NovaSeq 6000 vs HiSeq 2500 Evaluation by mRNA-seq

Joel Parker

Lineberger Bioinformatics Core

https://lbc.unc.edu/

Instrument Bias

Platform	Samples in GEO
U133plus2	146,142
U133A	22,283
U95	6,446
Agilent 4x44k	14,367

Luo et al., MAQC-II 2010

Instrument bias in mRNA-seq

Instrument bias in mRNA-seq

4 machines

2 sites

6 batches - 2 mos

GAIIx

HS-01

HS-02

HS-IL

Hiseq vs Novaseq

- Hiseq2500 uses 4 channels while Novaseq only uses 2
 - G is represented by the lack of signal, previously called N
 - Poor quality reads may show up as polyG

- Increased sensitivity to imbalanced indexes during calibration
- cutadapt permits removing trailing 'G's

Hiseq vs Novaseq

- Ordered flowcells
 - Reports of barcoded reads spilling over into adjacent wells

Hiseq vs Novaseq

- Ordered flowcells
 - Reports of barcoded reads spilling over into adjacent wells

Relative position of duplicates

Evaluation

- RNA isolated from 48 GEMM derived tumors
- TruSeq stranded mRNA
- Single barcode
- 2 NovaSeq lanes (S1) with 24 samples / lane
- 12 HiSeq lanes with 4 samples / lane
- Identical library on both machines

RNA-seq Workflow

RNA-seq Workflow

RNA-seq Workflow

User & Lab (group) level security policies based on onyen

Provenance

User friendly

Base Quality

Novaseq base qualities are binned to 2, 12, 23, 37

Base composition

- K-mer counts (k=8 shown) tabulated from fastqs
- Expected bias in G rich sequences is not observed
- polyA and CG repeating sequences are mildly enriched in the Novaseq run

Duplication

Alignment

Alignment

- Modest increase in mismatch rate
- Estimated Q scores do not appear accurate in the initial cycles

Repeatability

 Gene coefficient of variations (CV) estimated for each cohort

 CV estimates indicate high concordance in expression variation

Unsupervised Comparison

- PCA performed on log transformed, upper quartile normalized count estimates
- Nuisance variation due to instrument bias is not observed in any of the top components of variation
- PC35 (0.62% of expression variation) is the most highly ranked component associated with instrument (WRS p < 0.001)

Unsupervised Comparison

- Unsupervised hierarchical cluster analysis using the 1500 the most variable genes
- All paired samples are more similar to one another than other samples from the same instrument
- Magnitude of variation is also preserved (as before in CV plot)

Supervised Comparison

DESeq2 Claudin-low (n=4) vs Basal-like (n=4)

VAF Comparison by RNA-seq

- Exome sequencing available for one sample (Hiseq)
- All coding variants identified in DNA were quantified in RNA
- Allele frequencies by Novaseq are concordant with those of HiSeq
- High expected agreement for sequencing applications

Summary

- Systematic bias is expected when changing protocols
- Expected sources of bias sequencing chemistry and patterned flow cells – did not broadly affect experimental results
- The magnitude of instrument bias is negligible relative observed biological variation

Acknowledgements

Lineberger Bioinformatics

Sara Selitsky

David Marron

John Ford

Lisle Mose

Perou labXiaping HeLynn Challot

HTSFAmy Perou

