The ADRA2A genetic variant rs3750635 influences extent and severity of acute pain after motor vehicle collision and may do so by regulating microRNA function

Linnstaedt SL,2, Walker M1,2, Bortsov A1,2, Swor RA1, Jones J3, Lee D1, Peak D5, D hope R1, Rathlev N1,3, McLean SL1,2

INTRODUCTION

Adrenergic alpha 2A receptors (ADRA2A) play an important role in spinal cord descending pathways which inhibit acute pain transmission.1 Experiments in pre-clinical models have demonstrated a role for ADRA2A in the inhibition of pain following stress exposure.2 However, the role of ADRA2A in the inhibition of pain following stress exposure in a human cohort and mechanisms of ADRA2A regulation have not been explored. In this study we evaluated the association between a common SNP within the ADRA2A gene, rs3750625, and the spread (extent) and severity of acute pain among patients presenting to the emergency department (ED) after motor vehicle collision (MVC).

HYPOTHESES

rs3750625 is a ADRA2A SNP that bioinformatics analyses suggest alters a binding site for miR-34a, a miRNA involved in the stress response and in pain processing.3,4 We hypothesized that genetic variants in ADRA2A SNP that bioinformatics analyses suggest alters a binding site for miR-34a, a miRNA involved in the stress response and in pain processing.3,4 We hypothesized that genetic variants in ADRA2A SNPs influence acute pain extent and severity after MVC. In addition, we hypothesized that the natural effect of ADRA2A rs3750625 is mediated, at least in part, by miR-34a.

METHODS

Individuals (n=948) between the ages of 18 and 65 presenting to one of eight EDs in four no-fault insurance states for evaluation after MVC who did not have a fracture or require hospital admission were enrolled. Pain extent was assessed at 20 body regions on a 1-10 Numeric Rating Scale (NRS). Number of body regions with pain was defined as the number of body regions with pain score of 1 or more. Overall burden of pain was assessed by summing the 0-10 NRS pain scores in the ED in each of the 20 regional pain scale areas (range 0-200). DNA was collected in the ED and processed using a standard sodium Dodecyl Sulfate (SDS) lysis buffer and proteinase K digestion to yield genomic DNA. DNA was diluted to 10 ng/μl and stored in −20°C. The ADRA2A 3 untranslated region (UTR) was amplified by polymerase chain reaction (PCR). PCR products were sequenced using the BigDye Terminator v3.1 cycle sequencing kit and analyzed using an ABI 377 Genetic Analyzer. The ADRA2A 3 UTR of all patients was sequenced. The ADRA2A 3 UTR SNP that bioinformatics analyses suggest alters a binding site for miR-34a, a miRNA involved in the stress response and in pain processing.3,4 We hypothesized that genetic variants in ADRA2A SNPs influence acute pain extent and severity after MVC. In addition, we hypothesized that the natural effect of ADRA2A rs3750625 is mediated, at least in part, by miR-34a.

RESULTS

• The minor (A) allele of ADRA2A rs3750625 (n = 91/942, 9.7%) was associated with a significantly higher mean extent of pain regions in the ED and a significantly higher severity of pain in the ED (Table 2).

• rs3750625 is located in the 3'UTR of ADRA2A and bioinformatics analyses predict that miR-34a could bind in this region and that the (A) allele strengthens seed base pairing (Figure 3).

• The potential binding site for miR-34a within the ADRA2A gene is highly conserved across five species (Figure 2), supporting its potentially important role in biologic function.

• In vitro testing with luciferase assays show that miR-34a binds and represses ADRA2A 3'UTR in a dose dependent manner (Figure 3) and that the minor allele associated with increased extent and severity of pain after MVC creates a more robust binding site for miR-34a (**p < 0.005 at all concentrations of miR-34a, using Mann Whitney U tests) (Figure 4).

• Adrenergic neuroblastoma cell lines IMR-32 and SH-SY5Y express both ADRA2A and miR-34a (Figure 5).

CONCLUSIONS

ADRA2A SNP rs3750625 is associated with pain extent and severity in the acute aftermath of MVC. Bioinformatics analyses and follow-up in vitro testing show that the influence of this SNP may be mediated by its effect on the function of miR-34a, miR-34a. Further studies are required to show the extent of miR-34a regulation of ADRA2A and the functional consequences of this interaction with respect to acute pain characteristics following exposure to a stressful/traumatic event.

REFERENCES


Research reported in this publication was supported by the Medfund, the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number 5K12AR056282-04 and a Summer Undergraduate Research Fellowship from the OUR at UNC-Chapel Hill.