

Title:			Classification:	
EMD Millipore Am	User Training			
Training				
Effective Date: 01/03/2017	Revision Date: 01/25/2023	ID: UT SOP004.2	Page 1 of 4	

Table of Contents

1.	Fluidics	. 2
2.	Startup	. 2
3.	Acquisition	. 2
4.	Shutdown	. 3
5.	Data Analysis Tips	. 4
6.	References	. 4
7.	Revisions	. 4

Title:			Classification:
EMD Millipore Amnis ImageStreamX MkII INSPIRE User			User Training
Training	C		
Effective Date: 01/03/2017	Revision Date: 01/25/2023	ID: UT SOP004.2	Page 2 of 4

1. Fluidics

- SpeedBeads: monitor and synchronize the flow of the sample and maintain focus and core tracking
- **Sterilizer** = FACSClean
- Cleanser = Coulter Clenz
- **Debubbler** = 70% Isopropyl alcohol
- *Rinse* = Deionized Water (diH₂O)
- Sheath = 1X PBS (Phosphate-buffered saline), 0.1 nm filtered

2. Startup

- First Person of the day will Startup- Initializes fluidics by flushing sheath and loading beads ~14min
- Select "Run ASSIST (Automated Suite of Systemwide ImageStream Tests) after initialization" Calibration and testing using SpeedBeads ~20min
- If instrument is already started, *Start Fluidics* to ensure Focus and Centering is valid using the SpeedBeads

3. Acquisition

- File > *Load default template* or experiment template.
- *File Acquisition*: set path and number of objects to collect
 - a. Always save to the Desktop initially then copy to the J: Drive ONYEN folder
- *Illumination*: turn on the appropriate lasers.
 - a. Begin with all lasers at max output (hover over input box to view range of power available per laser)
 - b. Keep SSC power between 3-5 mV

Title:			Classification:	
EMD Millipore Am	User Training			
Training	<u> </u>			
Effective Date: 01/03/2017	Revision Date: 01/25/2023	ID: UT SOP004.2	Page 3 of 4	

- *Magnification*: select the 20X, 40X or 60X objective.
 - a. If viewing internal components of the cell, need to run 60X objective
 - b. 20X= 1 um/pixel
 - c. 40X= 0.5 um/pixel
 - d. 60X= 0.3 um/pixel
- *Fluidics*: Select appropriate Speed/sensitivity for your experiment
 - a. If viewing internal components of the cell, need to run on Lo speed/Hi sensitivity
- Click Load and place a fully-stained sample on the uptake port.
- a. Note 15 uL is the minimum amount of liquid uptake
- Adjust the laser powers to maximize signal and prevent saturation.
 - a. Use Raw Max Pixel_MC_ChX by Area_MChX to determine saturation. Max output is 4000.
 - Be careful to closely look at axis labels as the scales will automatically update. This can be overridden by R-click Graph> Graph properties> Scaling> Manual > Maximum= 4000 (make sure scale is linear for Raw Max Pixel)
- Create plots and gates to identify the cells to collect:
 - a. Cells in Focus: Gradient RMS_M01_Ch01
 - b. Singlets: Area_M01 vs. Aspect Ratio_M01
 - c. Phenotyping (signal intensity): use Intensity_MC_ChX
 - **Compensation** > Create Matrix... <u>or</u> click on the Wizards icon (
 - a. Note: Single stained samples must be collected WITHOUT brightfield/SSC channels
 - b. Collect at least 1000 positive events
 - i. Compensation wizard is looking for ONLY positive events, so it is preferable to save only events in the positive gate defined.
 - c. Run PBS between samples if worried about residual sample
 - d. Run DNA dye last
 - e. Beads are not sufficient to compensate, must use cells
- Collect all experimental samples (return the remaining sample).
- File > Save Template.

4. Shutdown

- Between users:
 - a. FACSClean (3 minutes)
 - b. diH₂O (3 minutes)
- Last user
 - a. Click Shutdown (sterilizes the instrument ~43min)
 - b. Select "Shutdown after sterilize" (powers off all system components)
 - c. Do not exit program

Note: Sample concentration 1x107-1x108/mL.

- <u>Note</u>: BF usually is set to ch1&9, DF (ch6 SSC) should be between 3-5 mW, and single cells are visualized with a BF Area vs. Aspect Ratio.
- <u>Note</u>: If a sample without DNA dye follows a sample with DNA dye, Load FACSClean followed by 1X PBS for a minute each.

Title:			Classification:
EMD Millipore Amnis ImageStreamX MkII INSPIRE User			User Training
Training	C		
Effective Date: 01/03/2017	Revision Date: 01/25/2023	ID: UT SOP004.2	Page 4 of 4

5. Data Analysis Tips

- Sample Export File Types:
 - a) .rif = raw image file
 - b) .ctm = compensation matrix
 - c) .cif = compensated image file
 - d) .daf = data analysis file
 - e) .ast = tempate file
 - i) Use for batch Analysis
- F1 in IDEAS will bring up user manual; type to search

6. References

• ImageStreamX ® System Software User's Manual Version Mark II, January 2013.

7. Revisions

SOP Version Number	Date	Tracked Changes (clearly list changes made & why)	Employee
UT SOP004.2	1/25/2023	General Updates throughout to aid in user training	Ayrianna Woody