Changes in alcohol consumption post-trauma are significantly associated with reward—related brain activation

Hinojosa, C.A., Ph.D.¹, van Rooij, S.J.H., Ph.D.¹, Harnett, N.G. Ph.D.^{2,3}, Ph.D., V.P., Ph.D.⁵, House, S., M.D., Ph.D.⁶, Fani, N., Ph.D.¹, McLean, S.A., M.D., M.P.H.^{7,8}, Ressler, K.J., M.D.^{2,3}, Ph.D., & Stevens, J., Ph.D.¹

¹Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; ²Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA; ³Department of Psychiatry, Harvard Medical School, Boston, MA, USA; ⁴Department of Psychology, Temple University, Philadelphia, PA, USA; ⁵Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; ⁶Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA; ⁷Institute of Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicine, University of North Carolina at Chapel Hill, NC, USA; ⁸Department of Emergency Medicin

Background

- Posttraumatic stress disorder (PTSD) and problematic alcohol use frequently co-occur,¹ and the neural factors that contribute to the development of problematic alcohol use after acute trauma exposure are unknown.
- Using a multi-site longitudinal study design, we explored whether the change in alcohol consumption pre-trauma to 8 weeks post-trauma was associated with reward-related brain reactivity and functional connectivity (FC) measures gathered 2weeks post-trauma.
- Exploring reward-related brain alterations in PTSD is important to potentially uncover the underlying mechanisms promoting alcohol use.

Research Question

- 1. Explore associations between alcohol change scores (pre-trauma to 8 weeks post-trauma) and reward-related reactivity and functional connectivity (2-weeks post-trauma).
- 2. Determine whether significant differences in brain measures exist between three alcohol change groups: those who increased use, decreased use, or showed now change in alcohol use.

Methods

- Participants were recruited from emergency departments across the U.S. as part of the AURORA study (N=286; *n*=178 Female).
- Alcohol consumption (drinks per month; PhenX Toolkit²) was assessed for the month prior to the trauma and again 8 weeks post-trauma.
- Trauma-related change in drinking was quantified as the change in 30-day total drinking at 8 weeks, relative to pre-trauma.
- Reward-related neural reactivity was assessed at 2 weeks posttrauma using functional magnetic resonance imaging (fMRI) during a monetary reward task (Fig. 1) and analyzed in *fMRIprep* and *SPM12*. Structural regions of interests (ROIs) were extracted using the Reinforcement Learning Atlas.³ R (v4.2.1) was used to conduct statistical analyses.
- Seed-based FC analyses examining the association between reward-related reactivity and change in alcohol consumption were conducted using CONN Toolbox (v21.a).
- Reward-related neural reactivity was compared across those whose alcohol consumption increased (*n*=99, *n*=60 Female), decreased (*n*=103, *n*=67 Female), or did not change (*n*=84, *n*=51 Female), (**Fig. 2**).

NIMH U01MH110925, the US Army Medical Research and Material Command, The One Mind Foundation, and The Mayday Fund

lated Reactivity (Gain > Loss)				
3	4	5	6	7
-				
.05	-			
.03	.54**	-		
.42**	.36**	.12*	-	
.34**	.49**	.21**	.59**	-

Greater FC between the VTA seed and lateral occipital cortex (MNI, x=28, y=-76, z=50) was associated with greater change in alcohol consumption, cluster-level P_{FWF} <.001,

Greater FC between the VTA seed and the precuneus (MNI, x=-20, y=-60, z=18) was associated with greater change in alcohol consumption, cluster-level P_{FWE} =0.014, K_E=290, (Fig.

Group Differences

Analysis of variance (ANOVA) exhibited a significant group difference, F(1, 284)=5.56, *p*=0.02. The increasing alcohol consumption group exhibited greater VTA activation (M=.09, SD=.56) than the decreasing alcohol consumption group (*M*=-0.12, *SD*=.70; Fig. 5).

Implications

- exposed to trauma.
- The findings presented provide evidence that changes in alcohol consumption early post-trauma may contribute to reward alterations in trauma-exposed individuals.
- Uncovering the neural correlates of alcohol use in recently trauma-exposed participants is pivotal in determining who would benefit most from early interventions to prevent the development of trauma-related psychopathology.

Future Directions

- These findings align with previous research that suggest an use of the substance, potentially leading to dependence.
- Latent class analysis can be used to determine different in reward-related neurocircuitry.

Pietrzak, R.H., Goldstein, R.B., Southwick, S.M., & Grant, B.G. (2011). Prevalence and Axis I comorbidity of full and partial posttraumatic stress disorder in the United States: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Anxiety Disorders, 25, 456-465. ²Hamilton, C.M., Strader, L.C., Pratt, J.G., et al. (2011). The PhenX Toolkit: get the most from your measures. Am J Epidemiol, 174(3), 253-³Pauli, W., Nili, A., & Tyszka, J.(2018). A high-resoluation probabilistic *in vivo* atlas of human subcortical brain nuclei, Sci Data, 5 180063.

⁴Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., & Fiez, J.A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. *J Neurophysiol.* 84(6), 3072-3077.

EMORY UNIVERSITY SCHOOL OF MEDICINE

Grady Trauma Project

• Clarifying the relationship between PTSD symptoms and alcohol use will lead to intervention development for those recently

initial increase in reward-related brain activation may contribute to the reinforcing effects of substances contributing to increased longitudinal trajectories of alcohol use after trauma exposure and whether significant differences exist between these classes

References