The Role of PTSD and Depressive Symptoms in Changing Patterns of Substance Use Post-trauma

Negar Fani, PhD
Assistant Professor
Director, Fani Affective Neuroscience Laboratory
Emory University
Department of Psychiatry and Behavioral Sciences
nfani@emory.edu
Twitter: @NegarFani

Kerry Ressler, MD, PhD
Professor of Psychiatry
Chief, Center of Excellence in Depression and Anxiety
Chief Scientific Officer
McLean Hospital/Harvard Medical School
Continuing Medical Education Commercial Disclosure

I, Negar Fani, PhD, have no commercial relationships to disclose.
PTSD and alcohol/substance misuse are frequently comorbid (10%–61%)

• National Epidemiologic Survey on Alcohol and Related Conditions: 46%
• Psychiatric comorbidity and functional impairment
• SU emerges or worsens after trauma in some people
• Self-medication hypotheses
 • Substances used to alleviate PTSD-related distress
 • Onset of PTSD before SUD

Haller & Chasin (2019) longitudinal study N=377 adolescents, 11-15yo
3 waves (3-7 years apart)

4 Hypotheses

• High risk (HR): pre-trauma SU → trauma risk
• Susceptibility (SP): pre-trauma SU → PTSD risk
• Self-medication (SM): PTSD sxs → SU
• Shared susceptibility vulnerability (SSV): PTSD and SUD due to shared risk factors

• HR: (B = 0.21, p = .33, OR = 1.23)
• SP: (B = 0.07, p = .40, IRR = 1.07)
• SM: PTSD predicted future alcohol use (B = 0.09, p = .003, IRR = 1.10) and SU (B = 0.09, p = .042, IRR = 1.10)
 • covariates: trauma exposure, pretrauma SUD, family adversity
• SSV: (B = 0.01, p = .92, IRR = 1.01)

Which PTSD symptoms relate most to increased substance use?

- Intrusive/re-experiencing
- Avoidance
- Anhedonia (emotional numbing)
 - loss of interest in activities
 - detachment from others
 - diminished positive affect
- Negative mood and cognitions
- Hyperarousal

Post-trauma anhedonia associated with increased SU in a recently-traumatized population\(^1\)

- N=165

Red: participants who increased SU over time

Blue: participants with consistently minimal (or absent) SU

\(^1\)Fani et al., PR, 2020
Patterns of alcohol and marijuana use after trauma

• Trajectories of use
 • Correspond with changes in PTSD and depressive symptoms
 • Which symptoms
 • Moderation by trauma profiles

• AURORA Freeze 2 (N~1600)
PhenX Toolkit Alcohol - “During the 30 days before the event (or in the past 2 weeks for week 2) that brought you to the ER, how many days did you have at least one drink of any kind of alcohol, not including small tastes or sips?”

Table:

<table>
<thead>
<tr>
<th></th>
<th>ED</th>
<th>Week 2</th>
<th>Week 8</th>
<th>Month 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0-15</td>
<td>0-14</td>
<td>0-15</td>
<td>0-15</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>2 (3.3)</td>
<td>.12 (.2)</td>
<td>2.2 (3.5)</td>
<td>1.9 (3.3)</td>
</tr>
<tr>
<td>Mode</td>
<td>0 (40%)</td>
<td>0 (54%)</td>
<td>0 (41%)</td>
<td>0 (47%)</td>
</tr>
</tbody>
</table>

Graphs:

Week 2 Alcohol Use
- 0: 40%
- 2: 11%
- 4: 3%

Week 8 Alcohol Use
- 0: 41%
- 2: 11%

Month 3
- Similar to Week 8
<table>
<thead>
<tr>
<th>N=1600</th>
<th>ED</th>
<th>Week 2</th>
<th>Week 8</th>
<th>Month 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0-15</td>
<td>0-14</td>
<td>0-15</td>
<td>0-15</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>2.2 (4.8)</td>
<td>2.1 (4.7)</td>
<td>2 (4.7)</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PhenX Toolkit Substances - “During the 30 days before the event (or in the past 2 weeks for week 2) that brought you to the ER, how many days did you use marijuana?”
Alcohol Use: Latent Class Growth Analysis

Class 1: n=29
Class 2: n=1500
Class 3: n=86

*quadratic
decrease: 31%
No change: 39%
increase: 30%
*no sex effects or associations with age

Amanda Liew, MPH
Alcohol use and change in PTSD symptoms

- No associations with overall PTSD symptom change
- After removing participants with ED use scores of 0 (n~500)
 - PTSD symptoms ($r=.1$, $p=.04$)
 - Anhedonia, dysphoria and avoidance ($r=.13$, $p=.005$)
 - **Sex differences:** In women, not men, EtOH change correlates with anhedonia and dysphoria symptom change ($r=.13$, $p=.02$)
Alcohol use and change in depression symptoms

PROMIS Depression Short Form (8 items)

$r_{1200} = .13, p=0.000003$

- After removing non-users at ED
$r_{710} = .13, p=0.00005$

-not moderated by sex, demographics and prior drug use
Does trauma history moderate associations between substance use trajectories and PTSD symptom change?

Latent Trauma Class

Class 1: high trauma; polytrauma, high sexual trauma
Class 2: moderate trauma; high MVA + physical assault
Class 3: low trauma; primarily MVA

Archana Basu, PhD
Latent Trauma Class

Class 1: high trauma; polytrauma, high sexual trauma

Class 2: moderate trauma; high MVA + physical assault

Class 3: low trauma; primarily MVA

Archana Basu, PhD

Differences in patterns of alcohol and marijuana use over time

F\(_{2,1140}\) = 2.9, p = .05

*no interaction with sex

F\(_{2,1134}\) = 4, p = .02
Marijuana Use Trajectories: Latent Class Growth Analysis

Consistently low use n=1239 (77%)
High use n= 258 (16%)
Increasing use n=107 (7%)

Amanda Liew, MPH
Marijuana Use Latent Classes and Change in Depressive Symptoms

Men

- Latent Use: Marijuana
 - 1: Consistently high use
 - 2: Consistently low use
 - 3: Increasing use

Women

- Latent Class: Marijuana Use
 - 1
 - 2
 - 3

MJ use latent class x sex x time: $F_{2,1172}=5.6$ p=.004

No significant effects with PTSD symptom change
Change in PTSD Symptoms: Latent MJ use class x trauma class x time

PTSD overall: $F_{2,621} = 6.9$ $p = .000017$

No sex main effects or interactions

Polytrauma group

Moderate Trauma

Low trauma/MVA

Blue Consistently high use

Red Consistently low use

Green Increasing use

Hyperarousal: $F_{2,705} = 6.2$ $p = .00006$

Neg mood/Cognitions: $F_{2,705} = 5.7$ $p = .00016$

Anhedonia: $F_{2,705} = 5.6$ $p = .00018$
PTSD and Substance Use

Self-medication hypothesis
- Alcohol use associated with depressive symptoms post-trauma
 - In “at risk” users, use corresponds with anhedonic, dysphoric, avoidance PTSD symptoms, particularly women
- Minority (7%) of marijuana users escalate use after trauma
 - Associated with increasing depression, particularly men
- Trauma profiles moderate relationships of marijuana use and PTSD
 - Polytrauma → higher risk of increasing marijuana use and PTSD symptoms, particularly anhedonia and dysphoria
 - May be a larger proportion of “at risk” and escalating users in samples with more interpersonal trauma
Future directions: Neural pathways of shared susceptibility for PTSD and SUD

At risk alcohol or marijuana use

Hyperarousal, Anhedonia, Dysphoria

Escalate use to mitigate symptoms

SUD

Structural integrity
Reward, threat inhibition pathways

Monitoring of reward value

Sensitivity to reward

trauma

OFC

dmPFC

Insula

Striatum

Hippocampus

Amygdala
Fronto-limbic and fronto-striatal integrity in the development of post-trauma anhedonia

Harnett...Fani, Depress Anxiety (2020)
Lead Investigators:
Samuel A. McLean (UNC); Ronald Kessler (Harvard); Karestan Koenen (Harvard);
Kerry J Ressler (Harvard)

Site PIs:
Niels Rathlev (Baystate); Leon Sanchez (Beth Israel); Meghan McGrath (Boston Medical Center); Roland (Clay) Merchant (Brigham & Women's); Christopher Jones (Cooper); Kamran Mohuiddin (Einstein); David Peak (Mass General); Jose Pascual and Mark Seamon (Penn); Francesca Beaudoin (Rhode Island Hospital); Nina Gentile (Temple); Francesca Beaudoin (The Miriam Hospital); Anna Marie Chang (Thomas Jefferson Hospital); John Haran (UMass); Robert Swor (Beaumont); Brittney Punches (Cincinnati); Brian O'Neil (Detroit Receiving); Jennifer Stevens (Emory/Grady Hospital); Christopher Lewandowski (Henry Ford); Paul Musey (Indiana University (M&E)); Brian O'Neil (Sinai-Grace); Claire Pearson (St. John's); Robert Domeier (St. Joseph); Michael Kurz (UAB); Phyllis Hendry and Sophia Sheikh (UF Jacksonville); Alan Storrow (Vanderbilt); Stacey House (WashU)

Investigators:
Xinming An, Donglin Zeng, Sarah Linnsteadt and Ken Bollen (UNC); Thomas Neylan (UCSF); Gari Clifford (Emory); Tanja Jovanovic (Wayne State); Laura Germine, Guia Guffanti, Scott Rauch (McLean Hospital); Steven Harte (Michigan); Archana Basu (MGH)

Study Staff (Chris Agala, Suraj Oomman) and Data Coordinating Center, Students and trainees

Funding
National Institute of Health
R01 U01 MH110925
Acknowledgements

Lead Investigators:
Samuel A. McLean (UNC); Ronald Kessler (Harvard); Karestan Koenen (Harvard); Kerry James Ressler (Harvard)

Site PIs:
Niels Rathlev (Baystate); Leon Sanchez (Beth Israel); Meghan McGrath (Boston Medical Center); Roland (Clay) Merchant (Brigham & Women's); Christopher Jones (Cooper); Kamran Mohuiddin (Einstein); David Peak (Mass General); Jose Pascual and Mark Seamon (Penn); Francesca Beaudoin (Rhode Island Hospital); Nina Gentile (Temple); Francesca Beaudoin (The Miriam Hospital); Anna Marie Chang (Thomas Jefferson Hospital); John Haran (UMass); Robert Swor (Beaumont); Britney Punches (Cincinnati); Brian O'Neil (Detroit Receiving); Jennifer Stevens (Emory/Grady Hospital); Christopher Lewandowski (Henry Ford); Paul Musey (Indiana University (M&E)); Brian O'Neil (Sinai-Grace); Claire Pearson (St. John's); Robert Domeier (St. Joseph); Michael Kurz (UAB); Phyllis Hendry and Sophia Sheikh (UF Jacksonville); Alan Storrow (Vanderbilt); Stacey House (WashU)

Investigators:
Xinming An, Donglin Zeng, Sarah Linnsteadt and Ken Bollen (UNC); Thomas Neylan (UCSF); Gari Clifford (Emory); Tanja Jovanovic (Wayne State); Laura Germine, Guia Guffanti and Scott Rauch (McLean Hospital); Steven Harte (Michigan)
Research reported in this presentation was supported by the National Institute of Health under Award Number R01 U01MH110925. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.