
INTRODUCTION
Traumatic stress exposures (TSE) affect >90% of

individuals in their lifetime. 1 While most individuals recover
following TSE, a substantial subset develop chronic pain. 2, 3

In a previous study, we showed that early life adversity
(ELA) substantially increased vulnerability to a related type
of chronic pain.4

Functional changes to neurochemical stress pathways
(e.g. glucocorticoid signaling) are also purported to play a
significant role in risk for pain development follow ELA and
TSE.5. Our previous work has shown that the relationship
between ELA and chronic pain is dependent on both
hippocampal volume and FKBP5 (a regulator of
glucocorticoid signaling) risk alleles.4

RESULTS SUMMARY: 
• In men and women from the AURORA study (n=2,942,
Table 1), we found that exposure to ELA increases
vulnerability to chronic pain after trauma (β=0.99,
p<0.001, Figure 2).

• Bullying in childhood was the strongest predictor of
chronic pain (Table 2, β=2.010 p<0.001).

• There was a significant interaction (t=-2.416, p=0.0159)
between hippocampal volume and CTQ (Figure 3) such
that those with the highest reported levels of CTQ
exhibited a stronger negative relationship between
hippocampal volume and pain intensity than those with
the lowest CTQ.

• In rats, ELA + subsequent TSE exposure in adulthood
(PND 125) led to a prolonged period of hyperalgesia vs
TSE alone (F(6,42)>2.50, p=0.0370, Figure 4).

• Preliminary analysis of hippocampal-specific resting
state functional MRI data indicated decreased functional
connectivity between the hippocampus and amygdala
(41 voxels, p<0.05) in ELA exposed rats (consistent with
previous ELA literature) and increased connectivity
between the hippocampus and the secondary
somatosensory cortex (75 voxels, p<0.05) in ELA
exposed rats (Figure 5).

CONCLUSIONS
• ELA, especially childhood bullying, is a strong predictor

of post-TSE pain and hippocampal volume is an
important moderator of the relationship between ELA
and post-TSE chronic pain.
• In our rodent model, we replicated previously reported

functional connectivity alterations involving the
hippocampus and extended previous findings by
identifying an additional ELA-altered connection to pain
processing brain centers.

FUTURE DIRECTIONS
Future studies will explore the role of FKBP5 changes in
the development of chronic pain following ELA as is
mediated by changes in the hippocampus.
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TABLE 1. Baseline characteristics of the full AURORA cohort (n=2942) and the
subset of participants with MRI data (n=413).

Full AURORA Cohort AURORA MRI Cohort

Female n=1818/2942 (61.79%) n=256/413 (61.98%)

Age mean=35.90 (sd=13.29) mean=34.49 (sd=13.06)

Race n (%) n (%)

Hispanic 342 (11.67%) 67 (16.30%)

Non-Hispanic White 1020 (35.00%) 138 (33.60%)

Non-Hispanic Black 1458 (50.00%) 188 (46.00%)

Other 111 (3.80%) 18 (40.00%)

Education (Highest Grade) n (%) n (%)

Less than HS 339 (11.60%) 30 (7.30%)

HS Graduate 778 (26.50%) 115 (28.00%)

Some college 1194 (40.70%) 167 (40.00%)

College graduate 623 (21.23%) 101 (24.00%)

Early life adversity mean (SD) mean (SD)

CTQ Total Score (out of 52) 9.90 (10.20) 9.50 (9.79)

Physical Abuse (out of 8) 1.58 (2.31) 1.71 (2.47)

Sexual Abuse (out of 12) 1.95 (3.37) 1.88 (3.22)

Emotional Abuse (out of 8) 2.59 (2.64) 2.64 (2.67)

Physical Neglect (out of 8) 1.54 (2.14) 1.66 (2.16)

Emotional Neglect (out of 8) 1.95 (2.36) 2.06 (2.33)

Bullying (out of 8) 2.99 (2.37) 2.96 (2.34)

SD=standard deviation, HS=high school, CTQ=childhood trauma questionnaire

AIMS
We conducted preliminary analyses to A) replicate our
previous results connecting early life stress and chronic pain
development using a large longitudinal cohort study of TSE
survivors (the AURORA study6) and to B) establish a back-
translated animal model of chronic pain following ELA in
which we could later test FKBP5 inhibition as a pain
preventative. For the analysis of rat function MRI data, we
hypothesized that the hippocampus would show altered
connectivity with the prefrontal cortex and amygdala, like
previous reports in ELA7-9 and pain10.

METHODS
Data Collection(Figure 1). 

Human cohort study:
We used MRI and pain
data from the AURORA6

(n=2942), a longitudinal
study that enrolled
participants in the
emergency department
within 72 hours of TSE.
ELA was assessed at the
ED timepoint via the
childhood trauma
questionnaire (CTQ) 11

and two SCID-IV12

bullying questions. Pain (0-10 NRS13) was assessed in the
ED and six months following TSE. A subset of study
participants (n=413) completed a 3T MRI scan 2 weeks
following enrollment.

Rat study: At birth, Sprague Dawley pups were assigned
to neonatal limited bedding (NLB)14 or control groups. At
postnatal day 100, n=10 controls and n=10 NLB rats were
scanned in a Bruker 9T MRI. On postnatal day 125, we
tested paw withdrawal threshold (n=18 controls and n=24
NLB) using von Frey before and after exposing the animals
to the single prolonged stress (SPS) model of TSE.15

Data analysis. Humans: A repeated measures linear
mixed model tested for main effects and interactions
between CTQ and hippocampal structure on chronic pain
severity (8 weeks, 3 months, and 6 months after TSE) . We
used multiple regression to test which CTQ subscore was
the strongest (β) predictor of chronic pain development.

Rats: We conducted right hippocampal seed-based
functional connectivity analysis. A two-sample t-test
identified significantly different voxels between control and
NLB animals. A threshold of 40 voxels was used to identify
significant regions of connectivity. The effect of NLB and
SPS on paw withdrawal was tested using two-way ANOVA.

FIGURE 1 Overview of data collection.
left panel: humans; right panel: rats.

TABLE 2. β estimates and significance values for each CTQ subscore
and bullying. Each subscore was tested as a continuous variable
indicating frequency of the experience and as a dichotomous variable
indicating whether the subtype was ever experienced. Bullying,
Physical, and Emotional Abuse were top 3 predictors of pain intensity.
Only Bullying (SCID-IV “how often did other kids call you names or say
mean things” and “how often did other kids threaten to hurt you”) was
significant in the MRI cohort.

RESULTS

FIGURE 2. Pain intensity 6 months after a
traumatic event by CTQ tertile Higher
self-reported CTQ scores were associated
with increased pain intensity 6 months
after TSE. Those with the top 1/3 of CTQ
scores, report significantly greater pain
when compared to either the bottom or
middle 1/3 of CTQ scores.

FIGURE 3. Interaction between CTQ and right
hippocampal volume on pain intensity. Right
hippocampal volume significantly moderates
the effect of CTQ on pain intensity (t=-2.416,
p=0.016). Individuals reporting the most ELA
(i.e. top 1/3) exhibit a stronger negative
relationship between pain intensity and
hippocampal volume, as compared to those
who reported the least ELA (i.e. bottom 1/3).

FIGURE 4. von Frey measurement of paw withdrawal threshold (PWT) at
baseline and following single prolonged stress (SPS) in neonatal limited bedding
(NLB) and control rats. At baseline NLB male animals have a lower PWT, though it
was not a significant difference (t (13.75)=1.76, p=0.101). A traumatic event (i.e.
SPS) causes the same magnitude of change in PWT regardless of NLB, but NLB
animals exhibit significantly reduced PWT for a longer duration. Female animals
exhibit a similar pattern of PWT though NLB females recover to baseline more
quickly than males.

FIGURE 5.Hippocampal seed-based resting
state functional connectivity in rats with and
without NLB. NLB rats exhibit decreased
connectivity between the right hippocampus
and left amygdala (41 voxels, p<0.05), and
they exhibit increased functional
connectivity between the right hippocampus
and right secondary somatosensory cortex
(75 voxels, p<0.05).
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CTQ Subscore variable type β p β p
frequency 1.620 <0.001* 0.819 0.287
dichotomous 0.468 0.007* 0.389 0.408
frequency 1.069 0.003* 1.450 0.125
dichotomous 0.460 0.024* 0.054 0.913
frequency 1.603 <0.001* 0.868 0.164
dichotomous 0.490 0.004* 0.849 0.052
frequency 0.118 0.730 0.520 0.552
dichotomous 0.670 <0.001* 0.677 0.121
frequency 0.374 0.245 1.167 0.158
dichotomous 0.376 0.041* 0.075 0.868
frequency 2.010 <0.001* 2.105 0.002*
dichotomous 0.097 0.612 0.207 0.676

* represents a significant result, p<0.05, bold values are the top 3 predictors of pain
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