

Stop, go, slow: pathogenic, nonpathogenic, still don't know A Traffic Light Reporter Assay for Clinical Interpretation of Variants

Sarah Brnich, Stephanie Bellendir Crowley, Bryce Seifert, Alicia Brandt, Andy Rivera, Jonathan Berg University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC

• Allelic data

The Problem

Our ability to generate data and identify genetic variants on a genome-wide scale has outpaced our ability to accurately interpret these findings, given limited data connecting them to disease. Even within genes that are known to play a role in disease, variants of uncertain significance (VUS) are numerous and complicate patient counseling.

Functional Studies and Breast Cancer

Normally, tumor suppressor genes may function in cell cycle regulation, apoptosis, or DNA damage repair. Loss-of-function mutations in these genes contribute to cancer susceptibility.

Approximately 12.4% of women will be diagnosed with breast cancer in their lifetime.³ About 5-10% of these cases are hereditary. Variants in genes such as ATM, BRCA1, BRCA2, and PALB2 have been linked to hereditary breast cancer, with 1-3% of women with breast cancer carrying a pathogenic *PALB2* mutation.⁴ These genes are all involved in the DNA double strand break repair pathways, providing an opportunity to assay groups of genes by repair pathway.⁵

I aim to assess the utility of the fluorescent Traffic Light Reporter (TLR) system for clinical interpretation of genetic variants. I will begin by examining a validation panel of previously studied BRCA2 variants before examining variants in PALB2.

Hypothesis

The readout of HDR/NHEJ is a physiologically relevant indicator of functionality of these genetic variants.

B

Curriculum in Genetics and Molecular Biology

Traffic Light Reporter (TLR) Assay Used lentivirus to transduce TLR **ISce-I** nuclease construct at low M.O.I. in 🔪 target 🥒 HEK293T17 cells for a stable 293T/TLR cell line that is nonfluorescent at baseline DSB mCherry GFPtrunc eGFP eGFP mCherry T2A 2-bp frameshift GFPtrunc HR Gene targeting mCherry (+3) *T2A* (+3) Figure adapted from Certo, et al., Nature Methods (2011)

TLR Assay Validation and Pilot Experiment

1. Transient transfection of stable 293T/TLR cells GFP Donor BFP GFP Donor BFP ISce-I IFP 293T/TLR alone + Isce-I IFP

3. Endogenous wild-type gene suppression & transient variant expression

I used site-directed mutagenesis PCR to introduce variants in plasmid DNA. These siRNA-resistant plasmids will be transiently transfected into 293T/TLR cells along with siRNA targeting the endogenous wild-type copy of the gene of interest and analyzed by flow cytometry.

-Scel	GFP donor	siRNA	GFP/ mCherry	
+	+	Non-targeting control		No change
+	+	RAD51		Decrease
Ŧ	+	BRCA2	WT or non- pathogenic control	No change
+	+	BRCA2	Pathogenic control	Decrease

2. Flow cytometry analysis 72 hours post-transfection

_pos	nstec	
lScel	GFP Donor	BFP vs.
-	-	10 ⁵ 10 ⁴ 10 ⁴ 10 ² 10 ² -10 ²
-	+	10 ⁵ 10 ⁴ 10 ⁴ 10 ³ -10 ¹
÷		10 ⁵ 10 ⁴ 10 ⁴ 10 ² 10 ² -10 ²
+	+	$ \begin{array}{c} 10^{5} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{2} \\ -10^{2} \\ -10^{2} \\ -1 \end{array} $

Anticipated Results

Known pathogenic and nonpathogenic controls will calibrate the assay's dynamic range and permit functional interpretation of unclassified variants.

Validation Variant Panel

The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) has published a panel of BRCA2 variants for use in validation of functional assays of BRCA2.6

Batches of these variants will be assessed, with each batch including at least one known pathogenic and one known benign as controls to be run alongside variants of uncertain significance.

PALB2 Variant Selection

51% of clinically identified PALB2 variants are classified as VUS, and of these, 89% are missense.² Most truncating variants in *PALB2* are pathogenic and there is new functional evidence of pathogenic missense mutations in PALB2.⁷

C = = = =	Dustsin Chauses			A second Cate			A a a a a b	•	Courses
Gene	Protein Change	DNA Change		Assay Cate		ClinVar Assertion			Source
PALB2	L939W	c. 2816 T>G		VUS		Conflicting Interpretations		erpretations	Park, et al. 2014
PALB2	T1030I	c. 3089 C>T		VUS		VUS			Park, et al. 2014
PALB2	L1143P	c. 3428 T>C		VUS		VUS			Park, et al. 2014
PALB2	L21P	c. 61 T>C, c.62	T>C	VUS					Zhang, et al. 2009
PALB2	L24P	c. 70 T>C, c.71	T>C	VUS					Zhang, et al. 2009
PALB2	F404L	c.1212 T>A		VUS		VUS			2 NCGenes
PALB2	A712V	c. 2135 C>T		Benign/LB		Benign/Likely Benign		Benign	2 NCGenes
PALB2	N497Lfs*64	c. 1490_1490delA		VUS	VUS				1 NCGenes
PALB2	C77Vfs*100	c. 229delT		Pathogenic		Pathoge	ogenic		Pauty, et al. 2014
PALB2	L531Cfs*30	c. 1592delT		Pathogenic		Pathogenic, ris		sk factor	Pauty, et al. 2014
PALB2	L35P	c. 104 T>C		Pathogenic	Pathogenic				Foo, et al. 2017
				ļ	ļ		Ļ	Ļ	Ļ
	NH2- DNA		DI	NA			1 2	3 4 5	6 7-COOH
	C.C. ChAM BRCA1 (1-42) 							WD40	BRCA2 (1010-1109)
				(611-738) MRG15		IRG15 -	RG15 (854-1186) RAD51C		RAD51C
	1 100	200 300	400 50	00 600	700	800	900	1000 1100	1186 aa
Figure adapted from Pauty et al., Biochem J (2014)									

Acknowledgements and References

We would like to acknowledge funding from the UNC School of Medicine Yang Family Biomedical Scholars Award and NCGenes. Sarah was also supported in part by the UNC MSTP Training Grant 2T32GM008719-6, and a grant from the National Institute of General Medical Sciences under award 5T32 GM007092.

¹ Richards et al. Genetics in Medicine (2015)

- ² https://www.ncbi.nlm.nih.gov/clinvar/ ³ https://seer.cancer.gov/statfacts/html/breast.html
- ⁴ Daly et al., NCCN (2017)

