LSRII HTS Operation

1. Classic Setup

- Using an unstained control, adjust FSC, SSC, and all the fluorescent parameters voltages
- 2. HTS Installation (base plate, sheath and waste connectors, communication cable, and power cable)
 - Flip the Tube/Plate acquisition mode switch to Plate

• Replace the DCM (Droplet Containment Module) sleeve with the SIT Protector

• Attach the Sample Coupler

- Turn on the HTS (power switch on the right-hand side of the HTS unit)
- Place the LSRII in Run mode
- Prime the HTS (HTS > Prime)

3. Plate Running

• Choose the plate well type (drop-down list in the browser toolbar)

- Select the throughput mode (Standard $[2-200\mu L + 20\mu L]$ or High Throughput $[22\mu L]$)
- Add wells to the plate layout using the plate toolbar
- Check the Loader Settings (R-click a well and copy/paste Loader Settings to another well or multiple wells)

Filter Setup Details Specimen type First well in group			2	S Acquisition order			Specimen settings					Plate Information Throughput Mode High Standard		
20	<u>=</u> ~											List of specimens or	the plate	status
1	2	3	4	5	6	7	8	•	10		12	Setup Controls Compensation Specimen_001	_001 Controls	
	1	1		1			\bigcirc	0	0	\bigcirc	਼			
			1 3		15	16	17			20	21			
22		24	2 5	26	27	28	2 9		31	32		Loader Settings Sample Flow Ra	te (µL/sec)	1.0 🗸
$\overline{\bigcirc}$	$\overline{\circ}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\circ}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\circ}$	$\overline{\circ}$	0	Õ	Sample Volume Mixing Volume ((μL) μL)	10
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	Mixing Speed (µ	L/sec)	180
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Wash Volume (s L)	2 🗸

- Label the axis and set the number of events to record (Experiment menu > Experiment Layout)
- Select the first specimen well and click "Run Plate" in the acquisition dashboard
- 4. HTS Cleaning (~15 minutes)
 - HTS > Clean, select the Daily Clean 96 well U-bottom template
 - [std mode, 3µL/s, 200µL sample, 100µL mixing, 200µL/s mixing speed, 4 mixes, 400µL wash]

A1 A2: 200µL 1% Contrad

A3 A4: 200µL FACSClean

B1 B4: 200µL DiH2O

5. HTS disassembly

Miscellaneous

- Uncheck "Load data after recording" box (Edit > User Preferences)
- Uncheck Specimen number, Specimen Settings, and Well settings (Plate Window > Filter Setup Details)
- If you stop the HTS during a run, the current well will be lost (in HTS mode the next well will be lost as well)
- Cell concentration should not exceed 6x10⁶ cells/mL in 250µL
- Diva will stop acquisition (recording of a well) and proceed to the next well when either the specified number of events to collect is reached or the stopping time is reached.
 Stop Time (sec) = Sample Volume (μL) divided by Flow Rate (μL/sec)
 <u>Note</u>: Set a high number of events to collect if you want to record up to the stopping time.
- Do not exceed 1x10⁶ events to collect as it will result in a plate memory error
- Cyto-Fix/Cyto-Perm wash contains flocculates with a wide range of sizes (varies from lot to lot). Filter these solutions (0.22μm) before using them with your cells as these flocculates remain in solution even when diluted in diH₂O or warmed up to 37°C.