pediatric & Adult CI Recipients
Summary

• Patients with substantial low-frequency hearing and severe-to-profound high-frequency hearing loss, and poor speech perception with conventional amplification may benefit from cochlear implantation
 • Variability in postoperative hearing preservation
 • Ipsilateral combination of acoustic and electric stimulation
Summary

• Patients with substantial low-frequency hearing and severe-to-profound high-frequency hearing loss, and poor speech perception with conventional amplification may benefit from cochlear implantation
 • Variability in postoperative hearing preservation
 • Ipsilateral combination of acoustic and electric stimulation

• Patients who meet conventional CI criteria in one ear and have normal or mild hearing loss in the contralateral ear may benefit from cochlear implantation
 • Speech perception in spatially separated noise
 • Localization
 • Quality of life

CAUTION: Not FDA approved. Investigational Device Exemption
Thank you

Lisa Park, AuD: Lisa_Park@med.unc.edu
Meredith Rooth, AuD: Meredith_Rooth@med.unc.edu