Diagnostic and Research Utility of Whole Exome Sequencing for Cardiac Disease

Gloria T. Haskell¹, Brian C. Jensen³, Cecile Skyrzynia¹, Daniel S. Marchuk¹, Leigh Ann Samsa³, Wei Huang³, Chris Bizon², Kirk C. Wilhelmsen^{1,2}, Karen Weck¹, James P. Evans¹ and Jonathan S. Berg¹

1. Department of Genetics, UNC-Chapel Hill 2. Renaissance Computing Institute, Chapel Hill, NC, 3. UNC McAllister Heart Institute

- The North Carolina Genomic Evaluation by Next-Generation Exome Sequencing clinical trial, NCGENES, has enrolled 30 patients suspected of having a genetic cardiac condition, and is evaluating the use of whole exome sequencing (WES) as a diagnostic tool.
- Step1: The Diagnostic Sweep: Identify pathogenic variants in genes known to be associated with the patient's referring condition. Step2: The Research Sweep: In those individuals who are negative in the diagnostic sweep, broadly examine the exome data in order to identify potential pathogenic variants in novel disease genes.

DIAGNOSTIC SWEEP

Phenotypic Categories of Enrolled Participants

Mitral Valve Prolapse /
Thoracic Aortic Aneurysm, n=7
Arrhythmia, n=3
Cardiomyopathy, n=20

Filter for Pathogenic Variants on Diagnostic Lists

Diagnostic Yield of WES for Cardiac Patients (%)

Phalloidin

WES-identified genetic contribution to cardiac disease in *NCGENES*

RESEARCH SWEEP

Identification of a splice site variant in a Dilated Cardiomyopathy Patient who underwent transplant at age 15 expands the phenotype of SYNE1-associated mutations to include isolated DCM.

- Lymphoblast Cells from DCM patient 24 Exhibit Morphological Changes consistent with disruption of *SYNE1*, a member of the LINC complex that tethers the nuclear envelope (NE) to the actin cytoskeleton.
- SYNE1 has been shown to be critical for proper mechanotransduction in cardiomyocytes (Banerjee et al., 2014)
- SYNE1 variants have previously been reported in Emery-Dreifuss Muscular Dystrophy (Zhang et al., 2007)

RESEARCH SWEEP

Whole Exome Sequencing reveals a striking enrichment of rare, truncating variants in nucleoporin genes in cardiac patients

Patients with Truncating Variants in Nucleoporins						
Patient	Phenotype	Variant	Gene Description	MAF in ESP		
96	Arrhythmia; FHx of Sudden Death	NUP37 R106Ter	Nucleoporin of 37kDa	0		
157	TAA/MVP; FHx of aneurysms	NUP43 R339Ter	Nucleoporin of 43kDa	.00043		
354	TAA/MVP with surgical repair	NUP188 c. 4737+1G>T	Nucleoporin of 188kDa	0		

WES-Identified nucleoporins have a low mutational burden in the ESP cohort

Gene	# of coding bases	# of NS variants in ESP	# of Splice-site variants in ESP	% Truncating variants
NUP37	981	0	1	0.001
NUP43	1143	2	0	0.0017
NUP188	5250	0	0	0

WES-Identified NE genes are expressed in the heart

- Morpholino-based knockdown of WES-identified NE genes leads to cardiac defects in zebrafish embryos, including pericardial edema, and altered looping of the chambers.
- Fakhro et al., 2011
 demonstrated L-R patterning
 defects during Xenopus heart
 development in nup188
 morphants.

This work was supported by a U01 from the NHGRI to J.S.B., K.W., B.C.J., K.W. and J.P.E. (U01HG006487-02) and an NHGRI Reentry grant awarded to G.T.H. (supplement to U01HG006487).

SUMMARY

WES has Diagnostic Utility for Cardiac Disease, Identifying a clearly pathogenic variant in 20% of patients. Alterations in nuclear envelope genes, including nucleoporins, may be particularly important genetic contributors to cardiac disease.