Response inhibition deficit as a transdiagnostic risk factor for posttraumatic neuropsychiatric sequelae

Sanne van Rooij, PhD
Assistant Professor, Dept. of Psychiatry and Behavioral Sciences
Emory University School of Medicine
Response inhibition

The ability to suppress irrelevant or inappropriate actions in response to novel information

>> Cognitive control

Stevens et al AJP 2021

Powers et al EJPT in press
Response inhibition

Right inferior frontal gyrus (rIFG)
- Attentional monitoring
- Expectancy violation

Reduced activation in e.g., PTSD\(^1\), ADHD\(^2\)

\(^1\)van Rooij et al (2014) JPN
\(^2\)van Rooij & Jovanovic (2019) Progress in NPP & BPS
Fear inhibition

The ability to regulate the fear response in a *safe* environment

In van Rooij et al 2021; Adapted from Milad et al 2009
Fear inhibition

- **vmPFC**
 - Inhibition of behavior and emotions, fear response

- **Hippocampus**
 - Contextual learning/memory modulating responses based on contextual cues
Inhibition as mechanism for cross-domain psychopathology

Psychopathology (P) factor → “A single dimension is able to measure and maybe even explain a person’s liability to mental disorder, comorbidity among disorders, persistence of disorders over time, and severity of symptoms”\(^1\)

One hypothesis: response inhibition is core mechanism
- Poor impulse control over emotions
- Impulsive speech and action in response to experienced emotions
- Cognitive impulsiveness (rumination) about distress
- Impulsive overgeneralization from negative events

\(^1\)Caspi & Moffitt, 2019 AJP
Inhibition as mechanism for post-trauma risk vs resilience

Hypothesis PTSD: Enhanced ability to use contextual information to regulate emotions and behavior may enhance resilience and protect against the development of PTSD
Response inhibition related to **chronic** PTSD vs resilience

Chronically traumatized women of the Grady Trauma Project
Clinical outcomes: PTSD symptom scale (PSS), trait resilience (CD-RISC)

Jovanovic, Ely, ... Ressler, 2013, *Cortex*

van Rooij, Stevens ... Jovanovic., 2016, *Front Psych*
Response inhibition predictive of future PTSD

Recently traumatized civilians (N=58) in the GTP Emergency Department study

1 month post-trauma scan
3+6 months post-trauma PSS

van Rooij, Stevens.. Jovanovic (2018) Biological Psychiatry
Contextual response inhibition related to future PTSD

Reactive inhibition
- Go trial
- Stop trial

Proactive inhibition
- Stop Signal Probability level
 - 0%
 - 22%
 - 33%

A. Right inferior frontal gyrus (rIFG)
- rIFG contrast estimate

B. Ventromedial prefrontal cortex (vmPFC)
- vmPFC contrast estimate

PTSD symptoms (PSS) at 6 months

Powers, Hinojosa van Rooij (in press) Eur J Psychotraum
Contextual fear inhibition related to future PTSD vs resilience

Fear conditioning

- **CS+ > CS-**

Effect of context during extinction

- **B. ROI analysis resilience**
 - CS+ old context > CS+ new context

- **B. ROI analysis 3 mo PTSD symptoms**
 - Standardized residuals for PTSD symptoms at 3 months (PSS total) corrected for baseline PTSD symptoms, age, gender

van Rooij, Ravi.. Stevens (2021) *Behav Brain Res*
Discussion (1)

- Small studies, but consistent findings
 - Greater hippocampal activation during inhibition related to lower levels of PTSD and greater levels of resilience
 - Some evidence for lower levels of vmPFC and rIFG during response inhibition in PTSD

Next step: larger studies
AURORA ED study

Intensive assessment of APNS throughout key early development period

In-person evaluation of subset of study participants during the early posttraumatic period (n=800)

In-person evaluation of subset of study participants after the development of APNS (n=800). Additional follow-up blood draw group (n=2,200)

Legend:
- web-based neurocognitive assessment;
- flash surveys of cognition and symptoms;
- wrist device evaluating circadian and physiologic characteristics;
- saliva collection;
- blood product collection;
- continuous smartphone app data collection;
- self-report questionnaires
Response inhibition hippocampus PTSD risk factor for men

Lower posterior hippocampal activation was related to greater 6mo PTSD symptoms in men (sex*posthipp, p=0.003)
Response inhibition vmPFC risk for PTSD and other adverse neuropsychiatric sequelae (APNS) in impulsivity domain

Lower vmPFC activation was related to greater PTSD symptoms, but also greater **impulsivity** and sleep impairment.
• Hippocampus findings specific to PTSD in men
 • Potential risk pathway for men
 • Possibly related to its role in spatial recognition and the hypothesis that impaired hippocampal functioning represents reduced context processing
 • More research into sex differences needed

• vmPFC related to transdiagnostic APNS in inhibitory domain?
 • next step: create one risk vs resilience factor across domains
Resilience factor

Following the rationale of the p-factor

1. Can we create unbiased cross-domain resilience factors in the early aftermath of trauma?

2. Can we identify neurobiological correlates of the r-factor?
Month 6: Clinical outcomes

Flash surveys for posttraumatic neuropsychiatric sequelae (APNS)

- PTSD - PCL-5
- Depression - PROMIS
- Anxiety - PROMIS
- Sleep - PROMIS
- Alcohol, Marijuana use (# of days)
- Impulsive Behavior - SUPPS-P
R-factor analyses

Item-level data (46 items) for PTSD, depression, anxiety, sleep, alcohol/marijuana use and impulsivity at 6 months used to create **unbiased resilience factors** across domains

- Principal Component Analyses (PCA)
- N=2062 from **AURORA study** with 6-month item-level data
 - N=1827 with complete data

Total Variance Explained

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Total</td>
</tr>
<tr>
<td>2</td>
<td>2.410</td>
<td>5.239</td>
<td>2.410</td>
</tr>
<tr>
<td>3</td>
<td>2.198</td>
<td>4.779</td>
<td>2.198</td>
</tr>
</tbody>
</table>
R-factor analyses - correlations with items

(greater r = greater resilience against item)

<table>
<thead>
<tr>
<th>Clinical domain</th>
<th>item</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>Anxious</td>
<td>0.64</td>
<td>0.38</td>
<td>0.11</td>
</tr>
<tr>
<td>Anxiety</td>
<td>Tense</td>
<td>0.64</td>
<td>0.39</td>
<td>0.09</td>
</tr>
<tr>
<td>Anxiety</td>
<td>TroubleRelax</td>
<td>0.64</td>
<td>0.37</td>
<td>0.08</td>
</tr>
<tr>
<td>Anxiety</td>
<td>WorryAboutThings</td>
<td>0.64</td>
<td>0.36</td>
<td>n.s.</td>
</tr>
<tr>
<td>Depression</td>
<td>Depressed</td>
<td>0.79</td>
<td>0.28</td>
<td>0.16</td>
</tr>
<tr>
<td>Depression</td>
<td>Failure</td>
<td>0.81</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Depression</td>
<td>Helpless</td>
<td>0.79</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>Depression</td>
<td>Hopeless</td>
<td>0.81</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Depression</td>
<td>NothingInterest</td>
<td>0.70</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>Depression</td>
<td>NothingToLookForward</td>
<td>0.82</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>Depression</td>
<td>Sad</td>
<td>0.77</td>
<td>0.31</td>
<td>0.13</td>
</tr>
<tr>
<td>Depression</td>
<td>Unhappy</td>
<td>0.79</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>Depression</td>
<td>Worthless</td>
<td>0.81</td>
<td>0.26</td>
<td>0.29</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>ActWithoutThinkExcited</td>
<td>0.25</td>
<td>0.22</td>
<td>0.78</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>ActWithoutThinkUpset</td>
<td>0.34</td>
<td>0.23</td>
<td>0.67</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>FeelingRejected</td>
<td>0.34</td>
<td>0.23</td>
<td>0.68</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>LoseControl</td>
<td>0.29</td>
<td>0.24</td>
<td>0.76</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>SeeThingsThrough</td>
<td>n.s.</td>
<td>0.06</td>
<td>n.s.</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>ThinkCarefully</td>
<td>0.07</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>ThinkThingsOver</td>
<td>0.18</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>Impulsivity</td>
<td>UnfinishedTasks</td>
<td>0.39</td>
<td>0.21</td>
<td>0.29</td>
</tr>
<tr>
<td>Pain</td>
<td>Pain</td>
<td>0.22</td>
<td>0.44</td>
<td>0.13</td>
</tr>
<tr>
<td>PTSD</td>
<td>AvoidReminders</td>
<td>0.30</td>
<td>0.78</td>
<td>0.16</td>
</tr>
<tr>
<td>PTSD</td>
<td>AvoidStressExperience</td>
<td>0.32</td>
<td>0.79</td>
<td>0.16</td>
</tr>
<tr>
<td>PTSD</td>
<td>BadDreams</td>
<td>0.34</td>
<td>0.72</td>
<td>0.17</td>
</tr>
<tr>
<td>PTSD</td>
<td>BlamingSelf</td>
<td>0.51</td>
<td>0.60</td>
<td>0.20</td>
</tr>
<tr>
<td>PTSD</td>
<td>DifficultyConcentrate</td>
<td>0.52</td>
<td>0.43</td>
<td>0.24</td>
</tr>
<tr>
<td>PTSD</td>
<td>DisturbingMemories</td>
<td>0.34</td>
<td>0.77</td>
<td>0.12</td>
</tr>
<tr>
<td>PTSD</td>
<td>FeelingCutOff</td>
<td>0.69</td>
<td>0.42</td>
<td>0.19</td>
</tr>
<tr>
<td>PTSD</td>
<td>FeelingFear</td>
<td>0.58</td>
<td>0.58</td>
<td>0.19</td>
</tr>
<tr>
<td>PTSD</td>
<td>FeelingIrritable</td>
<td>0.56</td>
<td>0.46</td>
<td>0.28</td>
</tr>
<tr>
<td>PTSD</td>
<td>FeelingJumpy</td>
<td>0.32</td>
<td>0.58</td>
<td>0.26</td>
</tr>
<tr>
<td>PTSD</td>
<td>FeelingUpset</td>
<td>0.35</td>
<td>0.78</td>
<td>0.10</td>
</tr>
<tr>
<td>PTSD</td>
<td>LackPositiveEmotions</td>
<td>0.70</td>
<td>0.44</td>
<td>0.27</td>
</tr>
<tr>
<td>PTSD</td>
<td>LossOfInterest</td>
<td>0.65</td>
<td>0.47</td>
<td>0.20</td>
</tr>
<tr>
<td>PTSD</td>
<td>NoOneCanBeTrusted</td>
<td>0.63</td>
<td>0.51</td>
<td>0.24</td>
</tr>
<tr>
<td>PTSD</td>
<td>RelivingEvent</td>
<td>0.28</td>
<td>0.77</td>
<td>0.23</td>
</tr>
<tr>
<td>PTSD</td>
<td>SleepProblems</td>
<td>0.39</td>
<td>0.40</td>
<td>0.11</td>
</tr>
<tr>
<td>PTSD</td>
<td>StrongPhysicalReactions</td>
<td>0.33</td>
<td>0.78</td>
<td>0.17</td>
</tr>
<tr>
<td>PTSD</td>
<td>Superalert</td>
<td>0.22</td>
<td>0.58</td>
<td>0.18</td>
</tr>
<tr>
<td>PTSD</td>
<td>TakingRisks</td>
<td>0.30</td>
<td>0.30</td>
<td>0.57</td>
</tr>
<tr>
<td>PTSD</td>
<td>TroubleRemember</td>
<td>0.34</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Sleep</td>
<td>DiffStayAwakeInDay</td>
<td>0.22</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Sleep</td>
<td>SleepProbDiffGetThingsDone</td>
<td>0.29</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>Substance</td>
<td>MarijuanaNumDays</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Substance</td>
<td>NumDaysAlcohol</td>
<td>0.06</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>
R-factor analyses

1. Global stress resilience
 • Resilient to: depression, anxiety, PTSD
 • No sex differences, but non-significant greater r-factor scores for men

2. Trauma reminder resilience
 • Resilient to: avoiding and reexperiencing of trauma
 • Lower scores in women (mean=-0.10) than men (mean=0.18), p<0.001

3. Impulsivity resilience
 • Resilient to impulsivity, risk taking (sleep, jumpy, irritable)
 • Correlation with age, r=0.121, p<0.001 (older, less impulsive)
Neuroimaging data

- **Functional MRI**
 - Inhibition - GNG task (N=215)
 - Whole brain analyses, corrected for site
 - Primary threshold, $p<0.001$
 - Cluster-level corrected threshold, $p<0.05$ + Bonferroni correction for multiple testing (3 factors), $p<0.016$
Whole brain r-factor analyses

BOLD response Go/NoGo

Whole brain correlation

R-factor continuous score

p<0.001, cluster level p<0.016
R-factor: global stress and trauma reminders

No whole brain findings that survived correction for multiple testing
- global stress resilience
- trauma reminders resilience
R-factor: impulsivity resilience

<table>
<thead>
<tr>
<th>Inhibition</th>
<th>state</th>
<th>F-statistic</th>
<th>p-value</th>
<th>M</th>
<th>Z</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition</td>
<td>positive</td>
<td>52</td>
<td>0.006</td>
<td>40</td>
<td>12</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>0.037</td>
<td>46</td>
<td>24</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>negative</td>
<td>59</td>
<td>0.004</td>
<td>40</td>
<td>-64</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57</td>
<td>0.004</td>
<td>-10</td>
<td>-56</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>0.048</td>
<td>68</td>
<td>-28</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Right middle frontal gyrus
Right inferior frontal gyrus
Right middle temporal gyrus
Left precuneus
Right middle temporal gyrus

R Middle/Inferior frontal gyrus

Impulsivity resilience

R Middle/Inferior frontal gyrus

L precuneus

R middle temporal gyrus

Negative association, p<0.001

Cluster-level correction + Bonferroni multiple testing, p<0.016

Inhibition, positive, p<0.001

P<0.001, cluster-level + Bonferroni correction, p<0.016
Discussion

No significant correlations with general stress resilience

→ whole brain correlations with threat and reward (incl rIFG)

More impulsive resilience
More right **Middle/Inferior Frontal Gyrus**
- Attentional monitoring
- Expectancy violation

Less right **Middle Temporal Gyrus, left precuneus**
- Reflections upon self
Future directions and implications

Resilience is NOT merely the absence of psychopathology or PTSD after stress/trauma

* Definition: The set of complex and dynamic processes that allow individuals to maintain psychological well-being in the face of adversity\(^1\)

Next steps:
Dynamic resilience - capacity to recover to a state of well-being within a few weeks to months of a major stressful life event
→ Analyze symptom change from baseline

\(^1\)Roeckner, Oliver... Stevens, Translational Psychiatry, 2021
Thank you for your attention!

Jennifer Stevens
Vasiliki Michopoulos
Abigail Powers Lott
Rebecca Hinrichs
Jessica Maples-Keller
Timothy Ely
Sterling Winters
Sean Minton
Ravi Meghna
Cecilia Hinojosa
Barbara Rothbaum
Kerry Ressler
Tanja Jovanovic
GTP volunteers and staff

Sam McLean
Karestan Koenen
Ron Kessler
Nathaniel Harnett
Lauren Lebois
Vishu Murthy
AURORA study team

www.gradytraumaproject.com
www.stressneurolab.com
@sannerooij
sanne.van.rooij@emory.edu

Funders: National Institute of Health, Brain and Behavior Research Foundation, CABI GSU/GA Tech
R-factor: Global stress resilience

Threat: negative
Reward: positive, negative

Primary threshold, $p<0.001$
+ cluster-level Bonferroni correction, $p<0.016$