Evaluation of Targeted Sequencing Technology to Screen 17 Genes for Actionable Conditions in Healthy Individuals

Alicia Brandt1, Edgar A Rivera-Munoz1, Lonna Mollison1, Chelsea Gustafson1, Daniela DeCristo1, Falecia Metcalf1, James Evans1, Gail Henderson2, Jonathan S. Berg2
1Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
2Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC

Introduction
Screening programs, such as newborn screening, in healthcare serve a public health role in that they have the potential for early detection and prevention of diseases prior to clinical manifestation of symptoms. Advancements in next-generation sequencing (NGS) provide opportunities to implement genomic screening and “precision medicine” in the general population.

GeneScreen explores the feasibility and ethics of screening an adult population for 11 highly actionable conditions via targeted sequencing of 17 genes, mitigating ELSI concerns raised from genome-scale sequencing in healthy populations. As part of this work, we evaluated and compared targeted sequencing technologies that could provide a cost-effective alternative to genome-scale sequencing (GSS) approaches:

- Roche/Innolobogen Heat-Seq molecular inversion probes (MIPs)
- Integrated DNA Technologies xGen lock down hybridization capture probes

Methods
We targeted those 17 genes in a subset of 58 participants enrolled in the GeneScreen study, using Heat-Seq MIPs and xGen lock down probes. Our metrics assessed the performance on three aspects important for clinical sequencing:

- Gene-level “adequate” coverage
- Variant calling comparability

Category	Condition (gene)	Interventions
Cancer	Familial adenomatous polyposis (APC)	Colonoscopy, endoscopy screening, thyroid ultrasound, surgery
MUTH-associated polyposis (MUTH)	Colonoscopy, endoscopy	
Lynch syndrome (MLH1)	Colonoscopy, endoscopy, endometrial biopsy, possible surgery (prophylactic hysterectomy and salpingo-oophorectomy)	
Lynch syndrome (MSH2)	Colonoscopy, endoscopy	
Lynch syndrome (MSH6)	Colonoscopy, endoscopy	
Lynch syndrome (PMS2)	Colonoscopy, endoscopy	
Familial breast/ovarian cancer (BRCA1)	Breast imaging, prophylactic mastectomy and/or salpingo-oophorectomy	
Familial breast/ovarian cancer (BRCA2)	Breast imaging, prophylactic mastectomy and/or salpingo-oophorectomy	
MEN2A/2B (RET)	Prophylactic thyroidectomy, serum metanephrine blood test	
Long QT syndrome (KCNQ2)	Cardiology consultation, ECG, β-blocker medication if ECG is positive; implantable cardioverter-defibrillator if symptomatic	
Long QT syndrome (KCNQ2)	Cardiology consultation, ECG, β-blocker medication if ECG is positive; implantable cardioverter-defibrillator if symptomatic	
Long QT syndrome (SCNS5A)	Cardiology consultation, ECG, β-blocker medication if ECG is positive; implantable cardioverter-defibrillator if symptomatic	
Familial hypercholesterolemia (LDLR)	Lipid biochemical screening, pharmacotherapy if needed	
Marfan syndrome (FBN1)	Echocardiography, ophthalmologic screening	
Cardiovascular	Malignant hyperthermia (Ryr1)	Avoidance of specific anesthetics
Hereditary hemochromatosis (HFE)	Ferritin biochemical screening, phlebotomy	
α-1 Antitrypsin deficiency (SERPINA1)	Avoidance of exposure to smoke	

Table 1. Characteristics of 11 screened conditions and 17 candidate genes. The GeneScreen Committee and Community Advisory Board reviewed and weighted these genes, when mutated, confer high risk of these potentially detectable and preventable disorders. 1-4

Variant detection
Both targeted probe technologies have their strengths and weaknesses:

- Roche Heat-Seq has G-C rich limitations, but cost-effective
- IDT Lockdown has extra variant noise, but effective for G-C rich regions and smaller panels

With further optimization, targeted genomic sequencing could be a feasible and ethical option of screening the general population as it not only promises lower cost than GSS but would avoid generating large numbers of variants in genes with unknown or non-clinical significance.

Conclusions & Future Implications
Both targeted probe technologies have their strengths and weaknesses:

- Roche Heat-Seq has G-C rich limitations, but cost-effective
- IDT Lockdown has extra variant noise, but effective for G-C rich regions and smaller panels

With further optimization, targeted genomic sequencing could be a feasible and ethical option of screening the general population as it not only promises lower cost than GSS but would avoid generating large numbers of variants in genes with unknown or non-clinical significance.

Acknowledgments & References
We would like to acknowledge the GeneScreen Collaborative Group and funding from the National Human Genome Research Institute of the National Institutes of Health under grants P50HG004488 and U01HG006487.