
• Splice-altering variants have been proposed as an important 
potential class of variants to explain the “missing heritability” 
of cases where a genetic etiology is strongly suspected but not 
revealed by current analysis.

• With improvements in machine learning, the ability to identify 
and characterize splice site variants has improved remarkably.

• One such model powered by artificial intelligence, SpliceAI, has 
substantially improved accuracy compared to prior models and 
has started to be incorporated into research and clinical 
bioinformatic pipelines.

• The current study used SpliceAI to re-analyze a cohort of 
fetuses with brain abnormalities.

• This is a retrospective study examining a cohort of fetuses with congenital brain 
abnormalities.

• Trio sequencing (exome or genome) with DNA collected from amniocytes or chorionic 
villi of 91 fetuses with parental comparator data

• Inclusion criteria: fetal brain abnormality detected on prenatal imaging
• Exclusion criteria: causative finding on prenatal microarray
• Initial analysis in this study was blinded to results of prior analysis
• Baseline analysis (matching prior analysis) includes annotation and prioritization of 

variants using:
o Prior publicly-reported clinical classifications (ClinVar database)
o Population allele frequencies (gnomAD 4.0)
o Predicted molecular consequence (SnpEff 5.2c)
o Allelic state (e.g., de novo status) based on parental data
o Flagging of genes with potential relevance to fetal phenotype (PanelApp Fetal 

Anomalies gene list 4.33)
• SpliceAI scores were calculated for identified variants, with analysis stratified by score 

thresholds above 0.2, 0.5, and 0.8
• Descriptive statistics and graphs were generated in R Statistical software v4.1.2

• Among 91 trios, 490 fetal variants met initial filtering criteria 
(population allele frequency <= 0.01, gene presence on PanelApp 
Fetal Anomalies list, SpliceAI score >= 0.2).

• 72 variants could not be excluded through gene-specific 
population allele frequency filters or by meeting one or more of 
the ACMG/AMP criteria for benign evidence: BS1, BA1, BS2.

• 5 were determined to be possibly disease-causing and presented 
to multidisciplinary team for further discussion with potential to 
return to families as a clinical or research report (Table 1).

• SnpEff classifies variants by direct predicted sequence effect (e.g., nonsense, missense, presence 
in canonical splice site)
o HIGH: expected to result in truncation or loss of expression
o MODERATE: expected to change amino acid sequence, but retain expression
o LOW/MODIFIER: synonymous or no clear effect

• A high proportion of variants classified as LOW/MODERATE by SnpEff have a SpliceAI score of at 
least 0.2 (2718/3815; 71%).
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Background

HGVS Transcript Gene Variant Type Already Presented?

NM_000284.4:c.586G>T 

(p.Asp196Tyr)

PDHA1 Missense Yes

NM_000284.4:c.604-2A>G PDHA1 Canonical 

Splice Site

Yes

NM_013382.7:c.1006+5G>A POMT2 Intronic Yes

NM_013382.7:c.1329_1332+5del POMT2 Intronic Yes

NM_002291.3:c.4280_4281dup 

(p.Pro1428GlyfsTer26)

LAMB1 Frameshift No
1. The incorporation of SpliceAI into clinical variant 

analysis is expected to add complexity and cost to 
analysis, from additional computational cost to 
the possibility of identifying false-positive splicing 
results.

2. The use of SpliceAI will increase diagnostic yield 
by identifying novel pathogenic variants in a 
cohort of fetuses with brain abnormalities.

Hypotheses

Methods

Table 1. Potentially pathogenic variants with a SpliceAI score of at least 0.2 found on re-analysis.

Results of Initial Analysis

Burden of Analysis
• We assessed a key component of the analytic burden of incorporating SpliceAI in 

variant analysis: additional variant data that needs to be considered when manually 
assessing variant classification.

• 4,476 variants met criteria for SpliceAI score >= 0.2 and population allele frequency <= 
0.01.

• Variants were stratified by SpliceAI threshold and by presence on PanelApp Fetal 
Anomalies lists with different confidence (Table 2)

• Variants aggregated by prior reports in ClinVar are represented in Figure 1
• Of the variants with a SpliceAI score of just 0.2 or greater, 950/1312 (72%) had a benign 

or likely benign classification. 

SpliceAI score: Number of variants 

with a match for a gene 

on the PanelApp Fetal 

Anomalies list

Number of 

variants with a 

match for a gene 

on the PanelApp 

Any list

Total number of 

variants with an 

allele frequency less 

than 0.01

0.2 or greater 490 1825 4476
0.5 or greater 159 467 1291
0.8 or greater 52 192 582
Table 2. Characterizing the burden of analysis by different SpliceAI scores.  

Figure 1. Total number of variants with a SpliceAI score of 0.2, 0.5, or 0.8 or greater by ClinVar 

classification. 

Figure 2. Total number of variants with a SpliceAI score of 0.2, 0.5, or 0.8 or greater by predicted impact 

on protein function.

Conclusions

Burden of Analysis

• Out of a total of 1,850 intronic variants with a spliceAI score of at least 0.2, 82% (1,518) of them were 

located outside of the canonical splice site (Figure 3).

• Finally, 214 variants located within canonical splice sites had a SpliceAI donor or acceptor gain score of 0.2 

or greater. Of the 214 variants, 15 of them had an alternative splicing site located 3, 6, 9, 12, or 15 base 

pairs away from the canonical splicing site.

Figure 3. Histogram showing the number of variants with 

a spliceAI score of 0.2 or greater according to how far 

each variant was located away from the exon-intron 

boundary. Negative values represents the distance before 

the exon, positive values represents the distance after the 

exon.

• The results of our study suggest that SpliceAI adds little additional sensitivity in variant re-analysis. 
• These results are particularly surprising given the higher pre-test probability of genetic disease in our 

fetal cohort compared to pediatric or adult cohorts.
• The added burden of systematically incorporating this tool into molecular analysis was not 

insignificant. In total, 490 variants were examined with our filtering scheme. This suggests that 
SpliceAI is most useful when applied narrowly to variant analysis, such as the interpretation of 
variants near canonical splicing sites, investigating cryptic splice sites, or when assessing the impact 
of de novo variants. 
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