HUMAN PRIMARY AIRWAY EPITHELIAL CELL CULTURING PROTOCOL

Introduction
The hBE passage 1 (P1) cells are shipped frozen. The overall strategy is to grow passage 1 and expand the cells in either BEGM (bronchial epithelial growth medium) or a suitable commercially available medium on collagen type I/III coated plastic tissue culture dishes. Once the P1 cells reach 70-90% confluence, then they can be passaged and seeded on human type IV collagen coated porous supports in air liquid interface (ALI) medium for differentiated cultures.

Materials
- Homemade BEGM (see reference 1) or commercial BEGM™ Bronchial Epithelial Cell Medium Bulletkit™ (www.Lonza.com).
- Tissue culture dishes-usually 100 mm circular.
- Type I/III Collagen – PureCol® (www.advancedbiomatrix.com).
- Collagen type IV (Sigma, C7521).
- For ALI cultures- one or more of the following porous supports: Corning® Transwell®-Clear (Cat. # 3460, 3450); Corning® Snapwells (Cat. # 3801); Millipore Millicel® CM (Cat. #: PICM01250 and 03050).
- ALI media as per reference 1.
- Accutase- (Cat #: AT104) www.Innovativecelltech.com (Used in place of trypsin)
- Ham’s F12 medium

To make homemade ALI and BEGM media you will need the following products.
Performance

- Recommended seeding density for subculture: \(1 \times 10^6\) cells/100 mm dish
- Typical time from subculture to confluent monolayer: 5-8 days
- Recommended seeding density for cells on supports: \(1.5 \times 10^5\) cells/cm\(^2\)

Quality Control

Cell viability, morphology and proliferative capacity are measured after recovery from cryopreservation.
Storage Requirements
- **Cells**
 Remove cryopreserved cells from dry ice and place immediately into vapor phase liquid nitrogen storage.
- **Medium**
 Purchase medium and store at 4°C or make homemade BEGM and ALI media and store at 4°C.
- **Reagents & Solutions**
 Ham’s F-12 medium and Accutase, both stored at 4°C.

Safety Precautions
All human sourced material should be handled using universal precautions.
- Always wear gloves when handling human material.
- Exercise caution when removing and thawing cells out of liquid nitrogen, wear eye protection.
- Wash hands after handling human material.
- Never mouth pipet.

Cryopreserved Cells
- Warm Ham’s F-12 media to 37°C.
- Rapidly thaw cryovial in 37°C water. Transfer as soon as ice melts.
- Decontaminate cryovial by wiping the exterior down with 70% ETOH.
- Resuspend cell suspension slowly and transfer cells to 15 mL conical tube.
- Dilute the cell suspension by slowly filling tube with warm F-12; centrifuge at 600g for 5 min at 4°C.
- Aspirate supernatant and gently resuspend cells in appropriate plating medium, count cells and assess viability.
- Plate cells according to recommended cell seeding density and the surface area of vessel being used (>1x10⁶ cells per collagen coated 100 mm diameter dish).
- Place culture dishes in 37°C, 5% CO₂ incubator. The cells will adhere to the bottom of the dish.
- Remove medium 24 hr after plating and wash away any dead cells with PBS. Feed every other day thereafter with fresh media. Examine cells daily.

Using a Hemocytometer
- Prepare a cell suspension in Ham’s F-12 media.
- Clean hemocytometer. Center the coverslip on the hemocytometer.
- Quickly resuspend cell suspension. Pipette out 12µL of cells and mix with 12 µL of trypan blue. Mix and take 12 µL of cell mixture in pipette tip and slowly fill the chamber.
- Count the cells in four 1 mm² corner squares. Nonviable cells stain blue. Keep separate counts of viable and nonviable cells. Count cells falling on the perimeter only two of the four sides.
- Each square of the hemocytometer, represents a total volume of 0.1 mm³ or 10⁻⁴cm³. 1 cm³ is equivalent to 1mL, the subsequent cell concentration per mL (and the total number of cells) can be determined thusly:
 \[
 \text{CELLS PER mL} = \text{the average count per square x dilution factor} \times 10^4 \\
 \text{TOTAL CELLS} = \text{cells per mL x the original volume of fluid from which cell sample was removed.}
 \]
 \[
 \% \ \text{CELL VIABILITY} = \frac{\text{total viable cells (unstained)}}{\text{by total cells (stained and}}
 \]
n
ll
l
p
m
ice.
Transfer cells to conical tube on
detach.
Add 3 mL to each dish, swirl and
incubate at 37°C for 2-12 hr.
Transfer plates to the hood and
aspirate any remaining liquid.
Dry completely in hood. UV 30
min. Store coated dishes at 4°C
for up to 8 weeks.
Coating porous supports, prepare
stock solution by dissolving 10 mg
type IV collagen in 20 mL dH₂O
and add 50µL of concentrated
acetic acid.
Incubate solution at 37°C until
dissolved (~4 hrs), filter.
Store aliquots at -20°C.
Dilute frozen stock 1:10 with
sterile dH₂O.
Place supports in appropriate
vessels, add 150 µL diluted
solution per 10-12 mm
support, 400 µL per 24-30 mm
support on apical side.
Allow to dry in the hood overnight
with blower on.
UV sterilize for 30 minutes and use
or wrap vessels in parafilm and
store at 4°C for up to 6 weeks.

Collagen Coating Plates
& Supports
- Coat 100 mm tissue culture dish
 with 1:75 dilution of Purecol in
 sterile dH₂O.
- Add 3 mL to each dish, swirl and
 incubate at 37°C for 2-12 hr.
- Transfer plates to the hood and
 aspirate any remaining liquid.
- Dry completely in hood. UV 30
 min. Store coated dishes at 4°C
 for up to 8 weeks.
- Coating porous supports, prepare
 stock solution by dissolving 10 mg
type IV collagen in 20 mL dH₂O
 and add 50µL of concentrated
 acetic acid.
- Incubate solution at 37°C until
dissolved (~4 hrs), filter.
- Store aliquots at -20°C.
- Dilute frozen stock 1:10 with
 sterile dH₂O.
- Place supports in appropriate
 vessels, add 150 µL diluted
 solution per 10-12 mm
 support, 400 µL per 24-30 mm
 support on apical side.
- Allow to dry in the hood overnight
 with blower on.
- UV sterilize for 30 minutes and use
 or wrap vessels in parafilm and
 store at 4°C for up to 6 weeks.

Subculture Preparation
- Subculture the cells when they are
 70-90% confluent.
- Rinse dish with PBS, add 3 mL
 Accutase to 100 mm dish. Incubate at 37°C until cells
detach.
- Transfer cells to conical tube on
 ice. Centrifuge tube 5 min at
 600g, 4°C. Aspirate supernatant
 and resuspend pellet in plating
 medium for counting.
- Plating cells on collagen coated
 porous supports, plate at a
density of 0.15- 0.25 x 10⁶ cells
 per cm². This equals 1.25 - 2.50 x
 10⁵ cells on 10-12 mm supports
 and 1-3 x 10⁶ cells per 24-30
 mm support.
- Place culture dishes in 37°C,
 5% CO₂ incubator.
- Change the medium 24 hr after
 plating. Wash away debris
 with PBS. Feed every other day
 thereafter.

Maintenance after
Subculturing
- 24 hr after plating, examine
 the cells under microscope.
 ~30%+ of the cells should
 attach and show signs of
 spreading. Most cells will be
 single or in small islands.
- Change the medium to remove
dead cells and debris. For cells
 on supports, add one or two
drops of media to the apical
 side until confluent.
- Most hBE cells grown on
 plastic dishes will become
 confluent between days 5-8.
- Once cells on porous supports
 become confluent, the culture
 can be made into air-liquid
 interface (ALI) conditions.
 Most cultures are well-
differentiated after day 21.

References:
1) Fulcher ML, Randell SH.
 Human nasal and tracheo-
 bronchial respiratory epithelial
cell culture. Methods Mol Biol.
2) ML Fulcher, SE Gabriel, JC
 Olsen, E Livanos, JR Tateau,
 MT Saavedra, P Salmon and
 SH Randell. Novel Human
 Bronchial Epithelial Cell Lines
 For Cystic Fibrosis Research,
 AJP Lung Cell and Mol Physiol,
 2009 Jan;296(1):L82-91.